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Decoherence effects on quantum control by reverse optimized pulse sequences
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The external coherent control over the dynamics of quantum systems has been the aim of many studies in
recent years, and several theoretical frameworks have been devised for that purpose. However, several of the
proposed methods have been developed to control isolated quantum systems, disregarding the decoherence effects
that impinge on the ubiquitous open quantum systems that exhibit a more complex dynamics than their isolated
counterparts. In this paper, we investigate the effects of dissipation and decoherence for a quantum-control
procedure based on sequences of reverse optimized electromagnetic pulses. Although the method performs
well for pure quantum systems, moderate decoherence and dissipation hinders its accomplishment for ordinary
conditions, irrespective of the pulse sequence rate. The method can be appropriate, nonetheless, for dynamical
decoupling of the quantum subsystem from the environment.
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I. INTRODUCTION

The goal of controlling quantum systems has been pursued
by researchers of both scientific and technological realms [1].
The control over the coherent dynamics of quantum systems
by means of externally applied electromagnetic pulses, in
particular, has been the aim of many studies in recent years
[2–8]. From the perspective of theory development, there are
several coherent control schemes, including optimal control
[9,10], coherent control over quantum trajectories [11], and
closed-loop evolution [12,13], among others, which have been
devised to guide experimental procedures for manipulating the
coherent quantum dynamics [9,14,15]. Some of the proposed
methods have been developed, however, upon the assumption
that the quantum systems are isolated (closed) from their en-
vironment, since open quantum systems exhibit a much more
complex dynamics than their isolated counterparts [16,17].
But oversimplified models may be unsuitable for describing
a realistic physical situation, and that point is especially
relevant for coherent control procedures, which should be
tested against decoherence effects of the environment. The
investigation of open quantum systems is, therefore, necessary
for an accurate comprehension of the processes that occur in
practical quantum-control implementations.

Decoherence is an ubiquitous phenomenon caused by the
interaction of quantum systems with the environment, which
induces the randomization of the quantum phases associated
with a coherent superposition of states, making quantum-
control techniques ineffective. For electronic excitations,
the decoherence time scales range from femtoseconds to
nanoseconds, mainly due to electron-electron and electron-
phonon coupling mechanisms and spontaneous emission [18].
For spin-coherent states, decoherence takes place within
microseconds to milliseconds, owing to coupling with other
spins in the system and spin-orbit interaction [16]. Neverthe-
less, optical control procedures have been presented for the
manipulation of physical observables in dissipative quantum
systems, such as in the case of population transfer dynamics
guided by laser pulses [19,20]. Other techniques have also
been proposed to counteract the effects of environmentally
driven decoherence in open quantum systems by manipulating

the coupling between system and environment [21]. Quantum
error correction has been developed to cope with this challenge
[22–24]. The closed-loop technique, in the form of fault-
tolerant quantum error correction (QEC) [25,26], was the first
to consider the problem of decoherence, whereas open-loop
dynamical QEC was introduced as a promising alternative for
dynamical decoupling (DD) [27–29]. If the parameters that
characterize the environment are known, such as the effective
coupling strength and the number of particles, then it is in
principle possible to counteract its effects, but this is not always
feasible.

This paper extends the theoretical framework of the
quantum-control method based on reverse optimized pulse
sequences [30] by taking into account an open quantum system
in contact with a Markovian reservoir. The effectiveness of
the procedure is analyzed for various situations and different
degrees of decoherence and dissipation, wherein a quantum
master equation is used to describe the dissipative coupling
between a small quantum subsystem, comprised of a two-
level system and an external electromagnetic field, and its
environment. The control method is based on the reverse
design framework for determining a priori the appropriate
external field that takes the two-level system toward a desired
quantum state. A sequence of reverse optimized electro-
magnetic pulses is utilized to control the dynamics of the
expectation value for a quantum operator of the subsystem
while, simultaneously, the purity of the quantum system is
maintained at its highest value. The method is implemented
by means of a nonlinear conjugate gradient method and it is
applied to manipulate the population transfer dynamics within
the two-level system. Although the procedure performs well
for pure quantum systems, moderate decoherence hinders its
effectiveness for ordinary dissipative conditions, irrespective
of the applied pulse rate. The method is suited, nonetheless,
for dynamical decoupling of the quantum subsystem from the
environment.

