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Spin-velocity correlations of optically pumped atoms
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We present efficient theoretical tools for describing the optical pumping of atoms by light propagating at
arbitrary directions with respect to an external magnetic field, at buffer-gas pressures that are small enough
for velocity-selective optical pumping (VSOP) but large enough to cause substantial collisional relaxation of
the velocities and the spin. These are the conditions for the sodium atoms at an altitude of about 100 km that
are used as guidestars for adaptive optics in modern ground-based telescopes to correct for aberrations due to
atmospheric turbulence. We use spin and velocity relaxation modes to describe the distribution of atoms in
spin space (including both populations and coherences) and velocity space. Cusp kernels are used to describe
velocity-changing collisions. Optical pumping operators are represented as a sum of poles in the complex
velocity plane. Signals simulated with these methods are in excellent agreement with previous experiments and
with preliminary experiments in our laboratory.
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I. INTRODUCTION

In this paper we discuss efficient ways to model optically
pumped atoms in a regime where velocity-selective optical
pumping (VSOP) is possible, but where collisional rates with
buffer gases are too high to permit the use of models for cooling
and trapping in the near absence of collisions. This is the
regime of sodium guidestar atoms. These naturally occurring
layers of sodium atoms at altitudes of 90–100 km above the
Earth’s surface [1] are illuminated by ground-based lasers,
and the returning photons are used to measure the relative
retardation of wave fronts across an optical aperture. This
retardation information can be used with a deformable mirror
to correct for the aberrations from atmospheric turbulence
and to allow the receiving optics to produce a more nearly
diffraction-limited image of astronomical objects.

The performance of guidestar systems is limited by the
loss of atoms from the most strongly backscattering spin
sublevels and velocity groups. The most important reasons
for these losses are collisions with the residual atmospheric
gases, which transfer atoms from strongly absorbing to weakly
absorbing spin sublevels, or which shift the atoms into velocity
groups that are not in resonance with the pumping light;
Larmor precession of the spins away from strongly absorbing
orientations if the geomagnetic field is not parallel to the
direction of the laser beam; and unwanted optical pumping into
weakly absorbing sublevels. The powerful modeling methods
discussed here make it easier to explore the parameter space of
these processes and to optimize the performance of guidestar
systems. These methods also provide a more realistic and
numerically convenient way to model laboratory experiments
with VSOP of atoms in low-pressure buffer gases. In contrast
to previous work on this topic, for example Refs. [2–4], we
account for the full hyperfine structure of real alkali-metal
atoms, we show how to use spin-relaxation modes [5,6] to
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incorporate into the model the complicated spin relaxation
of Na guidestar atoms due to collisions with paramagnetic
oxygen atoms, and we use recently developed cusp kernels
[7] to realistically and efficiently model velocity-changing
collisions.

This article is organized as follows. In Sec. II, we introduce
the Liouville space of the coupled spin and velocity distribu-
tions of the atoms. In Sec. III we introduce spin-relaxation
modes sj [5,6] to describe the spin distributions, and we
introduce the concept of conjugate spin-mode indices, j

and j ∗. The amplitudes |χj ) of the spin modes in velocity
space provide a complete description of the spin and velocity
polarization of the atoms. The little-known Liouville conjugate
operation, denoted by the superscript ‡, and the transposition
operator T for Liouville-space operators are discussed in
Sec. III B. Using Liouville conjugates reduces the numerical
computing requirements by nearly a factor of 2.

In Sec. IV we show how to describe velocity distributions
with velocity-relaxation modes |vn) [8,9]. We use the velocity
modes to show that a simple transformation of the widely
used Keilson-Storer kernels [10] leads to much more realistic
and useful cusp kernels [7] for describing velocity-changing
collisions. In Sec. V we present a simple model for the
transition from collision-free, ballistic flight to any container
walls at very low buffer-gas pressure to diffusional wall losses
at higher pressure. We sketch how the relative sizes of the laser
beam and the cell affect these processes. In the Appendix we
show how to deduce the rate of velocity-changing collisions
γvd from the spatial diffusion coefficient D and the smallest-
nonzero eigenvalue α1 of the collision operator Avd with
the little-known formula (A1). In (82) of Sec. VI, we show
that spin-changing and velocity-changing collisions cause the
spin-mode amplitudes |χj ) to relax exponentially in time at
the rate Kj , where Kj is a kernel in velocity space.

In Sec. VII, we introduce a velocity-dependent optical
pumping operator Aop, which we write as the sum of poles
in the complex-velocity plane at locations determined by the
laser frequency and the optical Bohr frequencies. The pole
expansion facilitates velocity averages in terms of Faddeeva
functions (Voigt profiles) [11]. The poles have “residue
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matrices” that are independent of the laser frequency and
atomic velocity. In Sec. VIII, we show that the steady-state
mode amplitudes |χj ) generated by the combined effects
of optical pumping, spin relaxation, and velocity relaxation
can be written in terms of Green’s functions, Gj ∝ K−1

j .
We show that if the kernel Kj is a cusp kernel or linear
combination thereof, K−1

j is also a cusp kernel or linear
combination thereof. Being able to invert cusp kernels in
closed form greatly simplifies the numerical evaluation of the
mode amplitudes |χj ). This simplification is not possible with
Keilson-Storer kernels or any other collision kernel that we
know of. We present an explicit, series solution (134) for the
mode amplitudes |χj ) in powers of the pumping light intensity,
with particular emphasis on the first-order solution (147).

Finally, in Sec. IX, we use (147) to demonstrate how
the methods we present are in excellent agreement with
existing VSOP experiments. We also describe a new type of
magnetic-depolarization experiment that can be carried out
under laboratory conditions and readily interpreted with the
powerful modeling methods described in this paper. Such
experiments would provide much more detailed experimental
information about the nature of velocity-changing collisions.

II. THE DENSITY MATRIX

For optical pumping at low buffer-gas pressure we need
to account for both the spin polarization and the velocity v

of atoms along the light beam. We introduce a dimensionless
velocity,

x = v

vD

, (1)

where the most probable speed vD along the laser beam is
given by

vD =
√

2kBT

M
. (2)

Here T is the absolute temperature, kB is Boltzmann’s
constant, and M is the mass of the atom.

We write the incremental density matrix dρ for the spin-
polarized, ground-state atoms with velocities between x and
x + dx as

dρ = χ (x)dx. (3)

Here χ (x) denotes a square g{g} × g{g} matrix in Schrödinger
spin space for ground-state atoms, where the dimension of
the spin space is g{g} = (2S + 1)(2I + 1). The electronic-spin
quantum number of the ground-state atom is S, and the nuclear-
spin quantum number is I . The total probability for the atom
to have some velocity and be in some spin state must be unity,
so we must have

Tr
∫

χ (x)dx = 1. (4)

A. Energies and energy basis states

It will be convenient to describe the atoms in terms of
the energy eigenstates |μ〉. These are defined by the time-
independent Schrödinger equation

H {g}|μ〉 = Eμ|μ〉, (5)

which determines the energy shifts Eμ of the basis states
|μ〉 from their center of gravity due to hyperfine interactions
and externally applied magnetic fields. The spin Hamiltonian
H {g} for the 2S1/2 ground state of an alkali-metal atom is
traceless and includes hyperfine couplings of the nuclear and
electronic spins to each other as well as their couplings to an
externally applied magnetic field. The energy sublevels |μ̄〉 and
energy shifts Eμ̄ of optically excited atoms are given in like
manner by

H {e}|μ̄〉 = Eμ̄|μ̄〉. (6)

The Bohr frequency for an optical transition from the sublevel
|μ〉 to the sublevel |μ̄〉 is

ωμ̄μ = ω{eg} + Eμ̄ − Eμ

h̄
. (7)

Here ω{eg} = ck{eg} = 2πc/λ{eg} is the mean value of the
frequencies (7), averaged over all possible combinations of the
sublevel labels, μ̄ and μ. The corresponding spatial frequency
is k{eg} and wavelength is λ{eg}.

For the low geomagnetic fields of interest to us, it will
sometimes be convenient to use low-field labels of the energy
sublevels μ ↔ fμmμ. Here, f denotes the approximate total
spin angular momentum quantum number of the sublevel and
m is the exact azimuthal quantum number along a quantization
axis defined by the external magnetic field.

B. Liouville space

We use a generalization of the Liouville-space formalism
of the recent book Optically Pumped Atoms by Happer, Jau
and Walker [12] (which we will refer to as OPA) for handling
the large amount of information needed to describe the spin-
velocity correlations of optically pumped atoms. One of the
best early descriptions of Liouville space is given in the book
by Ernst et al. [13].

