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Rydberg crystallization detection by statistical means
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We investigate an ensemble of atoms which can be excited into a Rydberg state. Using a disordered quantum
Ising model, we perform a numerical simulation of the experimental procedure and calculate the probability
distribution function P (M) to create a certain number of Rydberg atoms M , as well as their pair-correlation
function. Using the latter, we identify the critical interaction strength above which the system undergoes a phase
transition to a Rydberg crystal. We then show that this phase transition can be detected using P (M) alone.
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I. INTRODUCTION

Recent experimental progress in producing and controlling
highly excited atomic and molecular aggregates has triggered
a number of experimental and theoretical works on interacting
Rydberg systems [1–16]. One of the most prominent phenom-
ena observable in such systems is the dipole blockade [17,18],
which is a consequence of effective interactions between
atoms in Rydberg states with principal quantum numbers,
n ∼ 30–80 [19]. The physical reason for the blockade can be
summarized as follows: the large dipole moment of a Rydberg
atom induces sizable energy-level shifts in the atoms in its
vicinity. As a result, atoms within a certain blockade radius
RB cannot be excited, even though they are subjected to the
same electromagnetic field as the proper Rydberg atoms.

Typical experiments are conducted on atom ensembles
at ultralow temperatures and probe these systems on time
scales during which almost no particle movement is possible.
Therefore, the cloud of atoms can be considered as “frozen” in
a more or less disordered constellation [20]. After the required
fine-tuned electromagnetic fields are switched on, a number
of atoms undergo a transition into the highly excited Rydberg
states. If RB is larger than the average interatomic distance,
then only a fraction of the atoms can be excited, while the rest
remain in the ground state due to the blockade effect.

The spatial arrangement of the Rydberg atoms within the
cloud has very interesting features. In Refs. [21,22], the
concept of a Rydberg crystal was put forward. The blockade
region formed around an excited atom can be modeled as
an effective repulsive interaction between the Rydberg atoms.
It might be responsible for an emergent long-range order of
the Wigner crystal type [22,23]. However, its detection is
extremely difficult. The primary method for detecting long-
range order is spectroscopy, which is difficult to reliably realize
in experiments [24]. Other experiments benefit from the low
ionization energy of the Rydberg atoms by (pulsed) electric-
field ionization (cf. Refs. [7,11,13,14,17,19,20,25–39]).

In this paper, we propose a statistical method of detecting
and analyzing the physical properties of the Rydberg crys-
tallization phenomenon and discuss its predictive power. The
idea originates in the experimental procedure itself. A typical
measurement cycle starts with the generation of an ultracold
atomic cloud and the subsequent excitation of a fraction of
the atoms to a Rydberg state. Afterwards, measurements are

performed, during which the Rydberg atoms are eventually
deexcited. Then, the system is ready for another preparation
[31,33,39–41]. An important point is that the experiments
are performed with the same number of atoms and using the
same electromagnetic fields in every cycle. However, since the
arrangement of atoms varies between cycles, it is necessary
to calculate statistical averages of the observables of interest.
The simplest observable is the number of Rydberg atoms M in
the cloud. The fact that, for a given M , a regular arrangement
of the Rydberg atoms on a lattice minimizes their interaction
energy, should be visible in the probability distribution P (M).
As we shall show below, there are indeed differences between
the histograms for crystallized and random phases. However,
the pair-correlation function turns out to possess even higher
predictive power [37,42].

This paper is organized as follows. In Sec. II, we shall
introduce the model and connect its parameters to possible
experimental setups. We shall define the relevant observables
and explain the details of our numerical implementation. The
results of the calculation together with a thorough analysis
of the arising features is contained in Sec. III. Section IV is
devoted to the summary of results.

