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Propagation of charged particle waves in a uniform magnetic field
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This paper considers the probability density and current distributions generated by a pointlike, isotropic source
of monoenergetic charges embedded in a uniform magnetic field environment. Electron sources of this kind have
been realized in recent photodetachment microscopy experiments. Unlike the total photocurrent cross section,
which is largely understood, the spatial profiles of charge and current emitted by the source display an unexpected
hierarchy of complex patterns, even though the distributions, apart from scaling, depend only on a single physical
parameter. We examine the electron dynamics both by solving the quantum problem, that is, finding the energy
Green’s function, and from a semiclassical perspective based on the simple cyclotron orbits followed by the
electron. Simulations suggest that the semiclassical method, which involves here interference between an infinite
set of paths, faithfully reproduces the features observed in the quantum solution, even in extreme circumstances,
and lends itself to an interpretation of some (though not all) of the rich structure exhibited in this simple problem.
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I. INTRODUCTION

The classical cyclotron motion of a charge q in a homoge-
neous magnetic field B is a simple textbook problem. Hence,
it may come as a surprise that electron waves emerging from
an isotropic point source into the magnetic field environment,
which are analyzed in this article, should display any behavior
of interest. Indeed, only a few papers have been devoted to the
subject in the literature.

Experimentally, such sources can be realized by the interac-
tion of negatively charged ions with monochromatic laser light
provided the photon energy closely matches the binding energy
(affinity) of the excess electron (photodetachment threshold).
In this regime, the de Broglie wavelength of the emitted elec-
tron is large compared to the size of the emitting ion, and the
absence of a long-range interaction between the photoelectron
and the remaining neutral atomic core means that the dynamics
of the emitted electron wave can be controlled externally,
using applied electric and magnetic fields. Experimentally,
modulations of the overall photodetachment rate of negative
ions in magnetic traps near threshold were first observed by
Blumberg et al. and subsequently explained using perturbation
theory [1–3]; recently, the technique has been used to observe
the fine structure and Zeeman splittings in negative ions [4].
Similar experiments measuring the influence of an electric field
on the photodetachment cross section [5–8] were performed
following theoretical investigations that predicted strong mod-
ulations of the detachment rate with photon energy [9–11]. In
semiclassical terms, the observed behavior can be ascribed
to the interference of the outgoing electron wave with the
electron returning to the emitting ion. This intuitive trajectory-
based picture is known as closed orbit theory [12,13]. The
detachment cross section in combined electric and magnetic
fields was addressed in numerous theoretical papers [14–19]
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and explored in at least one experiment involving parallel
fields [20].

Rather than the total cross section, represented by the pho-
tocurrent, we are mainly interested in the spatial characteristics
of the electron wave emitted by the point source, which include
both its density distribution in space and its experimentally
more accessible current profile. Due to the force they exert on
the electron, external electric and magnetic fields profoundly
alter the simple spherical wave pattern of a free electron source.
Guided by the classical electron trajectories, the waves refract
and fold over under the influence of the fields. Generally, the
electron can travel along more than one classical orbit from
the atomic source to a given destination in space; the waves
associated with these multiple paths overlap and cause marked
interference. Although approximate, semiclassical methods
[21–23] based on these trajectories present a valuable tool
in the interpretation of features observed in the exact quantum
solution of the problem. For a point source of electrons with
energy E, located at the position r′, their wave function is
given by the energy Green’s function G(r,r′; E), a particular
solution of the stationary Schrödinger equation in the external
potentials that represents an outgoing wave in the vicinity
of the source [24,25]. These Green’s functions can be found
in analytical form for simple field configurations, including
a homogeneous electric or magnetic field [26–30]. In an
electric field environment, charges classically follow free-fall
parabolas, and their resulting spatial distribution features a
regular interference pattern that is conveniently explained as
interference between two classical paths, akin to the double-slit
model [10,31–33]. This theoretical prediction was confirmed
experimentally by Blondel et al. [34,35], who recorded the
spatial current profile of electrons stripped from a negative ion
beam using a tunable laser in an external field, thus imaging
their wave function. Because the interference pattern is
exquisitely sensitive to the electron energy E, their technique,
photodetachment microscopy, has become the gold standard
in the precision measurement of electron affinities [36–39].
More recently, a similar analysis was performed for the case of
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parallel electric and magnetic fields. The simultaneous action
of both forces leads to more complex trajectory fields with an
adjustable number of interfering paths and, correspondingly,
more involved interference patterns that are nevertheless in
excellent agreement with the exact quantum solution [40–42].
First experimental images of the electron distribution observed
in photodetachment in parallel fields have recently become
available [43]. A similar setup, combining a magnetic field
and the electric field of an image charge, has been studied by
Tang and Wang [44].