To describe the (dimensionless) velocity x, we can use nx

evenly spaced sample velocities,

x1,x2, . . . ,xnx
, with xk+1 − xk = δx. (8)

Then the velocity-dependent spin polarization can be defined
by the elements of the spin density matrix χ of (3), which we
will call “spin-velocity correlations,”

χμν(xk) = 1

δx
(xk|χμν). (9)

We will think of (xk|χμν) as the projection onto the velocity-
space basis vector |xk) of the abstract, velocity-space column
vector |χμν). It will be convenient to represent the total density
matrix for spin-velocity space as the abstract, Kronecker-
product column vector

|�) =
∑
μν

|μν) ⊗ |χμν), (10)

where |μν) is the Liouville-space representation of the spin
density matrix basis element |μ〉〈ν|. We turn now to the time
evolution of |�).

023404-2



SPIN-VELOCITY CORRELATIONS OF OPTICALLY . . . PHYSICAL REVIEW A 86, 023404 (2012)

III. SPIN DAMPING

There is negligible correlation between spin relaxation and
velocity relaxation for laboratory VSOP experiments, where
all the spin relaxation is due to collisions of polarized atoms
with the cell walls, or for sodium guidestar experiments where
the spin relaxation is almost all due to binary spin-exchange
collisions with oxygen molecules, and where the electron
spin, but not the nuclear spin of the Na atom, may flip. We
therefore take the spin-relaxation processes to be independent
of velocity-relaxation processes and we write the rate of
change of (10) due to the hyperfine interaction, the externally
applied magnetic field, and spin-changing collisions as

∂

∂t
|�) = −

∑
μν


|μν) ⊗ |χμν). (11)

Here the spin-damping operator is independent of velocity and
is given by


 = i

h̄
H c© + γsdAsd. (12)

The evolution due to internal hyperfine couplings of the
electron and nuclear spins as well as their interactions with ex-
ternally applied magnetic fields is given by the Liouville-space
Hamiltonian, a “commutator superoperator” as described by
(4.85) of OPA [12],

H c© = h̄
∑
μν

ωμν |μν)(μν|, (13)

where the Bohr frequencies of the ground-state atoms are

ωμν = Eμ − Eν

h̄
. (14)

In (12) spin-changing collisions occur at a rate γsd and the de-
tails of the spin relaxation are described by the dimensionless
matrix operator

Asd =
∑

μνμ′ν ′
|μν)(μν|Asd|μ′ν ′)(μ′ν ′|. (15)

The specific form of the damping operator Asd for various
collisional interactions is discussed in Chap. 10 of OPA [12].
Regardless of the particular details, for the evolution described
by (11) to conserve the number of atoms, the spin-evolution
operators must satisfy the constraints

((s0|
 = ((s0|H c© = ((s0|Asd = 0. (16)

The equilibrium left eigenvector, about which we will have
more to say below, is

((s0| =
∑

μ

(μμ|. (17)

A. Spin modes

In this section we discuss how to handle the complicated
spin relaxation of sodium guidestar atoms due to gas-phase
collisions with O2 molecules and O atoms. (For the weakly
relaxing buffer gases used in laboratory experiments, spin-
relaxation collisions in the gas are slow enough to be neglected,
and the spin relaxation is almost entirely due to collisions
with the walls.) An especially convenient basis for the spin

polarization under conditions of strong collisional relaxation
in the gas is provided by the spin-relaxation modes. To our
knowledge, spin modes were first introduced by Bouchiat [5,6]
to discuss the curious multiexponential decays observed in
velocity-independent optical pumping. The spin modes are
the right eigenvectors of the spin-damping operator (12),


|sj ) = γj |sj ). (18)

Here the symbol |sj ) denotes a g{g}2 × 1 column vector
in Liouville space, formed from a g{g} × g{g} matrix sj of
Schrödinger space, as described by (1.2) and (1.3) of OPA [12],
by placing each column of sj below the one on its left. We will
enumerate the modes such that

|γ0| = 0 � |γ1| � |γ2| � · · · � |γns−1|. (19)

For degenerate spin modes |sj ) 	= |sj ′) 	= |sj ′′ )... with γj =
γj ′ = γj ′′ ... one is free to take linear combinations of spin
modes with other distinguishing properties, often the angular
momentum. A simple example of longitudinal spin modes is
shown in Fig. 10.5 of OPA [12].

In the absence of any pumping mechanisms, the spin density
matrix of the atoms will relax to the thermal equilibrium state

s0 = 1

Z
e−H {g}/kBT or |s0) = 1

Z
|e−H {g}/kBT ). (20)

The partition function Z is

Z = Tr[e−H {g}/kBT ]. (21)

The evolution operator 
 must cause no changes to the steady
state, or


|s0) = 0. (22)

The left eigenvectors of 
 satisfy an eigenvalue equation
analogous to (18) with the same set of eigenvalues,

((sj |
 = ((sj |γj . (23)

We will use the symbol ((sj | to distinguish a left eigenvector,
the solution of (23), from the Hermitian conjugate (sj | = |sj )†

of the right eigenvector |sj ), the solution of (18) with the same
eigenvalue γj . It is necessary to make this distinction because
there may be right and left eigenvectors for which ((sj | is
not a simple multiple of (sj | = |sj )†. The right eigenvectors
|sj ) are analogous to the three primitive vectors of a crystal.
For crystals of low symmetry, which correspond to non-
normal operators, the primitive vectors can be nonorthogonal.
The left eigenvectors ((sj | are analogous to the reciprocal
primitive vectors. Except for rare, singular combinations of
the parameters of (12), the right eigenvectors |sj ) span the
spin space of the atom. As long as the right eigenvectors are
linearly independent we can choose left eigenvectors such that

((sj |sk) = δjk and
∑

j

|sj )((sj | = 1{s}. (24)

Using the left and right eigenvectors we can write the net
spin-damping operator as


 =
∑

j

γj |sj )((sj |. (25)

High-temperature limit. For our applications, the thermal
energy kBT will normally be so large compared to the
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energy differences of ground-state sublevels, that it will be
an excellent approximation to simplify the equilibrium spin
mode (20) to

s0 = 1{g}

g{g} or |s0) = |1{g})
g{g} , (26)

where the unit operator for the Schrödinger ground state is
1{g} = ∑ |μ〉〈μ|.

B. Hermitian conjugates of spin modes

According to (4.4.2) of OPA [12], 
 must be Liouvillian,


‡ = 
, (27)

to keep the density matrix Hermitian as it evolves in time.
From this requirement, we can derive some identities that
dramatically reduce the amount of computation necessary to
simulate a guidestar or VSOP scenario, and that simplify the
form of the evolution equations. The Liouville conjugate 
‡

of 
 is defined by


‡ = T 
∗T . (28)

The transposition operator of (28) can be written as

T =
∑
μν

|νμ)(μν|. (29)

Substituting (28) into (18) and using (27) we find

T 
∗T |sj ) = γj |sj ). (30)

Multiplying (30) on the left by T , noting that T 2 = 1, and
taking the complex conjugate of the resulting equation we find


T |s∗
j ) = γ ∗

j T |s∗
j ). (31)

Here we have defined the complex-conjugate column vector
by

(μν|s∗
j ) = 〈μ|s∗

j |ν〉 = [〈μ|sj |ν〉]∗ = [(μν|sj )]∗. (32)

From (31) we see that

T |s∗
j ) = |s†j ) (33)

is an eigenvector of 
 with eigenvalue γ ∗
j . With some care in

the case of degeneracies, where several spin modes have the
same eigenvalue γj , we can define the modes such that

T |sj ) = |s∗
j∗) or |s†j ) = |sj∗ )

with γ ∗
j = γj∗. (34)

Since taking two Hermitian conjugates restores the original
matrix, we must have

j ∗∗ = j. (35)

Using the expressions above we find that an alternate expres-
sion for the transposition operator of (29) is

T =
∑

j

|s∗
j∗ ) ((sj |. (36)

Hopefully, the use of the superscript ∗ to denote the index
j ∗ of the mode sj∗ = s

†
j , will not be confused with the

symbol for complex conjugation of a number. The indices for
the ns = (2I + 1)(2S + 1) modes are the real integers, j =
0,1,2, . . . ,ns − 1 and the mode indices j ∗ are the same real

numbers in some permuted order. Both sj and its Hermitian
conjugate s

†
j are square matrices in the ground-state subspace

of Schrödinger space; |sj ) and |s†j ) are column vectors in
Liouville space, but |sj )† = (sj | is a row vector in Liouville
space with elements (sj |μν) = (μν|sj )∗.