The paper is organized as follows. Section II describes the
master-equation approach and Sec. III develops the framework
of the quantum-control method for an open quantum system.
The results are presented and discussed in Sec. IV. The
conclusions are presented in Sec. V.
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II. DYNAMICS OF AN OPEN QUANTUM SYSTEM

The Hamiltonian for the open quantum system can be
written as

H = HS + HE + HI , (1)

where the terms of Eq. (1) denote the quantum subsystem of
interest HS , the environment HE , and the interaction between
the subsystem and its environment HI . The whole system
follows the quantum dynamics governed by the Liouville
equation (e = h̄ = 1)

i
∂

∂t
ρ(t) = [H,ρ(t)], (2)

where [H,ρ(t)] ≡ Hρ(t) − ρ(t)H. By making use of the
reduced density matrix ρS(t) that is obtained by taking the
trace of the full density matrix over the environment degrees of
freedom, ρS(t) = TrE{ρ(t)}, one gets the dynamical equation
for the quantum subsystem S,

i
∂

∂t
ρS(t) = TrE{[H,ρS(t)]}

= [HS,ρS(t)] + TrE{[HI ,ρ(t)]}, (3)

where we have used that TrE{[HE(t),ρ(t)]} = 0 for the density
matrix of the environment at t = 0 represents a system in
thermal equilibrium, which is diagonal in the energy eigenstate
representation. Another, more convenient, way to write Eq. (3)
is [31]

∂

∂t
ρS(t) = −i[HS,ρS(t)] + LρS(t), (4)

where the first term on the right-hand side describes the
unitary part of the dynamical evolution of ρS(t) and the
second term L is the Liouville operator, also the denominated
relaxation superoperator. The Liouville operator takes into
account the nonunitary dynamics generated by the interaction
of the subsystem with the environment. Within the physical
conditions that satisfy the Born-Markov approximation [31],
the temporal evolution of the reduced density matrix can be
described by the quantum master equation in Lindblad form.

The validity of the Markovian approximation is determined
by the characteristics of the environment vis-à-vis the system
of interest and by their coupling [18,31,32]. By considering,
for instance, an environment with an ohmic spectral density
limited by the cutoff frequency wc, the Markovian picture is
valid for w0 � wc, where w0 is the characteristic frequency of
the two-level system. Non-Markovian effects will start to arise
for w0 ≈ wc. Actually, a given system (a condensed-matter
system, for example) can behave either way depending on the
definition of the subsystem of interest and how it couples with
the environment. In this paper, we chose to provide a general
treatment for the effects produced by the environment, thus we
adopt the Markovian approximation.

Let us assume that the open quantum system is constituted
by a quantum subsystem, comprised of a two-level system
interacting with a monochromatic classical electromagnetic
field, and the environment that is represented by the vacuum
state of the quantized electromagnetic field. In this case, the

master equation can be written, in the interaction picture, as

∂

∂t
ρS = −i[HS,ρS] + LρS

= −i[HS,ρS] + 1

2
Γ (2σ−ρSσ+ − σ+σ−ρS − ρSσ+σ−),

(5)

where Γ denotes the population decay rate from the excited
state. Equation (5) takes into account the decoherence effects
that result from the interaction between the subsystem and the
environment. We assume that the spontaneous decay rate �

is a constant and does not change due to the presence of the
controlling electromagnetic pulse field [33]. The expectation
value for any operator V of the quantum subsystem is given
by

〈V(t)〉 = Tr{VρS(t)}. (6)

Another quantity of relevance is the purity of the reduced
density matrix,

P ≡ Tr
{
ρ2

S(t)
}
, (7)

which provides a measure for the integrity of the quantum state
describing the subsystem. The purity assumes values within
the range 1/d � P � 1, with d being the dimension of the
Hilbert space. The minimum value corresponds to a classical
statistical mixture, whereas the maximum value stands for a
pure quantum state represented by a ray in the underlying
Hilbert space.