II. THE MODEL AND SIMULATION METHOD

We assume that in every measurement cycle the system
consists of N atoms located at randomly chosen positions,
ri ,i = 1, . . . ,N , uniformly distributed over the entire system
volume [43]. We focus on the case of a frozen Rydberg gas,
where the kinetic energy is negligible. Each of the atoms can
either be excited to a Rydberg state or stay in its ground state.
Since the electrostatic properties do not depend on the details
of the Rydberg states, each atom can be modeled as a two-
level system, and we describe the ensemble as a set of N

randomly arranged, interacting spin-1/2 systems. Hence, the
Hamiltonian reads [22,44]
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where σ (i)
x,z denote the Pauli matrices and index i enumerates

the atoms of the ultracold cloud. This can be interpreted as a
generalized spin-1/2 quantum Ising model. � is the frequency
of the exciting laser and, in the spin language, represents a
magnetic field perpendicular to the quantization axis, which we
chose to be the z axis. The detuning, i.e., the difference between
the laser frequency to the resonance frequency of the Rydberg
state, is denoted by �. It corresponds to a magnetic field
applied in the z direction. The third parameter, C, indicates
the strength of an effective interaction between excited atoms
and causes the dipole blockade explained above [45]. The
case � = 0 has been intensively studied in Ref. [22], where a
possibility for a quantum phase transition was pointed out. We
would like to concentrate on the case � > 0 because otherwise
it is energetically not favorable to excite atoms. That is why
we use � as our energy unit, which we use in all subsequent
plots and equations.

An adequate modeling of the system also requires geometri-
cal constraints describing the trap potentials. In the following,
we shall consider different scenarios: (i) a one-dimensional
(1D) system with open boundaries [46], (ii) a 3D system with
open boundaries, and (iii) a 1D system with periodic boundary
conditions. Options (i) and (ii) are very natural models for
realistic experiments, but make it difficult to extrapolate the
presented numerical results towards realistic system sizes.
Option (iii), on the other hand, is perfectly suitable for the
calculation of correlation functions and is easily scalable to
large system lengths. The crucial feature of our 1D model is a
rather large “coordination number,” i.e., the number of atoms
which interact significantly with any given Rydberg atom. This
feature is shared by any generic 3D realization of the system
up to some irrelevant spatial distribution parameter. That is
why we believe that the physics in 3D is expected to be very
similar to our 1D model.

Just as in the actual experiments, we calculate aver-
ages over the large number of different, randomly sampled
atom arrangements. In every cycle, the effective model is
a long-range quantum Ising model with a set of coupling
constants generated by the atom positions ri . For every such
constellation, we determine the ground state and evaluate
the number of Rydberg atoms M (which is equivalent to
the magnetization in the Ising model), the density profile,
and correlation functions. In most experiments, the Rydberg
systems are not expected to be in the ground state. However,
as was shown in Refs. [47,48] with the help of chirped laser
pulses, any given system can safely be prepared in its ground
state. The most difficult task in theory is finding the ground
state. We use one method, namely, numerical diagonalization
of the Hamiltonian matrix, in three different variations. For
small atom numbers (up to N ≈ 12), the Hamiltonian can be
diagonalized exactly. For larger numbers of atoms (N ≈ 30),
we truncate the Hilbert space in different ways in order to
speed up the numerical diagonalization. On the one hand, this
truncation can be done by only keeping states in which the
number of Rydberg atoms M remains below a certain threshold
M∗. A different approach is to only use the basis states with
the lowest energy expectation values to create an effective
Hamiltonian, which is then diagonalized. We checked the
reliability of both procedures by changing the respective cutoff
parameter.

In contrast to the case � = 0 considered in Ref. [49], this
method is able to capture the physical effects caused by finite
�. Still, especially in the case of larger numbers of atoms, our
method is approximative in � and is most reliable for small
values of �/�. In some special parameter configurations, the
ground state can be obtained analytically (for an effective
model) and a phase transition is predicted for high [50] and
low densities of atoms [51,52].

To calculate the number of Rydberg atoms and the cor-
relation function, which is also analyzed by Monte Carlo
simulations in Ref. [16], we proceed as follows. For a given
random distribution of atoms, the Hamiltonian matrix is
expressed in a basis consisting of states in which an integer
number of atoms is in the Rydberg state, while the rest are
in the ground state. The corresponding Hilbert space is then
truncated as explained above, and the smallest eigenvalue and
the corresponding eigenvector (the ground state |GS〉) are
obtained numerically. The number of Rydberg atoms in the
ground state is now found from

M = 1

2

Ñ∑
i=0

M(i)|vi |2, (2)

where Ñ is the dimension of the truncated Hilbert space,
M(i) = ∑N

j=1〈i|(1 + σ
(j )
z )|i〉 is the number of Rydberg atoms

in the basis state |i〉, and vi = 〈i|GS〉 is the overlap between
|i〉 and the ground state. One easy way of numbering the
basis states is to assign a “1” to a Rydberg atom and a “0”
to a ground-state atom. In this way, every basis state can be
uniquely mapped to the binary representation of a number
i ∈ N0. The resulting M are then plotted as a histogram
for the (usually quite large) number of ultracold atom cloud
realizations.