The matrix elements of the Liouville conjugate M‡ =
T M∗T of a spin-space matrix M are

(μν|M‡|κλ) = (νμ|M|λκ)∗;

((sj |M‡|sk) = ((sj∗ |M|sk∗)∗. (37)

C. Spin-mode expansions

For numerical work, it will be convenient to replace the
spin-velocity basis vectors |μν) ⊗ |xk) and (μν| ⊗ (xk| by
basis vectors with a spin-mode part and a velocity part,

|sj ) ⊗ |xk) and ((sj | ⊗ (xk|. (38)

We can expand the density matrix |�) of (10), on the basis
vectors (38) to find

|�) =
∑

j

|sj ) ⊗ |χj ). (39)

The coupled and uncoupled velocity amplitudes of (39) and
(10) are related by

|χj ) =
∑
μν

((sj |μν)|χμν). (40)

For Hermitian density matrices �† = � we must have

|χ∗
j ) = |χj∗ ) (41)

or

(xk|χ∗
j ) = (xk|χj )∗ = (xk|χj∗ ). (42)

The elements (xk|χj ) of population modes with j ∗ = j must
be real.

IV. VELOCITY DAMPING

We assume that gas-phase collisions cause the density
matrix (10) to change in velocity space at the rate

∂

∂t
|�) = −γvd

∑
j

|sj ) ⊗ Avd|χj ). (43)

Here γvd is a characteristic velocity-damping rate, which can
be deduced with the aid of (A1) from the spatial diffusion
coefficient D and the smallest, nonzero eigenvalue α1 of the
collision operator Avd. The collision operator is often written
in terms of a velocity-changing collision kernel Wvd as

Avd = 1{x} − Wvd. (44)

The velocity-space unit operator is 1{x} = ∑ |xk)(xk|.
Atom conservation implies that that the velocity-evolution

operators of (44) must satisfy a constraint analogous to (16)
for the spin-evolution operators, which we write as

((v0|Avd = 0, (45)

((v0|Wvd = ((v0|. (46)
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The equilibrium left eigenvector ((v0| is analogous to ((s0| of
(17), and is given by

((v0| =
∑

k

(xk|. (47)

The equilibrium right eigenvector |v0), conjugate to the left
eigenvector ((v0| of (47), is analogous to |s0) of (20), and is
given by the Maxwellian distribution

|v0) = δx√
π

∑
k

|xk)e−x2
k . (48)

The analogs of the equilibrium mode constraint (22) are

Avd|v0) = 0, (49)

Wvd|v0) = |v0). (50)

A. Velocity modes

In analogy to (18) and (23), we assume that the velocity-
damping operator Avd has a spectrum of right and left
eigenvectors |vn) and ((vn| corresponding to the eigenvalue
αn such that

Wvd|vn) = �n|vn) and ((vn|Wvd = ((vn|�n, (51)

Avd|vn) = αn|vn) and ((vn|Avd = ((vn|αn, (52)

with

�n = 1 − αn. (53)

One of the first clear examples of velocity modes was given by
Snider [9]. There will be the same number nx of independent
eigenvectors |vn) as there are velocity sample points xk . The
eigenvalues are real and non-negative. They can be numbered
by the integers n = 0,1,2, . . . ,nx − 1 such that

�0 = 1 � �1 � �2 � · · · , and

α0 = 0 � α1 � α2 � · · · . (54)

In analogy to (24), we assume that the left and right
eigenvectors can be chosen to be orthonormal and complete,
so that

((vn|vk) = δnk and
∑

n

|vn)((vn| = 1{x}. (55)

The values of the summation index are n = 0,1,2, . . . . In
analogy to (25) we write

Wvd =
∑

n

�n|vn)((vn| and Avd =
∑

n

αn|vn)((vn|.

(56)

B. Keilson-Storer kernels

A convenient model kernel Wa = Wvd for the velocity-
changing collision kernels Wvd of (44) was introduced by
Keilson-Storer (KS) [10]. In the KS model, it is assumed that
a group of atoms, all having the the same sample velocity xk

along the laser beam, are transformed by an ensemble of single
collisions, with various impact parameters and orbital planes,

into the distribution of final velocities xj ,

Wa(xj ,xk) = 1

δx
(xj |Wa|xk) = e−(xj −axk )2/b2

b
√

π
. (57)

This newly formed Gaussian distribution is centered at the
dimensionless velocity axk . The “memory” parameter a and
width b are

0 � a < 1 and b =
√

1 − a2. (58)

Snider [9] has shown that the KS kernel can be written as the
eigenvalue expansion [8]

Wa =
∑

n

an|vn)((vn|. (59)

The amplitudes of the left and right eigenvectors can be chosen
to be

((vn|xk) = Hn(xk)√
2nn!

and (xk|vn) = δxHn(xk)e−x2
k√

2nn!π
.

(60)

Here Hn(x) denotes the nth Hermite polynomial. The KS
eigenvectors are independent of the memory parameter a. Then
the KS eigenvalues of (53) are

�n = an and αn = 1 − an. (61)

With their simple analytic form KS kernels (57) are
convenient for numerical work, and they clearly satisfy the
normalization constraint (46) and the Maxwellian constraint
(50). However, KS kernels with a single memory parameter a

do not give very good approximations to kernels inferred from
experimental observations, for example, those of Gibble and
Gallagher [14] or to kernels modeled from realistic interatomic
potentials, like those of Ho and Chu [15].

Real collisions occur for a large range of impact parameters,
or as large numbers of partial waves in a quantum treatment
of the scattering. “Head-on” collisions with small impact
parameters will produce large changes in velocity and can
be approximately modeled by KS kernels that are close to
the strong-collision limit, with a = 0. “Grazing-incidence”
collisions with large impact parameters will be much more
frequent but will produce small changes in velocity. They are
better modeled by KS kernels with a ≈ 1.

With these facts in mind it has often been proposed that
a superposition of KS kernels would be a better model, but
suggested superpositions have been somewhat inconvenient
for numerical modeling. McGuyer et al. [7] have introduced
the “cusp kernel,” a special superposition of KS kernels that
is even more convenient for modeling than KS kernels, since
cusp kernels and their superpositions can be readily inverted
to find steady-state velocity distributions. It is more difficult
to invert KS kernels or other collision kernels that have been
used in the past. Cusp kernels and their superpositions are also
more similar to kernels inferred from experiment [14] or from
realistic interatomic potentials [15].

C. Cusp kernels

Cusp kernels describe an ensemble of collisions, with
each sample collision described with a KS kernel of memory
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parameter a. The probability to find the memory parameter
between a and a + da is Ps(a)da, where the probability
density is

Ps(a) = sas−1. (62)

We will call the parameter s the “sharpness,” and the
corresponding velocity-changing collision kernel of (44) will
be denoted by Wvd = Cs . The sharpness s will be a real,
positive number for velocity-changing collision kernels Wvd,
but for “resolvent kernels” W , which we will discuss below, the
sharpness can have an imaginary part. An explicit expression
for the cusp kernel is

Cs =
∫ 1

0
WaPs(a)da =

∑
n

s|vn)((vn|
s + n

. (63)

The eigenvalues of (53) are

�n = s

s + n
and αn = n

s + n
. (64)

In the limit n → ∞ we have

�∞ = 0 and α∞ = 1, (65)

for both cusp kernels (64) and KS kernels (61).
Morgan and Happer [8] have shown that the matrix elements

of (63) can be summed to give

Cs(xj ,xk) = s2s
(s)√
π

exk
2
Rs(−x<)Rs(x>). (66)

Here 
(s) is the Euler 
 function, x> is the greater of the two
variables xj and xk , and x< is the lesser. The “right function”
Rs(z) can be represented with the power series [8], convergent
for all finite z,

Rs(z) =
∞∑

n=0

√
π (−z)n

n!2s−n

(

1
2 + s

2 − n
2

) . (67)

For sufficiently large sharpness, |s| � 1, one can evaluate the
cusp kernel (66) with the asymptotic expression

2 ln Cs(xj ,xk) = x2
k − x2

j − 2|xj − xk|
√

2s + ln
( s

2

)
. (68)

A comparison of KS kernels and cusp kernels is shown in
Fig. 1.