III. CONTROL METHOD

The coherent control procedure is applied to an effective
two-level system that is externally driven by a resonant
monochromatic electromagnetic field. The coupling between
the two-level system and the electromagnetic field is described
by the dipole approximation, with the linearly polarized field
written as E(t) = Eexp(−iωt) + c.c., where the field ampli-
tude is a complex number E = |E |exp(iφ). In the interaction
picture, the Hamiltonian of the quantum subsystem (atomic
and field systems) is written as

HS = −	R

(
0 exp(−iϕ)

exp(iϕ) 0

)
, (8)

in the basis of the ground |g〉 and excited |e〉 states, and 	R =
|E ||d| is the Rabi frequency. In Eq. (8), 〈n|HS |n〉 = 0 (n =
g,e) for the unperturbed states have well-defined parities, a
typical case for dipolar interactions. In general, the transition
dipole moment is also a complex number that is represented
as dge = |dge|exp(−iθ ). Thus, without loss of generality, in
Eq. (8) we defined the phase ϕ = φ + θ as the relative phase
between the electromagnetic field and the dipole moment of
the two-level system.

Substituting Eq. (8) into Eq. (5), we obtain a set of coupled
differential equations for the matrix elements of ρS(t),

∂

∂t
ρgg = i	R(ρege

i�te−iϕ − ρgee
−i�t eiϕ) + Γρee, (9a)

∂

∂t
ρge = i	Rei�te−iϕ(ρee − ρgg) − γegρge, (9b)
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∂

∂t
ρeg = i	Re−i�t eiϕ(ρgg − ρee) − γegρeg, (9c)

∂

∂t
ρee = i	R(ρgee

i�t eiϕ − ρege
i�t e−iϕ) − Γρee, (9d)

where � ≡ ω − ωeg is the detuning and γeg = �/2 is the
relaxation rate of the quantum coherence. For memoryless
Markovian systems, information on the properties of the

environment are in the form of decay rates. Generally, the
decoherence relaxation rate can be written as γeg = 1

2� +
2�phase, where 1

2� stands for the decoherence produced by
interstate transitions (including spontaneous decay) and �phase

accounts for pure (elastic) decoherence mechanisms that do not
affect the populations. Solving the differential equations for the
resonant case, � = 0, we find the time-dependent components
of the reduced density matrix,

ρgg(t) = − 1

	̄
(
�2 + 8	2

R

)e− 3
4 �(t−t0)

{
− sinh

[
	̄

4
(t − t0)

] {
4i	R

(
�2 + 8	2

R

)
[ρeg(t0)e−iϕ − ρge(t0)eiϕ]

+�
[
12ρgg(t0)	2

R + ρee(t0)
(
20	2

R + �2)]} + cosh

[
	̄

4
(t − t0)

] [−4ρgg(t0)	2
R	̄ + ρee(t0)	̄

(
�2 + 4	2

R

)]

− e
3
4 �(t−t0)	̄

(
�2 + 4	2

R

)}
, (10)

ρge(t) = − 1

2	̄
(
8	2

R + �2
)e− 3

4 �(t−t0)

{
cosh

[
	̄

4
(t − t0)

] { − 	̄
(
8	2

R + �2
)
[ρge(t0) − e−2iϕρeg(t0)] − 4ie−iϕ�	R	̄

}

− sinh

[
	̄

4
(t − t0)

] (
�

(
8	2

R + �2
)
[ρge(t0) − e−2iϕρeg(t0)] − 4ie−iϕ	R

{
16[ρgg(t0) − ρee(t0)]	2

R

− [ρgg(t0) + 5ρee(t0)]
}
�2

) − e
�
4 (t−t0)	̄

(
8	2

R + �2
)
[ρge(t0) + e−2iϕρeg(t0)] + 4ie−iϕe

3
4 (t−t0)	R�	̄

}
, (11)

