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Double photoionization of the hydrogen molecule from the viewpoint of the time-delay theory
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We studied angular dependency of the time delay in one-photon two-electron photoionization of the hydrogen
molecule. Time delay as a function of the angle between velocities of the escaping electrons was shown to have
poles at the point corresponding to the kinematic nodes of the reaction. Study of the delay in the vicinity of a
pole can provide information about phases of the amplitudes of the reaction.
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I. INTRODUCTION

The rapidly developing field of attosecond physics [1]
provided a fascinating possibility of experimental study of the
details of electron motion in atomic and molecular systems
with temporal resolution below characteristic time scales of
motion in these systems (typically a hundred attoseconds).
Various experimental techniques, such as attosecond streak-
ing [2,3] and angular attosecond streaking [4], have been
developed for this purpose. Since the very interpretation of
the experimental results relies on the adequate theoretical
models, this fast progress in experimental technique goes hand
in hand with the development of a theoretical description
of the time evolution of the atomic or molecular systems
in the presence of electromagnetic field. In the first works
on the subject of attosecond streaking the so-called strong
field approximation has been used to describe the com-
bined effect of the ultraviolet (UV) and infrared (IR) laser
pulses on the system, which is needed to interpret correctly
experimental results. This approach has been subsequently
refined to include polarization [5,6], and electron correlation
effects [7].

This symbiosis of theory and experiment has produced a
number of spectacular results, such as an observation of a
considerable time delay between photoelectrons emitted from
the 2s and 2p shells in neon [8], or from the hydrogenic 2s
and 2p initial states in He' [9]. The time an electron takes to
tunnel out in the photoionization event has also been measured
[4,10].

In Ref. [11] an approach has been described allowing the
so-called complete description of the photoionization process,
when not only the traditionally measured modulus of the
spectral amplitude but also its phase can be retrieved from
the experiment. Information about the phase can be converted
into the timing information allowing us to trace experimen-
tally dynamics of the ionization process with attosecond
precision. A similar approach has been described in our
paper [12].

We describe below a procedure allowing us to obtain phase
information for the spectral amplitude of the one-photon two-
electron ionization of a hydrogen molecule. This procedure
relies on the detailed study of the time delay, a theoretical
notion introduced in Ref. [13] for scattering phenomena, and
applied subsequently for the photoionization process [14].
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II. THEORY AND RESULTS

We solve the time-dependent Schrodinger equation (TDSE)
for a hydrogen molecule in the presence of a linearly polarized
laser pulse:

o, Tt
E = E(sin” — cos wt, (1)
T
with |Eg| = 0.1a.u.,,w =75.5eV, T} =4T,where T =27 /w
is the optical cycle corresponding to a carrier frequency w. The
laser field is present on the interval of time (—77,7}).

To solve the TDSE we discretized the Hamiltonian operator
on a spatial grid {r;}. The wave function at the points {r;} is
represented as a partial wave expansion:

V(rr) = Y S rmIh(DBE) T), )

I, J

where the notation |/;(1)I5(2) J) is used for bipolar harmonics
[15], and the summation is restricted to /,/, = 0-6, J = 0-5.
The procedure is described in more details in our paper [16].
The hydrogen molecule at the moment of time ¢ = —17] is
initially in its ground state. The internuclear distance is taken
to be equal to its equilibrium value of 0.7414 A (1.4011 a.u.).
We find a solution of the TDSE for the system atom + laser
field on the interval (—T;,T;). We follow field-free evolution
of the system after the end of the laser pulse at t = 7} until
t = 12T. To solve the TDSE we use the Arnoldi-Lanczos
method [17].

To extract from the solution W(r,r»,t) of the TDSE infor-
mation about the motion of electrons with given asymptotic
momenta, we modified the procedure proposed in our work
[18], where it was applied for a study of double photoionization
of a helium atom.