At this point, we would like to note that there is a second
method of producing the histogram of the number of Rydberg
atoms. Instead of taking the quantum mechanical expectation
value of the number of Rydberg atoms of the ground state of a
certain arrangement of atoms, we can project on the subspaces
that belong to a definite number of Rydberg atoms. That
gives a histogram of probabilities for every single arrangement
of atoms, which then can be summed to give an overall
histogram. This technique might seem to be even closer to the
experimental realization than the procedure presented above
since it includes a measurement which is represented by the
projection operator. The results of both methods qualitatively
agree with each other, therefore we chose to show those
of the former method only. Furthermore, we calculate the
pair-correlation function

g(r) = 〈ρRydberg(r)ρRydberg(0)〉, (3)

where ρRydberg(r)dr denotes the number of Rydberg atoms in
a volume element dr around the point r. The first step is to
divide the interval of possible distances between two atoms
([0; L/2] for periodic boundary conditions) into k subintervals
of equal length. Calculating the ground state |GS〉 for a given
distribution of atoms yields the coefficients vi . In the next step,
we consider a single pair of atoms and measure their distance
in the current distribution of atoms. This distance lies within
one of the aforementioned subintervals. To the value which is
already stored for this subinterval, we now add the sum of all
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|vi |2 that correspond to a basis state in which both of the atoms
of the considered pair are in the Rydberg state. After repeating
this procedure for every possible pair of atoms, we start over by
generating a new random distribution. The cumulative sum of
all samples treated in this way then gives the total correlation
function for a given set of parameters.

III. RESULTS AND DISCUSSION

Let us first discuss the simplest case of a noninteracting
system, C = 0. In this case, the problem is exactly solvable
and the number of Rydberg atoms is given by

M0 = N

2

(
1 + 1√

1 + �2/�2

)
. (4)

In the noninteracting limit, this value is independent of
the positions ri of the atoms. Therefore, the histogram P (M)
becomes trivial, P (M) = δ(M − M0). The density distribution
ρ0 = 〈ρRydberg(r)〉, averaged over many realizations, is uni-
form, and the pair-correlation function g(r) = ρ2

0 is constant.
The situation changes drastically for any nonzero C.

Figure 1 shows the data for the density distribution 〈ρRydberg(r)〉
in 1D and 3D systems with open boundaries. While for
weak interactions the Rydberg atoms tend to populate the
boundaries, in the case of strong interactions, a sizable fraction
of the atoms is redistributed towards the system’s bulk,
indicating that long-range order is established in the system. As
we are dealing with a system with long-range interactions, the
numerical complexity is determined by the number of Rydberg
atoms and not by the precise geometry of the system. On the
other hand, going to higher dimensions at fixed atom number N

increases the surface/bulk ratio and thus makes the detection
of long-range order more cumbersome. Therefore, we shall
concentrate on quasi-1D systems from now on. Nonetheless,
we have conducted a number of simulations on 3D systems
and found comparable results; see, e.g., Fig. 1 for the density
profile of a 3D system. We also would like to remark that
an experimentally realizable cigar-shaped confining potential
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FIG. 1. (Color online) Density distribution of Rydberg atoms;
darker color indicates higher density. Left panel: 1D density as
a function of interaction strength. The system boundaries are
preferred. Strong interactions produce a single peak in the center.
Parameters: �/� = 0.1 and N = M∗ = 6 atoms (no cutoff, exact
diagonalization). Right panel: 2D projection of a 3D system with
N = M∗ = 6, �/� = 4, and C = 10 in a cube with open boundaries.
There is a low density at the center of the volume, while it is high in
the corners.
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FIG. 2. (Color online) Histogram of the number of Rydberg atoms
with Gaussian fit. The data points shown are the cumulative sum of
all bins in the interval [n − 0.5,n + 0.5]. The features of the plot are
explained in the text. Parameters: �/� = 0.1, C/(�L6) = 4 × 10−7,
with N = 10 = M∗ atoms (which corresponds to no cutoff). Inset:
Histogram for �/� = 0.64, C/(�L6) = 5 × 10−7, with N = 10 =
M∗ atoms.