ρee(t) = 1

	̄
(
�2 + 8	2

R

)e− 3
4 �(t−t0)

{
− sinh

[
	̄

4
(t − t0)

] {
4i	R

(
�2 + 8	2

R

)
[ρeg(t0)e−iϕ − ρge(t0)eiϕ]

+�
[
12ρgg(t0)	2

R + ρee(t0)
(
20	2

R + �2
)]} + cosh

[
	̄

4
(t − t0)

] [−4ρgg(t0)	2
R	̄ + ρee(t0)	̄

(
�2 + 4	2

R

)]

+ 4e
3
4 �(t−t0)	2

R	̄

}
, (12)

where ρge = ρ∗
eg , 	̄ ≡ √

�2−64	2
R, and ρgg(t) + ρee(t) = 1.

The goal of most coherent control procedures is to manipu-
late the expectation value of some observable of the quantum
system, over a given time interval, by means of its coupling
with a designed external perturbation. An arbitrary observable
of the two-level system can be written in the {|g〉,|e〉} basis as

V =
(

v0 vexp(−iα)

vexp(iα) v1

)
, (13)

where v, v0, and v1 are real values and 0 � α < 2π . Substi-
tuting Eqs. (10)–(13) into Eq. (6) yields

〈V(t)〉 = ρgg(t)v0 + ρee(t)v1 + 2vRe[ρge(t)exp(iα)], (14)

for the expectation value of V, and likewise for the purity of
the quantum system,

P(t) = ρ2
gg(t) + ρ2

ee(t) + 2|ρge(t)|2. (15)

For the remainder of this study, we apply the quantum-
control procedure to manipulate the population of the excited
state of the two-level system, therefore V = |e〉〈e|, with v1 = 1

0 10 20 30        40
ω0t

0

0.2

0.4

0.6

0.8

1

ρ ee

FIG. 1. (Color online) Dynamics of the excited-state population,
represented by the reduced density matrix element ρee(t) (blue) and
purityP(t) of the quantum subsystem (black). The spontaneous decay
rate is � = ω0

5π
.

and v0 = v = 0. Figure 1 shows the damped Rabi oscillations
(blue curve) of the excited-state population, ρee(t), for the two-
level system driven by a continuous monochromatic resonant
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electromagnetic field and damped by a spontaneous decay rate
� = ω0

5π
. We define ω0 = |E0||d|/2 = π as the frequency that

leads the state of the two-level system over a complete Rabi cy-
cle within a time unit. The purity of the reduced density matrix,
given by Eq. (15), is also described in Fig. 1 by the decaying
black line. For the chosen decay parameter, the purity of the
two-level system vanishes after approximately 10 Rabi cycles.

In the following, we outline the control by reverse optimized
pulse sequences. According to this method, a time-dependent
external potential produced by the electromagnetic (laser)
field is employed to manipulate the quantum dynamics of
the two-level system. Thus, the external control parameters
are {|E |,ϕ}, i.e., the intensity and phase of the laser field.
As proposed by Kuhn and Luz [30], it is assumed that at
determined instants tj , the parameters {|E |,ϕ} of the laser
field can be rapidly switched to specified values {|Ej |,ϕj } and
then kept constant during the time interval �tj+1 = tj+1 − tj .
Such transient time is considered to be much shorter than
the characteristic times of the open two-level system. The
values {|Ej |,ϕj } are determined a priori from instant tj so
as to satisfy imposed constraints at tj+1. Thus, within each
�tj+1, the two-level system evolves under the influence
of a rectangular electromagnetic pulse characterized by the
parameters {|Ej |,ϕj }. The adopted control constraints consist
of guiding 〈V(t)〉 along an arbitrary reference trajectory S(t),
while keeping the purity of the reduced density matrix at its
maximum possible value through the instants tj . Thus, the
parameters {|Ej |,ϕj } are determined in order to minimize the
functional h[ρS(t)] at ensuing t = tj+1; that is,

{|Ej |,ϕj } ← min (h[ρS(t)]) |t=tj+1 , (16)

where

h[ρS(t)] ≡ α|〈V(t)〉 − S(t)|2 − βP(t) − η(|Ej+1| − |Ej |)2.