The wave-packet state Wy, ,(r1,72,t) describing two elec-
trons with asymptotic momenta k;, k, can be obtained by
means of a projection operation:

Wk, (F1,72,1) = PU(ry,ra,1), 3)

where the kernel of the projection operator is given by the
expression

(ry.r5| Plry,ra) =/‘lf;,qz(rl,rz)\l';,q,(r’l,r/z)*dqldqz,
o )
“)

and vectors \Ilq’l ’ qz(rl ,I) are the two-electron scattering states
with the ingoing boundary condition. We construct these states
using ingoing one-electron scattering states of the H,™ ion.
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Integration in the momentum space in Eq. (4) is confined
to a region centered around the momentum vectors ki, k;
(specifically Q = Q; Q) 2,, where Q; and Q, are balls in
momentum space defined by |q; — k;| < 0.25k;). Electron
density p(r,t) = f|\IJk1k2(r,r1 ,0)|?dr; for such a wave-packet
state can be used to visualize motion of two electrons.

We apply this technique below for a particular geometry
of the parallel laser field polarization vector and molecular
axis. We shall fix the direction of one of the electron momenta
(k) to be parallel to the z axis, and we will study details
of electron motion for various directions of the electron
momenta k;. Due to the overall cylindrical symmetry of
the problem, we can always assume that vector k, lies in
the (x,z) plane. We shall consider the case of the equal
energy sharing. For the field frequency that we consider,
this corresponds to electron energies £; = E; = 12.2 eV and
momenta k| = k, = 0.95 a.u. For these momenta the width
of the wave packet obtained using the projection operation
defined by Egs. (3)and (4) is approximately 0.25 a.u. in the
momentum space of each electron. Correspondingly, the width
in the coordinate space is approximately 4 a.u. Below, for
brevity, we shall call the electron moving in the z direction the
first electron.

A few consecutive snapshots of the electron motion for this
geometry are shown in Fig. 1 for the particular case when a
second electron escapes in the direction perpendicular to the z
axis.

From the density distributions presented in Fig. 1, one can
infer that for large times electron moving in the perpendicular
direction is somewhat delayed with respect to the first electron.
This respective delay depends strongly on the angle between
the momentum vector of the second electron and the z axis. To
illustrate this statement we show in Fig. 2 distances from the
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FIG. 1. (Color online) Electron density (normalized so that its
maximum value is 1) for the wave-packet state Wy x,(r,ry,t) with k;
directed along the molecular axis, k; in the perpendicular direction.
Electrons energies are £y = E, = 12.2 eV. Density is shown for the
moments of time t = 4T (upper row, left), t = 6T (upper row, right),
t = 10T (second row, left), and r = 12T (second row, right). The
color bar (bottom row) indicates the values of the relative density
corresponding to different colors.
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FIG. 2. (Color online) Distance from the origin of the maxima of
the density corresponding to the first and second electrons for various
angles between k, and z axis at the moment of time r = 127. First
electron (red), solid curve; second electron (green), dashed curve.

origin of the maxima of the density corresponding to the first
and second electrons for various angles between k, and the z
axis at the moment of time ¢ = 127 .

A puzzling feature one can see from Fig. 2 is a considerable
variation of the relative distance between the two electrons
with the angle between their momenta, delay of the second
electron with respect to the first being especially pronounced
for the case of near perpendicular escape geometries. One
might argue that the distances of the order of 30 a.u.,
which electrons have traveled at time r = 127, are not fully
asymptotic yet, and it might be that in the truly asymptotic
region of large distances, where electrons are detected in the
experiment, their relative delay (if any) may be different from
that shown in Fig. 2. We can address this question using the
time-delay theory [13,14].

The wave-packet state Wy, x,(r,r2,t) as defined by Egs. (3)
and (4) can be written as

Wiy, (11 ,"2J)=fd¢11d112f(111,llz)‘y;],qz(i‘l e FL(5)

where E = q12/2+q22/2, the amplitudes f(q,,g,) can be
computed from the TDSE solution |W(¢)) as f(q,.q,) =
(W, IW()e'"". One can now invoke the well-known chain
of arguments relying on the asymptotic properties of the
two-electron scattering states and the saddle-point method
[8,13,14,19,20]. One easily obtains in this way equations
describing for + — oo motion of the crests of the wave-packet
state Wy, ,(r1,r2,t). These equations for each of the electrons

(i = 1,2) can be written as
ri(t) < ki(t — to;) + ri(0). (6)

In Eq. (6) to; = d arg f(ky,k)/dE; are the time delays,
functions r;(r) are known functions which vary slowly (log-
arithmically) with ¢. The important point here is that for the
geometry we consider and equal energy sharing r(¢) = r(z),
so the relative delay of two electrons is determined by the time
delays t;.