(with a typical radius smaller than RB) can very well be
approximated by the quasi-1D geometry considered here.

Figure 2 shows a typical result for the histogram P (M).
For � = 0, the number of Rydberg atoms commutes with
the Hamiltonian, so the ground state for a given set of
position {ri} has an integer expectation value M of Rydberg
atoms. The distribution P (M), generated by considering all
arrangements {ri}, thus becomes a series of discrete, weighted
peaks at integer values M . For small 0 < � � �, these peaks
broaden up, but the distribution remains more or less discrete.
Increasing � leads to further broadening until eventually a
continuous distribution is approached; see inset of Fig. 2.

Surprisingly, in most cases the envelope of the histogram
can fairly well be fitted by a Gaussian, as opposed to
the Poissonian used, e.g., in Ref. [30]. Nonetheless, the
distribution function’s higher-order cumulants are not exactly
zero and depend on C, which indicates a slight deviation from
the Gaussian distribution. The mean μ and the variance σ for
a series of simulations are plotted in Fig. 3. Very interestingly,
the μ(C) dependence is given by a power law with an exponent,
which changes abruptly from ≈−0.05 to ≈−0.1 at around
C/(�L6) ≈ 10−6, where L is the system length. We find this
change to be a harbinger of a phase transition in the system.
Both the mean and the width of the distribution function
decrease as a function of C because a stronger repulsion
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FIG. 3. (Color online) Average number of (a) Rydberg atoms μ

and (b) variance σ in dependence on C (double-log plots). The straight
lines in (a) are guides for the eye only. The parameters for all plots
are �/� = 0.2 with N = 10 = M∗ atoms.
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increases the blockade radius RB . This qualitative behavior
is independent of the value of �. If one plots the mean and the
variance as functions of �, then the general behavior of the
mean μ(�) is qualitatively the same as for the noninteracting
case [μ(�) = μ(�,C = 0); cf. Eq. (4)] for � < �∗, where
�∗ = max(C/L6,�) is the largest energy scale in the system.
For � > �∗, the spin-flip term dominates the Hamiltonian (1)
and M tends to N/2. The only effect of C is the change in the
overall amplitude of the curve.

In addition to the mean and variance shown in Fig. 3, we
analyzed the Mandel Q parameter, which is defined as [53]

Q = 〈M2〉 − 〈M〉2

〈M〉 − 1. (5)

Being in the range [−0.85, − 0.95], its behavior is in
good agreement with the sub-Poissonian values predicted in
Refs. [54,55]. As was realized in Ref. [30], this points towards
an efficient Rydberg blockade.

Another interesting quantity is the pair-correlation function
g(r), which is defined as the probability of finding a Rydberg
atom at a distance r from another Rydberg atom. In order to
exclude boundary effects, we now switch to periodic boundary
conditions. To be able to handle computations with larger
numbers of atoms, we change the truncation procedure to one
in which we consider only a fixed number of basis states.
This enables us to approach N ≈ 30. This set of states is
chosen to be the one with the smallest diagonal elements in
the Hamiltonian matrix. We thoroughly investigated the effect
of the truncation by considering the same system with different
numbers of contributing states. We find that the result is almost
independent of the number of states, as long as it exceeds a
certain threshold. All plots displayed in this paper meet this
requirement.