In contrast, the features of the electron wave propagating
from a point source in the presence of a purely magnetic field
have received little attention. Naively, one might expect a less
complex pattern due to the simplicity of the applied field,
but it turns out that the electron waves now display a richer
variety of structure than in the cases mentioned above. To
illustrate this, we display a sample plot of the electron density
in Fig. 1 that shows a variety of interference phenomena at
different scales. These features have been partly predicted
by Berry [45], who pointed out the presence of an infinite
sequence of caustics, turning surfaces of classical motion that
confine the classical trajectory fields [21,46], in this problem.
In the naive semiclassical model, the wave function diverges at
these singular points [46–50]; this unphysical behavior can be
corrected using uniform approximations [46,48,51] adapted to
the specific character of the singularity. In his paper, Berry [45]
predicted the amplification of the electron waves near the
caustics, but stopped short of calculating the electronic wave
function itself. Our aim here is to systematically examine the
properties of the electron wave from a classical, semiclassical,
and quantum mechanical perspective, following the leads of
a former study of the parallel field configuration [42]. We
find that much of the added complexity in the magnetic case
owes to the fact that the electron now can travel (if at all)
along an infinite number of different classical paths from the
source to any given destination and that the electron drifts
without acceleration along the magnetic field direction B.
As a result, the electronic wave combines properties of open
scattering systems and closed problems with bound motion,
best exemplified by quantum billiards [52–55], although
some of the features we observe, such as “backflow” of the
electron toward the source, defy easy explanations. Another
observation of our study is the extreme resiliency of the
semiclassical method which accurately renders the quantum
solution even under adverse conditions.

We briefly comment on the structure of this paper. In Sec. II,
we review the classical cyclotron motion of a charge q in a
magnetic field B and show that the field of trajectories emitted
by the source, apart from simple scalings in size and time,
is universal. In preparation of the semiclassical approach,
we devise a method to identify the trajectories leading from
the source to a given destination point; as a by-product, we
obtain an alternative, simpler form of the caustic structure
in this system first described by Berry [45]. Studying the
charge density, we find that the problem under consideration is
classically ill-defined: Interference and cancellation of waves
is indispensable for the continuous operation of the source
in a magnetic field. The quantum mechanical solution of
our problem is the subject of Sec. III. Apart from scaling,
it depends on only a single dimensionless energy parameter

FIG. 1. (Color online) Electron wave emitted by an isotropic point
source (near top of image) in a magnetic field. (Left) Trajectory
field, plotted as the radial distance ρ̂ (horizontal) vs the distance in
field direction ẑ (vertical) (dimensionless units). (Right) Quantum
calculation of the charge density along a radial section for an electron
energy E = 50 h̄ωL (where ωL denotes the Larmor frequency of the
electron), corresponding to scattering into 24 open Landau channels.
Dark spots correspond to high density.