As shown by McGuyer et al. [7], one can fit collision kernels
inferred from experimental measurements very well with the
superposition of a few (m ≈ 3) cusp kernels:

Wvd =
m∑

k+1

fkCsk
with

m∑
k=1

fk = 1. (69)

Each cusp of sharpness sk makes a fractional contribution
fk > 0 to the overall damping operator Wvd. An example of a
multicusp collision kernel from McGuyer et al. [7] is shown
as the curve labeled p = 0 in Fig. 2(a). This is the kernel that
was used for the representative models of experimental data

4

3

2

1

0
-2 -1 0 1 2

(b)

4

3

2

1

0
-2 -1 0 1 2

(a)

FIG. 1. (Color online) Keilson-Storer kernels Wa of (57) with
representative memory parameters a, compared to cusp kernels Cs

of (66) with sharpness parameters s that have the same expectation
value, 〈a〉 = ∫ 1

0 Ps(a)a da = s/(s + 1), of the memory parameter.
As a → 0 and s → 0, the KS and cusp kernels generate Maxwellian
distributions.

in Figs. 5, 6, and 8. The other parts of Fig. 2 are discussed in
Sec. VIII A where we show how to find multicusp resolvent
kernels from multicusp collision kernels.

V. WALL DAMPING

Most existing data on velocity-selective optical pumping
has come from laboratory experiments, where the atoms either
experience no buffer gas collisions at all, or they collide
with buffer gases such as He, Ne, Ar, Kr, Xe, N2, or H2,
where the rate γsd of spin-changing collisions in (12) is orders
of magnitude smaller than the rate γvd of velocity-changing
collisions in (43). Under these conditions, the damping rates
γj of the spin modes can be well approximated by γj = 0 for
population modes with j ∗ = j , and by γj = iωj for coherence
modes with j ∗ 	= j and Bohr frequency ωj = −ωj∗ . Under
these laboratory conditions, the effects of the buffer gas on
velocity-selective optical pumping are characterized by the
rate γvd of velocity-changing collisions and by the effective rate
γw of collisions with the wall. Walls with no special coatings
destroy the spin polarization of impinging atoms and release
unpolarized atoms with a Mawellian distribution of velocities.

For analyzing the physics of Na guidestar atoms there is
no need to consider wall collisions, but the O2 molecules and
O atoms of the buffer gas at an altitude of 90–100 km have
rates γsd for spin-changing collisions that are comparable to or
larger than the rates γvd for velocity-changing collisions. Under
these conditions, the damping rates γj of the spin modes have
relatively large real parts due to spin-changing collisions.
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FIG. 2. (Color online) Resolvent kernels W versus buffer-gas
pressure p for the initial velocity y = 1.37. Here, the collision kernel
Wvd of (69) is a three-cusp fit from Ref. [7] to a measured kernel
for Rb in He from Ref. [14]. The superposition parameters are
fj = [0.13,0.37,0.50] and sj = [7.8,27.2,500]. (a) As described by
the expressions of Sec. VIII A, with increasing buffer-gas pressure
the resolvent kernel W evolves from a low-pressure, single-collision
limit, W = Wvd, to a high-pressure limit, which is a Maxwellian
distribution W = |v0)((v0|. (b) With increasing pressure the weights
gk of the resolvent kernel tend to the limit gk = [1,0,0]. (c) The
sharpnesses rk of the resolvent kernel diminish with pressure, and
in the high pressure limit, r1 → 0, give a Maxwellian distribution
for the only resolvent cusp with appreciable weight, g1 ≈ 1. (d) The
pressure-dependent rates γvd of (A1) and γw of (79) are for a = 1 mm,
b = 5 mm, T = 60 ◦C, and D0 = 0.15 cm2 s−1 at 760 Torr. The
transition from low-pressure to high-pressure conditions occurs when
γw ≈ γvd.

A. Walls

In analogy to (11) and (43) we write wall relaxation as

∂

∂t
|�) = −γwAw|�). (70)

The effective collision rate of atoms with the walls, γw, is a
real, positive number. We assume that every atom that hits a
wall sticks, and is replaced by a different atom that evaporates
with no spin polarization and with a Maxwell distribution of
velocities. The wall depolarization operator is simply

Aw = 1 − |Ø)((Ø|. (71)

Here we use (17) with (47) to write the equilibrium spin-
velocity row vector for the full spin-velocity space as

((Ø| = ((s0| ⊗ ((v0|. (72)

The corresponding equilibrium column vector

|Ø) = |s0) ⊗ |v0) (73)

is the density matrix for atoms with no spin polarization and
a Maxwell distribution of velocities. For the modifications
needed to account for walls that only partially depolarize the
spins and lead to shifts of the coherence frequencies, see the
work of Wu et al. [16].

B. Cylindrical cells

As a semiquantitative example of how to estimate wall
relaxation rates γw, let us suppose that a pump laser fills a
cylindrical volume of radius a on the axis of a cylindrical cell
of radius b > a. Let χ be some spin-mode amplitude of the
density matrix that is pumped at a rate S inside the pump laser
beam. We assume axial symmetry so that χ = χ (r) depends
only on the distance r from the cylinder axis. Then the diffusion
equation is

∂

∂t
χ − D∇2χ =

{
S for r � a

0 for a < r � b
. (74)

The spatial diffusion coefficient can be measured experimen-
tally and the results are often expressed as

D = D0
p0

p
, (75)

where p is the gas pressure and D0 is the diffusion coefficient
at the reference pressure p0, which is usually 1 atm.

One can integrate the steady-state version of (74) with
the boundary condition χ (b) = 0 and with χ and dχ/dr

continuous at r = a to find the solution

χ

S
= (a2 − r2)

4D
+ a2

2D
ln

(
b

a

)
, if r � a (76)

or

χ

S
= a2

2D
ln

(
b

r

)
, if a < r � b. (77)

For pressures high enough for the diffusion equation to be
valid, we define the mean spin polarization χ sampled by the
probe beam, and the mean time τw for an atom to be lost from
the probe beam by

χ = 1

πa2

∫ a

0
χ (r)2πr dr = Sτw. (78)
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Substituting (76) into (78) and adding a representative free
flight time, a/vD , for the atom to escape the pump beam in the
limit of very low pressures, we find

τw = 1

γw
= a

vD

+ a2

8D

[
1 + 4 ln

(
b

a

)]
. (79)

VI. EVOLUTION IN THE DARK

Summing the rates of change of the density matrix (39),
from wall collisions (70), from hyperfine interactions and
spin-relaxing collisions (11), with 
 given by (25), and from
velocity relaxing collisions (43), with Avd given by (56), we
find that the evolution rate from all sources except optical
pumping is

∂

∂t
|�) = −

∑
j

(γw + γj )|sj ) ⊗ |χj )

+ γvd|sj ) ⊗ Avd|χj ) + γw|Ø)((v0|χ0). (80)

For laboratory and guidestar experiments with weak pumping
light, the unpolarized part of the density matrix will have a
Maxwellian distribution

|χ0) = |v0). (81)

For spin-polarized parts of the density matrix with j 	= 0, we
can multiply (80) on the left by ((sj | ⊗ 1{x} to find

∂

∂t
|χj ) = −(γw + γj + γvdAvd)|χj ) = −Kj |χj ). (82)

Here we have introduced a damping kernel for the j th spin
mode,

Kj =
∑

n

γjn|vn)((vn|. (83)

The kernel Kj includes the evolution of the spin due to
gas-phase and wall collisions, hyperfine interactions, and
precession in an external magnetic field. Also included in Kj

are velocity-changing collisions. The characteristic relaxation
rate for the nth velocity mode of the spin mode j is

γjn = γw + γj + αnγvd. (84)

Here γw is the effective collision rate of polarized atoms
with the wall, γj is the sum of relaxation due to gas-phase
collisions (=0 for most laboratory experiments) plus a factor
iωj for the Bohr frequency ωj of the spin mode |sj ), and
αnγvd is the relaxation rate of the velocity mode |vn) due to
gas-phase collisions at the rate γvd. According to (34) and (84)
the coherence damping rates can be complex, but they must
satisfy the identity

γ ∗
jn = γj∗n. (85)

VII. OPTICAL PUMPING

The basic processes involved in optical pumping are
sketched in Fig. 3. We consider monochromatic pumping
light of temporal frequency ω = 2πν and spatial frequency
k = ω/c, propagating along the unit vector ζ . We assume
that the light intensity is large enough to cause substantial