A typical correlation function is shown in Fig. 4 and is
qualitatively comparable to the ones shown in Refs. [16,56],
which are computed within a different model and for a
time-evolved state, respectively. On the right panel, one can
see additional smaller peaks, which originate from the periodic
boundary conditions, on the left side of two principal peaks.
This feature, which is known as aliasing, arises in the following
way: in the plots shown in Fig. 4 (and in any other plot of a
correlation function in this work), our physically meaningful
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FIG. 4. (Color online) (a) Correlation function with adjustment
of the system length in such a way that main and secondary
peaks coincide, C/(�L6) = 7.5 × 10−6. (b) Correlation function as
a function of distance. The aliasing can be seen in the shoulders
of the second and third maximum, C/(�L6) = 4 × 10−6. For both
correlation functions, N = 30 and �/� = 25. The dashed vertical
line indicates where to read off the blockade radius (used in later
plots).

r

g r

FIG. 5. (Color online) Schematic illustration of the effect shown
in Fig. 4. The dashed line is part of the correlation function in the
right interval shifted by the length of the interval. The sum of the
dashed and solid curve in the left interval is a curve with main peaks
that have secondary peaks on their shoulders. The secondary peak on
the shoulder of the first peak is suppressed because of the blockade
phenomenon.

domain of definition is the interval [0,L/2] since L/2 is
the maximum distance between two atoms in a 1D system
with periodic boundary conditions. In principle, one could
extrapolate this correlation function to larger distances. Since
we are not able to resolve those, the correlation function is
mapped onto the given interval periodically. So the additional
peaks appearing here are basically the fifth- and sixth-order
peaks of the correlation function. Figure 5 illustrates this
behavior, which is also known from the numerical realization
of Fourier transforms with finite frequency cutoff [57]. This
effect can be hidden when one uses such parameter values
at which L and RB are commensurate; see the left panel of
Fig. 4. Using this control prescription, we have calculated g(r)
for a very large number of samples for a number of different
interaction strengths.

As expected, one can immediately identify the blockade
radius RB as the position of the first maximum. It is the distance
between two atoms up to which it is disadvantageous to excite
both of them to the Rydberg state. Obviously, it is nonzero
for all interaction strengths C. The actual RB(C) dependence
is very interesting and is plotted in Fig. 6. Very naturally, RB

grows with interaction strength as

RB ∝ (C/�L6)γ , (6)

where γ ≈ 1/6 ± 1%. This value for γ is expected since a
rough estimation of the blockade radius can be made in the
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FIG. 6. (Color online) RB as a function of C (double-log plot).
The data points clearly show a power law. The parameters are �/� =
0.1 with N = 8 = M∗ atoms. The fit is discussed in the text. Inset: RB

as a function of � (double-log plot). The parameters are C/(�L6) =
10−5 with N = 7 = M∗ atoms.
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FIG. 7. (Color online) Correlation function as a function of
distance. The dashed line represents a fit explained in the text. Inset:
The same plot as in the main plot shown on a logarithmic scale.
The parameters of the plot are �/� = 1, C/(�L6) = 2 × 10−5, with
N = 6 = M∗ atoms.

following way [13,37,58,59]: if the blockade radius is the
distance at which it becomes favorable to excite two atoms to
the Rydberg state, then the interaction energy and the energy
of the detuning term have to compensate. Equating these two
terms leaves us with the exponent γ = 1/6. Furthermore, we
find the asymptotic behavior of the correlation function for
r � RB to be highly universal (see Fig. 7). It is given by

g(r) ∝ r12, r � RB. (7)

This behavior can be understood in terms of the probability of
simultaneous excitation of two neighboring atoms. Here one
finds that in the regime where the interaction energy dominates
over the � term, the probability of finding both atoms excited
(in the state |↑↑〉),

P (|↑↑〉) = |〈↑↑ |GS〉|2, (8)

is proportional to 1/V (r)2, where V (r) ∼ 1/r6 is the magni-
tude of the interaction contribution. In our case, this reproduces
the observed behavior. Beyond the point r = RB , the qualita-
tive shape of g(r) depends strongly on C see Fig. 8. While for

0.2 0.4

r

L

g r

FIG. 8. (Color online) Correlation function of 1D samples mea-
sured in arbitrary units. The curves correspond to C/�L6 = 4 × 10−9

(dotted), C/�L6 = 4 × 10−7 (dashed), and C/�L6 = 4 × 10−6

(solid), where all other parameters remained the same: �/� = 0.4
and N = 25, with 300 basis states. The curves indicate that there is a
critical value for C/�L6 between the two larger values given above.

weak interactions, C/(�L6) < 4 × 10−9, no additional peaks
can be seen, long-range order emerges for strong interactions,
C/(�L6) > 10−6, and manifests itself as a series of equidistant
peaks. In the former case, the Rydberg atoms remain in a gas
phase, whereas the latter situation might by described as the
Rydberg crystal proposed in Refs. [21,47]. In an ideal crystal,
the additional peaks would be sharp. In our calculations,
this cannot be achieved due to finite-size effects. From our
simulations, we estimate the dimensionless critical parameter
for the transition as Ccrit/(�L6) ≈ 5 × 10−7 for �/� � 1.