(17)

Additional terms can be added to the functional h[ρS(t)]. For
instance, the last term on the right side of Eq. (17) is meant to
smooth the transition between succeeding pulses. The weights
α, β, and η can be set arbitrarily to change the relative influence
of each component of h[ρS(t)]. For α = β = η = 1, the lowest
possible value for h[ρS(t)] is −1. The minimization procedure
is carried numerically by the nonlinear conjugate gradient
method [35].

IV. RESULTS AND DISCUSSION

For an isolated quantum system, or in the limit of vanishing
decay rate � → 0, it is in principle possible to arbitrarily
control the quantum dynamics of the two-level system by a
sequence of reverse optimized pulses, for instance, by making
the excited-state population ρee(t) follow a desired excitation
curve, as shown in Fig. 2. In this case, a series of Np = 200
pulses characterized by the optimized {|Ej |,ϕj } parameters
were applied to take the population of the two-level system
from the ground state to the excited state. The accordance
between the reference curve S(t) and the time-dependent
expectation value 〈V(t)〉 improves as the intervals �tj become
shorter. A similar quality of control is also obtained for very
small decay rate, � < ω0

50π
.
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ρ ee

0 10 20 30          40
ω0t
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ρ ee

(a)

(b)

0 30          40

FIG. 2. (Color online) Coherent quantum-control dynamics of
the excited-state population ρee(t) (blue) and the reference curve S(t)
(black dashed line) for a closed quantum system (� = 0). A series
of Np = 200 pulses was applied to drive the population inversion.
The reference curves are (a) S(t) = [π/2 + arctan(t − t ′)]/π and (b)
S(t) = 2 arctan(t)/π .

Next we apply the same procedure taking into account
the coupling of the quantum subsystem with a Markovian
environment via the decay rate � = ω0

5π
; the results are shown

in Fig. 3. The reference curve S(t) = [π/2 + arctan(t − t ′)]/π
[same as in Fig. 2(a)] was employed (black dashed curve).
The time-dependent population in the excited state, ρee(t), is
described by the blue curve, together with the purity P(t) of
the quantum subsystem that is represented by a black solid
curve. By means of a systematic analysis, the effectiveness
of the method was tested for an increasing number of pulse
interventions, Np = (a) 50, (b) 100, (c) 200, and (d) 300,
showing that the control capability of the method improves
with the frequency of external pulses, but the target state
is never attained. For Np = 50, which corresponds to the
frequency of pulse interventions fp = 12.5�, there is actually
no control upon the two-level system dynamics and even
P decays faster than at free evolution (Fig. 1). The control
efficiency improves for Np = 100 (fp = 25�), as shown in
Fig. 3(b), and the purity of the subsystem is preserved for some
time until the rise of the excited-state population. However, the
target state is never attained. If the frequency of the optimized
pulse sequence is improved further, for fp = 50� [Fig. 3(c)]
or fp = 75� [Fig. 3(d)], then the control performance as well
as the purity conservation improve only until the rise of the
reference curve, quickly decaying toward an incoherent state
afterward. Therefore, the quantum subsystem equilibrates with
the environment before the population inversion is completed,
irrespective of the rate of external control.

For the problem at hand, we can perform the following
analysis assuming that the environment is described by an
ohmic bath with a cutoff frequency wc. The two-level model
approximation is valid if the bandwidth of the electromagnetic
pulses (�wp) is not much larger than the characteristic
frequency of the system (w0), otherwise off-resonant quantum
levels would be coupled by the pulse. Therefore, one can
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FIG. 3. (Color online) Quantum control of the excited-state
population ρee(t) (blue) through the reference curve S(t) = [π/2 +
arctan(t − t ′)]/π (black dashed line) for the quantum subsystem
interacting with the environment by � = ω0

5π
. Solid (black) line

represents the purity P(t). The panels present dynamics due to
sequences of an increasing number of pulses: fp = (a) 12.5�,
(b) 25�, (c) 50�, and (d) 75�.