−2 0 +2−1 +1

−2 0 +2−1 +1

FIG. 3. Energy sublevels of an alkali-metal atom, resonant
frequencies νf̄ f , and representative transitions for absorption of
light (depopulation pumping), or spontaneous emission of light
(repopulation pumping). In this example the pumping light is linearly
polarized parallel to a small, externally applied magnetic field.
Because of the Doppler shift, the resonance frequencies depend on
the atomic velocity and on the direction of propagation of the light.

spin polarization of the ground-state atoms, but that it is
not so intense that it produces substantial population of
the excited state. Most laboratory experiments on velocity-
selective optical pumping and most guidestar systems are in
this regime. It is a straightforward extension to account for
the saturation of the optical pumping of the ground state from
intense, repetitively pulsed lasers. For laboratory experiments,
the atoms will also be subject to a weak, counterpropagating
probe beam, usually a small fraction of light from the source
of the pump beam. As the laser frequency changes, resonant
changes in the attenuation of the probe beam occur for laser
frequencies where the velocities of atoms spin polarized by
the pump beam also have the right Doppler shift to resonantly
absorb light from the retroreflected probe beam. The classical
electric field of a monochromatic light beam for an atom
located at the position r at time t is

E = Ẽei(σkζ ·r−ωt) + Ẽ∗e−i(σkζ ·r−ωt). (86)

The direction index σ = ±1 will be taken to be σ = 1 for the
pumping beam. For a probe beam that propagates in the same
direction as the pumping beam we will also have σ = 1, and
for a counterpropagating probe beam we will have σ = −1.
The amplitude Ẽ of the probe beam may have a different
polarization than the pump beam. The optical intensity I (in
units of erg cm−2 s−1) is given in terms of the field amplitude
Ẽ of (86) by

I = c

2π
|Ẽ|2. (87)

As discussed in connection with (5.52) of OPA [12], the inter-
action of the light with the atoms can be well approximated by
the sum of conjugate interaction matrices Ṽ + Ṽ†, where

Ṽ = −D̃† · Ẽ and Ṽ† = −D̃ · Ẽ∗. (88)
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The component D̃† of the electric dipole moment operator
D, when operating on a ground-state basis |μ〉, produces an
excited-state basis |μ̄〉, and vice versa for D̃. As shown in
connection with (6.7) pf OPA [12], the unsaturated optical
coherence generated between excited-state and ground-state
sublevels of the atom is proportional to the matrix,

W̃ = Ṽ ./E {eg}. (89)

In (89) we use the “dot-slash” symbol (./) to denote element-
by-element division of the matrices with the same dimensions.

Resonant velocities. From (5.84), (5.88), and (5.92) of OPA
[12] we see that the energy-denominator matrix that occurs in
(89) is

E {eg}
μ̄μ = h̄(σk{eg}vk − ω + ωμ̄μ) − ih̄γc = h̄γD(σxk − zμ̄μ).

(90)

The kth discretized component of the atomic velocity along
the pump beam is vk = v · ζ = xkvD . The photon momentum
is very nearly σh̄k{eg}ζ , where the spatial frequency is k{eg}.
The complex resonant velocities are determined by the optical
frequency ω and by the optical Bohr frequencies ωμ̄μ of the
atom, and given by

zμ̄μ = xμ̄μ + iyc. (91)

The real and imaginary parts of the resonant velocities are

xμ̄μ = ω − ωμ̄μ

γD

and yc = γc

γD

, (92)

with γD = vDk{eg}. We assume that the damping rates as-
sociated with the optical coherences μ̄μ are the same and
given by

γc = 1

2τ {e} + γoc, (93)

where τ {e} is the natural radiative lifetime of the excited atom.
The collisional damping rate γoc of the optical coherence is
nearly negligible for most VSOP situations. In modeling, the
parameter γoc will be used to approximately account for the
frequency linewidth of the laser and for slight misalignment
of the pump and retroreflected probe beam.

The pumping will be resonantly enhanced for velocities
xk that are close to the resonant velocities xμ̄μ; that is, for
xk ≈ xμ̄μ. Similarly, the probe absorption will be resonantly
enhanced for velocities as close as possible to the resonant
velocities σxν̄ν ; that is, for xk ≈ σxν̄ν . If the probe beam
propagates parallel to the pump beam (σ = 1), every resonant
velocity for the pump beam will also be resonant for the
probe beam. However, if the probe beam is counterpropagating
with σ = −1, the resonant conditions can be satisfied for the
same velocity group only if the laser detuning is such that
two different optical transitions, μ̄μ and ν̄ν, have equal and
opposite resonant velocities,

xμ̄μ = −xν̄ν . (94)

This is the condition for saturated-absorption resonances with
counterpropagating laser beams. In Fig. 4 we show how the
resonant velocities xμ̄μ and their negatives −xν̄ν depend on
laser detuning for a 39K atom in a magnetic field of 1 G.

Residue matrices. Using (90) we can write (89) as

W̃(xk) =
∑
μ̄μ

W̃ {μ̄μ}

σxk − zμ̄μ

. (95)

For each optical transition between a ground-state sublevel
μ and excited-state sublevel μ̄, we have defined a g{e} × g{g}
“residue matrix” with a single nonzero element

〈ν̄|W̃ {μ̄μ}|ν〉 = W̃ {μ̄μ}
ν̄ν = δν̄μ̄δνμ

Ṽμ̄μ

h̄γD

. (96)

The residue matrices are independent of the laser frequency ω

and the atomic velocity xk . They give the relative contributions
to the pumping rate of the optical transitions from sublevel |μ〉
to |μ̄〉.

A. Depopulation pumping

A natural rate to characterize velocity-dependent optical
pumping is the maximum possible pumping rate,

γmx = I

h̄ω{eg} σmx, (97)

for a hypothetical isotope with no externally applied magnetic
field, with vanishing hyperfine coupling coefficients, with no
spin polarization, and with zero velocity. Such hypothetical
atoms would have only a single optical Bohr frequency ωμ̄μ =
ω{eg}, and their absorption cross section for light of frequency
ω would be independent of optical polarization and given by

σeq = γ 2
c

(ω − ω{eg})2 + γ 2
c

σmx, (98)

where the maximum cross section is

σmx = 2πrecf
{ge}

γc

. (99)

Here f {ge} is the oscillator strength, re is the classical electron
radius, c is the speed of light, and the optical coherence
damping rate was given by (93).

We will write the evolution of the mode amplitude |χj ) due
to depopulation pumping as

∂

∂t
(xk|χj ) = −γmx

∑
l

((sj |Adp(xk)|sl)(xk|χl). (100)

We have neglected the small changes in velocity xk caused by
absorption and emission of light. The depopulation pumping
operator Adp can be written as

Adp(xk) = Ãdp(xk) + Ã
‡
dp(xk). (101)

The Liouville-conjugate matrix Ã
‡
dp is defined in terms of Ãdp

by (28). We can use (6.12) of OPA [12] and (95) to find

Ãdp(xk) =
∑
μ̄μ

R̃
{μ̄μ}
dp

σxk − zμ̄μ

, (102)

where the residue matrix is given by

R̃
{μ̄μ}
dp = 1

ih̄γmx
[Ṽ†W̃ {μ̄μ}]�. (103)
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FIG. 4. (Color online) Resonant velocities ±xμ̄μ of (92) for atoms moving along a pump beam (the solid lines sloping up to the right)
and for a retroreflected and attenuated probe beam (the dotted lines sloping downward to the right) as a function of the detuning of the laser
frequency from the center of the 770 nm D1 line of 39K atoms in a magnetic field of B = 1 G. Both the pump and probe light are linearly
polarized parallel to the magnetic field, as indicated in Fig. 3. The absorption frequencies from Fig. 3 to which each group of resonant velocities
correspond are denoted by νf̄ f . For a group of unpolarized atoms with dimensionless velocity x = 0.75, we display the absorption cross
sections σ+(ν,x) of a pump beam (the solid line) and probe beam σ−(ν,x) (the dashed line). Plotted as solid lines along the vertical axis at the
center figure are the first-order population shifts (x|χ {1}

μμ) of (148) as a function of velocity x for the ground-state sublevel |μ〉 with low-field
quantum numbers f = 2 and m = 2, produced by a pump beam with a frequency detuning of 0 GHz. Plotted as a dashed line on the same scale
is the velocity dependence of the factor Re((s0|Adp(x)|μμ) of (148) for the probe beam. Collisions in a 10 mTorr buffer gas at T = 50 ◦C have
transferred atoms in the sublevel |μ〉 from their four resonant excitation velocities to other velocities, some of which are in resonance with the
probe beam. For these curves, a = 0.1 cm, b = 0.5 cm, and D0 = 0.1 cm2 s−1. The dot-dashed line is a Maxwellian distribution of velocities,
(x|v0) of (48). Strong VSOP resonances may be observed at laser frequencies that make pump and probe resonant velocities equal, within the
envelope of the Maxwellian velocity distribution.