Time delays computed as the phase derivatives of the spec-
tral amplitude for various angles between electron momenta
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FIG. 3. (Color online) Time delays for various angles between
k, and molecular axis. First electron (green), dashed curve; second
electron (red), solid curve.

ki,k>, momentum vector k; being parallel to the molecular
axis, are shown in Fig. 3.

Results presented in Fig. 2 were obtained for modestly
large values of radial distances and time, while results shown
in Fig. 3 pertain to the asymptotic limit t — oo. Yet, they tell
us very similar stories. For small angles 6 between momentum
vectors the electrons move in unison. This is an agreement with
the expectations based on the well established fact that for
small electron energies the dominant mechanism of the two-
electron ionization is the knock-out process. In this mechanism
the double photoionization proper is viewed as a process in
which the first electron ionized by absorbing a photon knocks
out the remaining electron in a (e,2e) reaction. For such a
process both electrons can be expected to be launched at their
respective trajectories at approximately the same time and
hence should have similar time delays.

For 6 approaching approximately 100° delays for both
electrons undergo a fast change. Another apparent feature of
the time delays immediately seen from Fig. 3 is the divergent
behavior of time delays for angle 6 approaching 180°. As we
shall see, both these features may provide useful information
about the photoionization amplitudes, hardly obtainable by
the conventional spectroscopic methods. We shall start with
the explanation for the time delay behavior for 6 approaching
180°.

The amplitude of the process of the one-photon double
ionization can be represented as a sum of symmetric (gerade)
and antisymmetric (ungerade) terms [21]. In the vicinity of
0 =~ 180° and for the escape geometry we are using, this
representation can be simplified to

f(q1.92) = a(E1, E>)(1 +cos6) + B(Ey, Er), (7

where B(E, E,) is an antisymmetric function of the variables
E,, E,. For the equal energy sharing this term is therefore
zero. We shall need, however, derivatives of the amplitude
with respect to energies, and have therefore to preserve
the antisymmetric term in the general expression given by
Eq. (7). Since B(E;,E,) is the antisymmetric function of
its arguments, it can be represented near the point £, = E;
as B(E,E;) ~ y(E| — E,). For the time delay of the i-th
electron defined in Eq. (6), we obtain after simple algebra the
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following expression:

b

o =a+ (=) ———,
0 a+( )l+cos9

®)

where i = 1,2 for the first and second electron, respectively,
and parameters a, b can be expressed in terms of the
coefficients introduced above as follows:

_dargua
- dE

a

. b=|2]sin@, - 0. ©)

¢« and ¢,, are phases of the amplitudes o and y, respectively. In
Eq. (9) the derivative of arg (E1, E») can be taken with respect
to any of the arguments, since this function is symmetric. After
computing the derivative, all functions are evaluated at the
point E| = E, corresponding to the equal energy sharing. The
first term in Eq. (8) can be considered as a nonresonance
contribution to the time delay, and is the same for both
electrons; the second term has a pole at the kinematic node
at 6 = 180°, coefficients of the pole term having opposite
signs for the two electrons. For the angle 6 approaching
the kinematic node at 180°, time delays for both electrons
grow therefore without bound in different directions. This is
precisely the sort of behavior seen in Fig. 3. Coefficients of
the divergent terms can be obtained from the experiment. So,
experimental study of the time delays can, in principle, provide
information about the amplitudes in Eq. (8).

To explain the second feature seen in Fig. 3, the sudden fast
variation of the time delays in the vicinity of 8 = 100°, we
studied in more detail the phases of the amplitudes f(q,,q,)
in Eq. (5). These amplitudes are computed using the solution
of the TDSE after the end of the laser pulse. This solution,
as represented by Eq. (2), is a sum of partial waves with
different total angular momenta J. We can compute separate
contributions of each partial wave in Eq. (2). In Fig. 4 we
show the thus computed contributions of the partial waves
with J =1, J =3, and J =5 to the ionization amplitude
1(q,.92).