qualitatively assume that �wp � w0. For the piecewise
quantum-control method, the time duration of the rectangular
pulses is approximately �tp = 1/fp, and, furthermore, by
invoking the time-frequency uncertainty relation for the pulse
[34], we have �tp�wp � 1

2 . Thus, for the slowest train of
pulses previously considered (Np = 50), one obtains �tp =
1.25/w0 and the ensuing relation �wp � 1/(2�tp) = 0.4w0,
which is well within the Markovian condition �wp < w0 �
wc. For the fastest train of pulses (Np = 300), which is
generally considered to be the condition for improved control
efficiency, the same procedure yields �wp � 1/(2�tp) =
2.5w0. In the latter case, the Markovian picture for coherent
control of the two-level system becomes problematic and it
should be a concern for any practical application of coherent
control by pulse sequences. It is important to recall that the
characteristic memory time for an ohmic bath is τ � π/wc

[18].
The same kind of behavior is obtained even if one attempts

different population inversion dynamics, for instance by trying
to invert the population at once, using the reference curve
S(t) = 2 arctan(t)/π , as shown in Fig. 4. The overall behavior
is similar to the previous case, as shown in Fig. 3. The collapse
of the coherent control is caused by the competition between
the buildup of quantum coherences, which is induced by
the electromagnetic pulses, and the dissipation process. If
the system starts from the ground state, midway along the
increasing reference curve, the quantum system is found in
a state with ρee = ρgg = 1/2 and |ρge| � 1/2. By examining
Eqs. (9a), and setting ρee = ρgg = 1/2, one finds that ρ̇ge ∼

0
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0.6
0.8
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FIG. 4. (Color online) Quantum control of the excited-state pop-
ulation ρee(t) (blue) through the reference curve S(t) = 2 arctan(t)/π
(black dashed line) for the quantum subsystem interacting with the
environment by � = ω0

5π
. Solid (black) line represents the purity P(t).

The panels present dynamics due to sequences of an increasing
number of pulses: fp = (a) 12.5�, (b) 25�, (c) 50�, and (d) 75�.

−γegρge, which is the strongest dissipation regime. As the
train of pulses continues to push ρee → 1 and |ρge| → 1/2, an
overshoot of dissipation occurs and the system ends up in the
statistical mixture.

Figure 5 shows the behavior of the system (ρee and P
represented by blue and black curves, respectively) for a
reference curve that is a decreasing function of time (dashed

0 10 20 3

0
0.2
0.4
0.6
0.8

1

ρ ee

0 10 20 30          40
ω0t

0
0.2
0.4
0.6
0.8

1

ρ ee

0          40

(a)

(b)

FIG. 5. (Color online) Quantum control of the excited-state
population ρee (blue line) through a decaying reference curve S(t)
(black dashed line) The decay constant is (a) � = ω0

50π
and (b) � = ω0

5π
.

Solid black line represents the purity P(t). The frequency of the pulse
sequence is fp = 25� for (a) and (b).
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FIG. 6. (Color online) Dynamical decoupling of the quantum
subsystem: ρee(t) is described by the blue curve and P in the black
curve, � = ω0

5π
, and ωp = 2ω0.

curve). For a small decay parameter � = w0
50π

[see Fig. 5(a)],
the excited-state population follows the reference curve and the
coherent control is attained. For � = w0

5π
[see Fig. 5(b)], ρee

does not follow the reference curve and, moreover, the purity
decays faster than in the unperturbed case. The spontaneous
decay from unstable quantum systems can be suppressed,
under restricted conditions, by sufficiently frequent measure-
ments in the quantum Zeno (QZ) framework. Analogous
effects have also been studied for a sequence of unitary pulses
[7,8,29,37,38] considering structured reservoirs or within the
strong-coupling limit between system and environment. It is
important to emphasize, though, that the acceleration of the
decay process (anti-QZ effect) is more ubiquitous than the
suppression case [39]. Our simulations for a two-level system
coupled to a Markovian environment in the moderate dissi-
pation regime, � = w0/(5π ), exhibit the anti-QZ behavior. In
Fig. 5(b), as the reference curve decays toward zero, it dumps
the quantum system in the ground state, decoupling it from the
environment and increasing P as a consequence.