As discussed in (4.4.1) of OPA [12], a g{g} × g{g} Schrödinger-
space matrix M is transformed into a corresponding g{g}2 ×
g{g}2 “flat matrix” M� of Liouville space by the Kronecker
product

M� = 1{g} ⊗ M. (104)

B. Absorption rates and optical cross sections

The rate of depletion of ground-state atoms by depopulation
pumping is

−
∑

k

∂

∂t
(xk|χ0) = 〈δ
〉 = I 〈σ 〉

h̄ω{eg} , (105)

where 〈δ
〉 is the rate at which spin-polarized atoms absorb
or scatter light for a light beam of intensity I , and the
corresponding absorption cross section of the spin-polarized
atoms is 〈σ 〉. Combining (105) with (100) we find

〈δ
〉 = 〈δ
̃〉 + 〈δ
̃〉∗, (106)

where

〈δ
̃〉 = γmx

∑
jk

((s0|Ãdp(xk)|sj )(xk|χj ). (107)

Mean pumping rate. We define the mean optical pumping
rate γop of the atoms as the value of the pumping rate
〈δ
〉 for unpolarized atoms with a Maxwellian distribution
of velocities, and therefore with the spin-mode amplitudes

(xk|χj ) = (xk|v0)δj0. (108)

Then we can use (108) with (107) and (102) to write the
amplitude of the mean pumping rate as

γ̃op = γmx

∑
μ̄μk

((s0|R̃{μ̄μ}
dp |s0)(xk|v0)

±xk − zμ̄μ

= i
√

πγmx

∑
μ̄μ

((s0|R̃{μ̄μ}
dp |s0)w(zμ̄μ). (109)

The integral over the velocity distribution [that is, the sum on k

in (109)] can be written in terms of the Faddeeva function [17],
which for Im(z) � 0 is given by

w(z) = 1

iπ

∫ ∞

−∞

e−t2
dt

t − z
. (110)

The Faddeeva function is a superposition of Lorentzians with
a Gaussian distribution of resonance frequencies. It is often
called a Voigt profile, and it can be evaluated with a very
efficient computer algorithm due to Weideman [11].
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The mean pumping rate γop of (109) depends on the laser
frequency through the parameter zμ̄μ and is proportional
to the laser intensity because of the factor γmx. For large
magnetic fields, γop also depends on the laser polarization. The
equilibrium absorption cross section for unpolarized atoms
with a Maxwellian distribution of velocities to absorb light is

σop = h̄ω{eg}γop

I
, (111)

where the light intensity I was given by (87).
Repopulation pumping. In analogy to (100), the rate of

change of the spin-mode amplitudes due to repopulation
pumping is

∂

∂t
(xk|χj ) = γmx

∑
l

((sj |Arp(xk)|sl)(xk|χl). (112)

In analogy to (102) the amplitude of the repopulation pumping
operator is

Ãrp(xk) =
∑
μ̄μ

R̃
{μ̄μ}
rp

σxk − zμ̄μ

. (113)

Using (6.71) and (6.35) of OPA [12], we find

R̃{μ̄μ}
rp = A

{ge}
s (1 + iτ {e}H {e}/h̄)� −1Ṽ∗ ⊗ W̃ {μ̄μ}

ih̄γmx
. (114)

Here H {e} is the excited-state Hamiltonian and τ {e} is the
radiative lifetime of the excited atoms. As defined by (4.91) of
OPA [12], only the diagonal elements of the o-dot transform
X� of a Schrödinger-space matrix X are nonzero,

(μν|X�|μν) = 〈μ|X|ν〉 and

(μν|X�−1|μν) = 〈μ|X|ν〉−1. (115)

The spontaneous emission matrix is given by (5.50) of OPA
[12] as

A{ge}
s = (2J + 1)

3|D|2
∑

k

D̃∗
k ⊗ D̃k. (116)

The sum extends over the projections D̃k = xk · D̃ of the
dipole moment operator, where xk is a unit vector along
the kth Cartesian axis of a spatial coordinate system. From
(5.45) of OPA [12] we find that for pumping through the first
excited 2PJ state, the squared amplitude of the dipole operator
that occurs in the denominator of (116) is given in terms of
the spontaneous, radiative decay lifetime τ {e} of the excited
atom by

|D|2 = h̄c3(2J + 1)

4τ {e}ω{eg}3 . (117)

Net optical pumping. The sum of the depopulation pumping
(100) and repopulation pumping (112) is the net optical
pumping,

∂

∂t
(xk|χj ) = −γmx

∑
l

((sj |Aop(xk)|sl)(xk|χl). (118)

The amplitude of the net optical pumping operator Aop is

Ãop(xk) =
∑
μ̄μ

R̃
μ̄μ
op

σxk − zμ̄μ

, with R̃μ̄μ
op = R̃

μ̄μ

dp − R̃μ̄μ
rp .

(119)

As shown in (6.72) of OPA [12] the net optical pumping
operator satisfies the constraint that no atoms are created or
destroyed by optical pumping,

((s0|Ãop(xr ) = 0 or ((s0|R̃μ̄μ
op = 0. (120)

VIII. STEADY-STATE SOLUTION

Adding the contribution (82) for relaxation in the dark to
the contribution (118) from net optical pumping we find for
j 	= 0

∂

∂t
|χj ) = −Kj |χj ) − γmx

∑
lr

|xr )((sj |Aop(xr )|sl)(xr |χl).

(121)

The steady-state solution of (121) is

|χj ) = −pj

∑
lk

Gj |xk)((sj |Aop(xk)|sl)(xk|χl). (122)

Here we have introduced the dimensionless Green’s function

Gj = γj∞K−1
j , (123)

and a dimensionless optical-pumping parameter for the j th
spin mode,

pj = γmx

γj∞
, (124)

proportional to the light intensity. The characteristic damping
rate γj∞ = γw + γj + γvd was given by (84). The parameter
pj and the amplitude |χj ) decrease as |γj∞| increases.
For hyperfine coherences, the imaginary parts of γj∞, the
hyperfine Bohr frequencies, are so large compared to |γj∞|
for nonhyperfine coherences, that it is a good approximation
to neglect the hyperfine coherences entirely and retain only
Zeeman coherences and population modes.

A. Green’s functions for multicusp collision kernels

For the multicusp collision kernel of (69) the damping rates
(84) become [7]

γjn = γj0 + γvd

∑
k

fkn

n + sk

= Nj (n)

D(n)
, (125)

where γj0 = γw + γj . The denominator polynomial is simply

D(n) = (n + s1)(n + s2) · · · (n + sm). (126)

Different spin modes may have different numerator polynomi-
als

Nj (n) = γj0D(n) + γvd

∑
k

fknD(n)

n + sk

= γj∞(n + rj1)(n + rj2) · · · (n + rjm), (127)
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where the damping rate γj∞ = γw + γj + γvd is the limit of
(84) for n → ∞. Using (125) with (83) and (123) we find that
the multicusp Green’s function is

Gj =
∑

n

γj∞
γjn

|vn)((vn| = γj∞
∑

n

D(n)

Nj (n)
|vn)((vn|

= 1 + γvd

γj0
Wj. (128)

The multicusp resolvent kernel is

Wj =
∑

k

gjkCrjk
. (129)

Here Crjk
denotes a cusp kernel (66) of sharpness rjk , given

as one of the roots of the numerator polynomial (127). From
a partial-fraction expansion of D(n)/Nj (n) we find that the
weights of the resolvent cusps are

gjk = lim
n→ −rjk

γj∞γj0(n + rjk)D(n)

γvdrjkNj (n)
. (130)

One can show that the fractional weights gjk sum to unity,

m∑
k=1

gjk = 1. (131)

An example of the pressure dependence of multicusp resolvent
kernels is shown in Fig. 2. In the low-pressure limit, with
p → 0, the resolvent and collision kernels coincide; that
is, gjk → fk and rjk → sk . In the high-pressure limit with
p → ∞ all of the weight is transferred to the least sharp cusp,
and the sharpness of this cusp approaches zero with increasing
pressure,

rj1 ∼ γj0

γj∞
∑

k(fk/sk)
∝ 1

p
. (132)

A cusp kernel with sharpness rj1 � 1 produces a Maxwellian
distribution from any initial distribution of velocities.