This estimation can be performed in two different ways.
First, we see that the “subleading” peaks gradually emerge
from the noisy background with growing C. It is reasonable to
assume that as soon as the peak of the highest possible order
(due to the finite L) is visible, the critical C is reached. This
occurs around the value for Ccrit/�L6 given above. Needless
to say, L should be chosen to be larger than several RB , so that
a number of peaks could be observed along the whole system
length.

The other method is more involved and is based upon the
following criterion: we fit the correlation function data in the
region r � RB with the function

f (r) = 1 + sin(ar + φ)[Ae−αr + B(r/r0)β]. (9)

This fitting procedure works exceptionally well for correlation
functions corresponding to setups with subcritical interactions.
For supercritical C, the situation changes dramatically and
the fit quality rapidly deteriorates. While we cannot definitely
identify the power law to dominate the large r asymptotics,
its role becomes important. These radical changes in behavior
of the correlation function happen at precisely the Ccrit given
above.

In fact, one can recognize this critical value for the phase
transition already in the simple statistical parameter of the
P (M) histograms. Indeed, not only the mean value μ, but also
the variance remarkably changes its behavior at approximately
the same value for C/�L6. Both μ and σ are functions of
the interaction strength C that obey power laws with certain
exponents for small values of C/�L6 and power laws with
different exponents for large C/�L6. The value of C/�L6

where the two power laws connect is the estimate of the
critical value Ccrit/�L6, which indicates a phase transition.
The behavior of μ is less prominent but still clearly detectable.
Similar behavior can be seen in higher cumulants of P (M).
However, the larger statistical errors might make them less
useful in practical applications.

IV. CONCLUSIONS

Using exact numerical diagonalization and approximative
descendants of this method, we have investigated the Rydberg
crystallization phenomenon in ultracold gases. We have
estimated the critical interaction strength by two different
techniques. Both pair-correlation function and simpler statis-
tical data show signatures of this phase transition. The big
advantage of using mean and variance of the histogram for
the number of excited atoms measured in a long series of
identical experiments is its good experimental accessibility.
In this way, we have developed a purely statistical method
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of detecting Rydberg crystallization. We hope that this pro-
cedure can soon be implemented in state-of-the-art experi-
ments in order to unambiguously identify the Rydberg crys-
tallization phenomenon without complicated spectroscopic
techniques.

Furthermore, the presented details of the pair-correlation
function might be useful for the continuous experimental
efforts in spatial imaging of Rydberg aggregates in the spirit
of Refs. [37,42]. This technique is not only able to yield a very
precise value of the blockade radius, but has also proven to be

a reliable source for the estimation of the critical parameters
for Rydberg crystallization.
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[1] S. Wüster, J. Stanojevic, C. Ates, T. Pohl, P. Deuar, J. F. Corney,
and J. M. Rost, Phys. Rev. A 81, 023406 (2010).

[2] C. Ates, S. Sevincli, and T. Pohl, Phys. Rev. A 83, 041802
(2011).

[3] C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Phys. Rev. A 76,
013413 (2007).

[4] F. Robicheaux, J. V. Hernández, T. Topçu, and L. D. Noordam,
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B. Butscher, H. P. Büchler, and T. Pfau, Phys. Rev. A 80, 033422
(2009).

[8] T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz,
T. G. Walker, and M. Saffman, Phys. Rev. Lett. 100, 113003
(2008).

[9] T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, Phys.
Rev. Lett. 104, 013001 (2010).

[10] N. Samboy, J. Stanojevic, and R. Côté, Phys. Rev. A 83, 050501
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