By changing the guiding curve S(t) to a step function,
one can momentarily accomplish a population inversion, but
decoherence quickly destroys the quantum control. So far
we have used the set of weights α = β = η = 1 in Eq. (17)
to obtain the previous results; nevertheless, the behavior is
qualitatively the same for different weight distributions.

The previous analysis indicates that active coherent
quantum-control schemes based on a train of pulses can only
work effectively for closed quantum systems or an open
quantum system with a small decay constant, in our case
� < ω0

50π
. Nevertheless, a train of pulses with a high-repetition

rate can be used to decouple the quantum two-level system
from the environment, preserving its purity at high values
over time, as shown in Fig. 6. In this case, after an initial
transient decay, the pulses partially recover the purity and
keep P ≈ 0.85 in the steady state, above the value P = 0.5
for the incoherent statistical mixture. The decoupling effect
is observed, irrespective of the initial conditions, only for
fp = w0

π
, wherein the reverse optimization algorithm yields

a sequence of pulses with phase differences, |ϕj+1 − ϕj | = π .
The decoupling effect has been extensively discussed in the
literature in the context of spin relaxation and quantum optics
[7,8,29,36,38].

In Secs. II and III, the quantum master equation was derived
assuming the Markovian regime and the weak-coupling limit

between the quantum system and the environment. Under such
conditions, it has been shown that active coherent control
by pulse sequences cannot overcome the dissipative quantum
dynamics because in Markovian open systems the environ-
ment irreversibly dissipates the quantum system information.
However, for a slow reservoir with a narrow spectral width,
in the non-Markovian limit, quantum control can still be
possible for some time interval, since the non-Markovian
features of the bath help to maintain the coherences in the
quantum subsystem. Non-Markovian systems are common
in all branches of physics, including quantum optics and
condensed-matter physics. In biological systems, for instance,
the distinct protein-solvent interactions are considered to be
responsible for the quantum coherences observed in the light-
harvesting centers of natural photosynthetic units [32,40].
The development of femtosecond pulse shaping has made it
possible to induce Rabi oscillations in single molecules at room
temperature over a time of a few hundred femtoseconds [41].

V. CONCLUSIONS

We have extended the method of active quantum control
via reverse optimized pulse sequences [30] by taking into
account decoherence and dissipation effects produced by the
coupling with a Markovian environment. The effectiveness
of the quantum-control procedure is investigated under dissi-
pative dynamics conditions for a model quantum two-level
system. The quantum Liouville equation was used, in the
Lindblad form, to described the quantum subsystem weakly
coupled with a Markovian environment. The reverse design
of the pulses was performed through the minimization of the
functional h[ρS(t)], given by Eq. (17), by means of a nonlinear
conjugate gradient method. The adopted control criterion con-
sisted of guiding the mean value of an observable of the quan-
tum subsystem along a reference trajectory, S(t), while keeping
the purity of the reduced density matrix at its maximum.
Although the method performs well for pure quantum systems,
the dissipative quantum dynamics hinders its accomplishment
for moderate decay constants, even for high-repetition pulse
sequences or steplike guiding curves. For the assumed Marko-
vian bath, the effectiveness of the method is recovered for small
decay rates, � < ω0

50π
. The collapse of the coherent control

is ascribed to a dissipation overshoot that happens midway
through the population inversion, even for a train of short
pulses. In addition, attempts to suppress the spontaneous decay
from the metastable excited state showed the prevalence of the
anti-Zeno behavior for moderate dissipation rates, � = ω0

5π
.

However, if the metastable two-level system is long lived and
only phase decoherence affects its short-term dynamics, then
the external quantum control could be improved. The method is
suited, nonetheless, for dynamical decoupling of the quantum
subsystem from the environment, in which case the purity can
be maintained at high values by a sequence of π pulses.
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