Complex Green’s functions. Since γ ∗
j = γj∗ , we see the

complex conjugate of the Green’s function is

G∗
j = Gj∗ , (133)

where j ∗ is the conjugate index to j , defined by (34).

B. Series solution

For nonequilibrium modes with j 	= 0 we can write the
mode amplitudes as a power series in the light-intensity
parameter pj of (124),

|χj ) =
∞∑

n=0

pn
j

∣∣χ {n}
j

)
. (134)

The optical pumping parameter pj for the j th spin mode was
given by (124). Special cases of (134) that follow from (81)
are

∣∣χ {0}
j

) = δj0|v0) and
∣∣χ {n}

0

) = δn0|v0). (135)

Substituting (134) into (122) we find for j > 0 and n > 0,
∣∣χ {n}

j

) = −
∑
kl

Gj |xk)((sj |Aop(xk)|sl)

×(
xk

∣∣χ {n−1}
l

) (
γj∞
γl∞

)n−1

. (136)

First-order spin polarization. For the first-order spin mode,
we can use (136) with (135) to find∣∣χ {1}

j

) = ∣∣χ̃ {1}
j

) + ∣∣χ̃ {1}
j∗

)∗
, (137)

where ∣∣χ̃ {1}
j

) = −
∑

k

Gj |xk)((sj |Ãop(xk)|s0)(xk|v0)

= ∣∣χ̃ {1}
jw

) + ∣∣χ̃ {1}
jg

)
. (138)

We have used (128) to write the amplitude as the sum of a part
coming from atoms that have had only wall collisions,

(
xk|χ̃ {1}

jw

) = −
∑
μ̄μ

((sj |R̃μ̄μ
op |s0)(xk|v0)

xk − zμ̄μ

, (139)

and a background or “pedestal” from atoms that have had
gas-phase collisions,

(
xi |χ̃ {1}

jg

) = γvd

γj0

∑
k

(xi |Wj |xk)
(
xk

∣∣χ̃ {1}
jw

)
. (140)

Physical insight can be gained by considering the first-order
population shifts

∣∣χ {1}
μμ

) =
∑

j

(μμ|sj )
∣∣χ {1}

j

)
. (141)

Noting from (46) that ((v0|Wj = ((v0|, we multiply (140) on
the left by

∑
i((v0|xi) to find

((
v0|χ̃ {1}

jg

) = γvd

γj0

((
v0|χ̃ {1}

jw

)
. (142)

According to (142), the collisional background area ((v0|χ̃ {1}
jg )

and collision-free area ((v0|χ̃ {1}
jw ) are in the ratio of the velocity-

damping rate due to gas-phase collisions, γvd, to the gas-free
spin-damping rate due to wall collisions, γj0 = γw + γj .

Absorption rate. Using (134) we can write the absorption
rate (107) as a power series in the light intensity,

〈δ
〉 =
∑

n

〈δ
{n}〉, (143)

where

〈δ
{n}〉 = 〈δ
̃{n}〉 + 〈δ
̃{n}〉∗, (144)

and the amplitude of the nth-order absorption rate is

〈δ
̃{n}〉 = γmx

∑
jk

pn
j ((s0|Ãdp(xk)|sj )

(
xk

∣∣χ {n}
j

)
. (145)

The zeroth-order rate is

〈δ
̃{0}〉 = γ̃op, (146)
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with the amplitude γ̃op of the mean pumping rate given by
(109). The first-order rate is

〈δ
̃{1}〉 =
∑
jk

γ 2
mx

γj∞
((s0|Ãdp(xk)|sj )

(
xk

∣∣χ {1}
j

)
. (147)

For experiments where only population imbalances and no
coherences are created by optical pumping and γsd � γvd, we
can write (141) as a sum of contributions from each ground-
state energy sublevel |μ〉 = |f m〉,

〈δ
̃{1}〉 =
∑
μk

γ 2
mx

γ0∞
((s0|Ãdp(xk)|μμ)

(
xk

∣∣χ {1}
μμ

)
. (148)

For computing the absorption rate of a probe beam in a
pump-probe experiment, Iprobe should be used in (97) for
computing γmx, and the resulting 〈δ
̃{1}〉 must be multiplied by
the ratio Ipump/Iprobe. Representative examples of the factors
((s0|Ãdp(xk)|μμ) and (xk|χ {1}

μμ) of (148) are shown in Fig. 4.

IX. COMPARISON WITH EXPERIMENT

The main purpose of this paper is to describe efficient ways
to model the optical pumping of Na atoms under conditions
similar to those of Na guidestar atoms. It has proven difficult
to simulate conditions of Na guidestar atoms in laboratory
experiments. It is relatively easy to carry out experiments at the
same buffer-gas pressures as those experienced by guidestar
atoms with nonreactive buffer gases such as He, Ne, Ar, Kr,
Xe, and N2. Unfortunately, the spin-damping rates of these
gases are many orders of magnitude smaller than the velocity-
damping rates. Because residual air at the ∼100 km altitude
of the Na layer is still approximately 20% O2 molecules by
volume and can even contain a few percent of dissociated O
atoms, these paramagnetic species will cause the spin-damping
and velocity-damping rates to be of comparable magnitude.
Although Na atoms can have many binary collisions with O2

molecules in the upper atmosphere, with negligible probability
for a chemical reaction, the walls of a laboratory container
quickly catalyze oxidation of Na atoms by O2 gas. But the
following examples show that the modeling methods work
very well with laboratory VSOP experiments.

A. Modulated circular dichroism of Na

A particularly convenient way to investigate collisional
effects on velocity-selective optical pumping was introduced
by Aminoff et al. [18], who measured the effects of Ne buffer
gas on the saturated absorption resonances of Na atoms. The
Na in their experiments was held in a cylindrical glass cell and
spin polarized by resonant, 589.8 nm D1 laser light, pumping
along a small, 1 G magnetic field with alternating circular
polarization. In the limit of weak pumping light, this pumping
scheme produces an alternating orientation (polarization of
multipole index L = 1). The polarization is detected as the
modulated attenuation of a weak, counterpropagating probe
beam of fixed circular polarization. We will call this a
modulated circular dichroism (MCD) experiment.

In analyzing their MCD signals, Aminoff et al. [18]
found that KS kernels gave unsatisfactory fits to observations,
and that much better fits could be obtained by adding a
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FIG. 5. (Color online) A MCD signal modeled with (148) for
measurements like those shown in Fig. 4 of Aminoff et al. [18].
The modeling parameters were temperature T = 150 ◦C, optical-
coherence linewidth γoc/2π = 10 MHz, longitudinal field B = 1
G, buffer-gas pressure p = 30 mTorr, spatial diffusion coefficient
D0 = 0.6 cm2 s−1, laser beam diameter a = 3.5 mm, and a cell
diameter b = 10 mm. The cusp-kernel parameters of Fig. 2 were
used with no adjustment.

phenomenological, narrow Gaussian kernel, given by their
Eq. (32), to a broad KS kernel. The resulting two-term kernel
does not produce a Maxwellian distribution of velocities in
thermal equilibrium; that is, it does not satisfy the fundamental
constraint (50). The two-term kernel also cannot be inverted
conveniently to obtain a Green’s function, and in general it
required the evaluation of a “cumbersome double sum” [18].

In Fig. 5 we show the difference in absorption rates (147)
of the probe beam for right- and left-circularly-polarized
pumping light. Of the 64 possible spin modes |sj ), only
two have amplitudes |χj ) that differ appreciably from zero,
the two independent modes with angular momentum L = 1.
Computations are much easier for cusp or multicusp kernels
than for the phenomenological kernel used by Aminoff et al.
[18], because cusp kernels are easily inverted to give Green’s
functions. Even with no adjustment of the weights and
sharpnesses of the three-cusp kernel, the modeled signal is
very close to the observed signal shown in Fig. 4 of Aminoff
et al. [18] for 57 mTorr of Ne buffer gas.