One can see that something dramatic indeed occurs in the
vicinity of 6 = 100°. Contributions of the / =1 and J =3
partial waves, which are by far dominating, nearly cancel each
other, leading to the rapid variation of the overall phase of
the amplitude. That something interesting might be occurring
near the point & = 100° could be inferred already from the
behavior of the triply differential cross sections (TDCSs).
TDCSs for this particular geometry and energy sharing have
been computed by various methods [16,22—-24], all producing
very similar results. In our work [16] we employed a different
gauge and pulse shape to describe the effect of the laser pulse
on the molecule. The present calculation provided us therefore
with a useful check of the accuracy of our calculations. The
results for the TDCSs, obtained when proper care is taken
to account for the difference in the pulse shapes [23,25], are
shown in Fig. 5, and are quite close to our previous results and
results of other authors.

More to the point of the present paper, we see a structure
in TDCSs in the vicinity of & = 100°. The subtle interplay
of relative phases of various components of the partial wave
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FIG. 4. (Color online) Contributions of the partial waves with J = 1 (green), dashed line, J = 3 (blue), short dashed line, and J =5
(magenta), dots, to the ionization amplitude. Left panel- moduli of the amplitudes. Right panel: sines of the phases. Solid (red) line shows

results for the total amplitude.

expansion for the amplitude is responsible for the appearance
of this structure. Peculiarities in the dependence of the time
delays as functions of the relative angle 6 helped us to elucidate
the origin of this phenomenon.

We considered above two instances when time delays as
functions of the angle 6 exhibit unusual behavior. In the
regionnear 8 ~ 100° overall phase of the amplitude varies fast,
leading to rapid variation of the time delays. For 6 approaching
the kinematic node at & = 180°, the effect of the divergence of
the time delays as functions of 6 comes into play. This effect,
as one can see from Fig. 3, is quite significant already for
6 ~ 130°.

From the data presented in Fig. 5 we see that present results
differ from the results of other authors and our previous results
by no more than 10% . We can adopt this figure as an accuracy
estimate of the present calculation. This estimate is perhaps
too conservative, since the pulse shape we used in the present
calculation differs from that used by other authors to obtain
results shown in Fig. 5. We can expect the effects introduced
by a particular pulse shape to vanish completely for a very
long laser pulse. For the pulse duration of eight optical cycles
that we considered, there may still be effects introduced by
a particular pulse shape, and we may expect therefore some
minor differences in TDCSs due to the pulse shape effects.

TDCS (b/st? eV)
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FIG. 5. (Color online) TDCSs for field and escape geometries
considered in the paper, with k; directed along the molecular axis
and field directions, k, in the perpendicular direction. Electron
energies are £, = E, = 12.2eV. Present calculation and our previous
calculation [16] employing different gauges and pulse shapes are
shown in (red) solid, and (green) dashed lines, respectively. (Blue)
short dashed line: work [24]; (magenta) dots: results of the work [23].

Nevertheless, we can adopt the above-mentioned figure of
10% as an accuracy estimate of our calculation.

In both examples we considered above, time delays undergo
considerable change, varying several times in magnitude. This
variation exceeds by far the accuracy estimate we made above.
We can be sure therefore that effects we reported for 6 = 100°,
and 6 approaching the kinematic node atf ~ 180°, are genuine
physical effects. As for finer structures visible in Fig. 2 [such as
small humps on the lower curve in the interval 6 € (80°,160°)],
these may well be effects introduced by truncation of the partial
wave expansion (2).

III. CONCLUSION

We studied angular dependency of the time delay in
one-photon two-electron photoionization of the hydrogen
molecule. We have shown that time delays as functions of the
angle between velocities of the escaping electrons have poles at
the points corresponding to the kinematic nodes of the reaction.
In the vicinity of a pole the cross section is small; time delays,
on the contrary, are large and are relatively easy to measure
using attosecond streaking technique with the ionizing UV
pump and a streaking IR probe. Eq. (9) tells us that study
of the time delays in the vicinity of a pole can provide us
with information about relative phases of the symmetric and
antisymmetric amplitudes in the parametrized expression for
the amplitude of the reaction.

We considered the simple case of the parallel field or
molecule orientations and escape geometry with one electron
escaping along the molecular axis. That was done so as not to
obscure physics by unnecessary complications. Our results, in
particular Egs. (8) and (9), can be easily generalized for more
complex geometries.
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