Figure 6 shows the modeled prediction of what would
be observed if the longitudinal field of Aminoff et al. [18]
were replaced by a transverse field of 0.1 G and with other
experimental conditions the same as those of Fig. 5. Quite
different signals should be observed for magnetic fields large
enough to cause substantial spin rotation before the optically
pumped atoms can reach the cell walls. This is because a
spin-polarized atom generated in one velocity group will rotate
around the transverse magnetic field in the time needed to
diffuse (in velocity space) to the velocity group detected by the
circularly polarized probe beam. It is entirely possible for the
spin polarization to rotate more than 90◦, reversing the sign of
the probe signal in the process. Magnetic fields with transverse
components excite the 12 coherence modes with �m = ±1,
and if there are also longitudinal components of the magnetic
fields the three population modes mentioned above are excited
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FIG. 6. (Color online) Magnetic depolarization signal predicted
with (147) for a transverse field of B = 0.1 G, but with all other
modeling parameters the same as those of Fig. 5. The “collisional
background” of the saturated absorption signals is greatly modified
and even reversed in sign. Such experiments could be used to
determine the optimal cups kernels for describing velocity-changing
collisions.

as well. So for nonlongitudinal fields at least 15 modes |sj ) and
corresponding mode amplitudes |χj ) need to be included in the
sums of (147), and numerical calculations require more time.
The “magnetic depolarization” signals generated by transverse
magnetic fields are very sensitive to the parameters (sharpness,
weight) used to construct the multicusp kernel. Systematic
experiments with magnetic depolarization of the MCD signals
at various buffer-gas pressures and various magnetic fields,
analyzed with the efficient modeling methods we have outlined
in this paper, would provide a very good way to determine the
optimum parameters for cusp kernels.

B. Velocity-selective optical pumping in potassium vapor

In our own laboratory, we have completed preliminary
experiments on velocity-selective optical pumping with K
vapor. The basic experimental arrangement, depicted in Fig. 7,
is almost identical to that of earlier experiments by Bloch
et al. [19] which were done with no buffer gas. The pump
beam was produced by a diode laser and was frequency
scanned across the 770 nm D1 absorption line of K atoms. The
probe beam was a retroreflected fraction of the pump beam.
The pump-beam intensity was reduced with neutral density
filters to keep it well within the first-order regime where (148)
describes the attenuation of the probe light. To ensure that
optical pumping by the the probe beam was negligible, the
probe intensity was attenuated by about about a factor of 10
with respect to the pump beam. Both the pump and probe
beams were linearly polarized along a 1 G magnetic field.
The approximate radius of the beams was a = 1 mm. The
pump-beam intensity was modulated on and off at 80 Hz with
a chopper wheel. The pump beam produced a modulated spin
polarization of the atoms which modulated the transmitted
intensity of the probe beam. The intensity modulation of the
transmitted probe beam was detected with a lock-in amplifier,
referenced to the chopper wheel.

Chopper

Variable
ND filters

PhotodiodePhot

Non-polarizing
beam splitter

K vapor cell
in oven

Laser
beam

from coils

plate

FIG. 7. (Color online) Schematic of a VSOP experiment, de-
scribed in more detail in the text. For the somewhat similar experiment
of Aminoff et al. [18], modeled in Fig. 5, and for the proposed
experiment of Fig. 6, the intensity chopper is replaced by a device
that modulates the circular polarization of the pumping light, and a
weak probe beam has fixed circular polarization. Alternatively, one
could modulate the polarization of the probe beam and use fixed
circular polarization for the pump beam, which would eliminate any
concerns about transient buildup and decay of the optically pumped
spin polarization.

Our glass cells included both spheres and cylinders, but
for modeling we took a representative cylinder with a radius
b = 5 mm. Before filling, a few drops of K metal were distilled
under vacuum into the cell. The metal was of natural isotopic
abundance, 93.26% 39K and 6.73% 41K, and the relatively
small signals from 41K can be seen in some experimental data.
Most cells were filled with low pressures of Kr or N2 gas but
some “vacuum” cells had no intentional gas. Some of these
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FIG. 8. (Color online) The left panels are VSOP signals from
potassium vapor, measured with the apparatus of Fig. 7. The right
panels are signals modeled with (148) for monoisotopic 39K vapor.
The buffer-gas pressures were (a) no intentionally added buffer gas,
(d) 1 mTorr of N2, (b) or (e) 100 mTorr of Kr, and (c) or (f) 1500 mTorr
of N2. The modeling parameters were a diffusion coefficient D0 =
0.10 cm2 s−1 for both Kr and N2 at 1 atm, laser beam diameter
a = 1 mm, and cell diameter b = 5 mm. The cusp-kernel parameters
of Fig. 2 were used with no adjustment.
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vacuum cells were found to have small amounts of gas in them,
as was shown clearly by collisional pedestals in the VSOP
signals. During the experiments, the K vapor pressure was
controlled by keeping the cell at a temperature near 50 ◦C in a
temperature-stabilized oven with glass windows. The optical
depth of the vapor was intentionally kept low (about 0.1 at
the peak of the Doppler profile) in order to keep the laser
intensity relatively uniform down the entire length of the cell.
As shown in Fig. 8, the dominant 39K signals observed with
the apparatus of Fig. 7 could be simulated very well with
the first-order absorption rate of (148), with the parameters
mentioned in the figure caption. Because of the experimental
arrangement, which cannot excite coherences, only the eight
population modes out of the 64 possible spin modes |sj ) have
amplitudes |χμμ) that differ appreciably from zero.
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APPENDIX: SPATIAL DIFFUSION AND VELOCITY
DAMPING

Here we show that the velocity-damping rate γvd can be
inferred from the measured spatial diffusion rate D and the
smallest, nonzero eigenvalue α1 of the collision operator Avd

with the formula

γvd = v2
D

2α1D
. (A1)

This is consistent with Eq. (2.28) of Berman, Haverkort, and
Woerdman [20].

Let u be the spatial position in units of vD/γvd, the char-
acteristic distance an atom can travel in one velocity-damping
time, 1/γvd. The dimensionless time is τ = tγvd, where 1/γvd

is the characteristic time between velocity-changing collisions.
We ignore the atomic spin and consider atoms with a number
density N = N (u,x,τ ) = ∑∞

n=0 Nn(u,τ )(x|vn), such that at
the time τ the probability of finding a particle with position
between u and u + du and velocity between x and x + dx is
N (u,x,τ )du dx. If we quantize the velocity x, we can write
the density N as an abstract column vector

|N ) =
∑

n

Nn|vn), (A2)

with velocity-mode amplitudes Nn = ((vn|N ). We assume that
|N ) evolves according to the Boltzmann equation in one

dimension,

∂

∂τ
|N ) = −

{
∂

∂u
X + Avd

}
|N ). (A3)

The collision operator Avd was given by (56). We may use the
identity xHn = nHn−1 + Hn+1/2 and the definition (60) of the
velocity modes to write the velocity operator X in (A3) as

X =
∞∑

n=0

√
n + 1

2
{|vn+1)((vn| + |vn)((vn+1|}. (A4)

Substituting (A4) and (A2) into (A3), multiplying the resulting
equation on the left by ((v0| and ((v1|, and remembering that
α0 = 0 we find

∂N0

∂τ
= −

√
1

2

∂N1

∂u
, (A5)

∂N1

∂τ
= −

√
1

2

∂N0

∂u
− ∂N2

∂u
− α1N1. (A6)

We are interested in “late-time” distributions N that have
Maxwellian, or very nearly Maxwellian velocity distributions,
where the mode amplitudes Nn = ((vn|N ) decrease rapidly
with n so that N0 � N1 � N2 � · · ·. Retaining only the
first two amplitudes, N0 and N1, multiplying (A5) by ∂/∂τ ,
multiplying (A6) by ∂/∂u, and combining the results to
eliminate N1 we find

∂2N0

∂τ 2
= 1

2

∂2N0

∂u2
− α1

∂N0

∂τ
. (A7)

The distribution N0 will evolve more and more slowly with
increasing time, so for sufficiently late time we can ignore
∂2N0/∂τ 2 compared to ∂N0/∂τ in (A7) and find the diffusion
equation

∂N0

∂τ
= 1

2α1

∂2N0

∂u2
, (A8)

with the diffusion coefficient (in dimensionless units)

D = 1

2α1
. (A9)

For a cusp kernel with sharpness s we see from (64) that α1 =
1/(s + 1), so (A9) gives D = (s + 1)/2. For large sharpnesses,
the diffusion coefficient is very nearly half the value of the
sharpness, which is intuitively reasonable since sharp kernels
represent velocity damping dominated by grazing-incidence
collisions, which do little to hinder spatial diffusion. Using the
unit of length vD/γvd and unit of time 1/γvd to convert the
dimensionless diffusion coefficient (A9) to dimensional units
(cm2 s−1 for cgs units) we find (A1).
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