ε. We determine the energy Green’s function by separation of
the Hamiltonian in a bound, “magnetic” part perpendicular
to B and free propagation along the field direction and
obtain a generally rapidly converging series representation
of G(r,r′; E) that can be interpreted as a sum over discrete
open and closed “channels” related to the quantized Landau
levels in the magnetic field, but bears no formal resemblance
to the classical description. To bridge the divide in an attempt
to understand the features of the quantum solution, we take
up a semiclassical, trajectory-based approach in Sec. IV and
construct approximate solutions for the Green’s function and
the associated charge and current densities n(r), j(r) in the
form of infinite series, where each term represents a possible
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trajectory of the electron. In the semiclassical picture, the
Landau levels arise as singularities in the spectrum caused
by constructive interference of these paths, as pointed out
already by Berry [45]. To correct the failure of the naive
semiclassical approximation near the caustics, we also deploy
a uniform approximation based on Airy functions [56,57]. In
Sec. V, we study the charge and current density distributions
for different values of the energy parameter ε. We find that
the cyclotron motion confines the charge to a cylindrical tube
aligned with the magnetic field, with the source at its center;
the electron streams away from the source in a symmetrical
pattern in both directions. As Fig. 1 illustrates, the charge and
current density profiles display remarkably rich structure in all
cases except for the lowest values of ε: An underlying finely
detailed interference pattern is modulated in intensity along
the caustics, as predicted by Berry [45], but also contains
embedded arclike superstructure that superficially resembles
the “quantum scars” observed in closed systems [52,53,58].
In the absence of an electric field, the density and current
patterns are distinct, even though they often show common
features. However, near the energy thresholds where a new
Landau channel opens (odd integer values of ε), we encounter
strongly diverging charge and current density profiles, coupled
with a dramatic increase in the charge density associated with
a simple interference pattern [59]. Furthermore, backflow, the
presence of extended regions in space where the electron is
moving toward the source instead of flowing away, as one
would naively expect, is prevalent in this regime. In the
concluding remarks, we summarize our results and briefly
explore the feasibility of experimental confirmation.

II. CLASSICAL DYNAMICS

We first describe the motion of a charge streaming from
the source (which we identify with the coordinate origin
r′ = 0) from a classical viewpoint and show how to obtain the
trajectories leading to any given destination r. For simplicity,
we align the magnetic field vector B = Bêz with the z axis
and keep a generic value for the particle charge q and mass
m in our calculation. We assume that q > 0 but point out
that none of our results, with the exception of the azimuthal
angle φ(t) in Eqs. (7) and (8) [60], will change for a negative
charge if q is replaced by its absolute value |q|. (For details
concerning the classical dynamics, see one of the authors’
(A.G.) master’s thesis [61]. A formally similar analysis applies
to the problem of electron motion in parallel fields, laid out in
Refs. [41,42], where the purely magnetic case is obtained in
the limit η = v0B/E → ∞.)

A. Cyclotron motion

We first find the trajectories r(t) for a particle emitted
under a spherical angle (θ0,φ0) from the source. We tackle
this problem using the principle of least action,

S(r,t ; 0,0) = min
r(t)

∫ t

0
dt ′

(
m

2
ṙ2 + q ṙ · A(r)

)
, (1)

using the minimal coupling Lagrangian L(r(t),ṙ(t)) with a
suitable vector potential A(r). We choose a gauge for A(r) that

conforms to the inherent cylindrical symmetry,

A(r) = 1

2
(B × r) = B

2
(−y,x,0)T , (2)

and express L(r(t),ṙ(t)) in cylindrical coordinates (ρ,z,φ):

L(r,ṙ) = m

2
(ρ̇2 + ż2 + ρ2φ̇2) + qB

2
ρ2φ̇. (3)

Since the coordinates z and φ are cyclic and the Hamiltonian
is conservative, there are three conserved quantities of motion:
pz = mż = const. indicates free particle motion along the field
axis, while the momentum conjugate to φ is the constant
canonical angular momentum Lz of the charge,

Lz = ∂L/∂φ̇ = mρ2φ̇ + qB

2
ρ2 = const. (4)

For a trajectory traversing the origin ρ = 0, Lz must be zero,
so the trajectory undergoes uniform rotation in the x-y plane
with an angular velocity ωL:

|φ̇| = ωL = qB
2m

, (5)

the Larmor frequency of the problem [62]. Finally, the
conserved energy E, given by the Hamilton function of the
system,

H(r,p) = ṙ · p − L = m

2
(ρ̇2 + ż2 + ρ2φ̇2) = const., (6)

is simply the kinetic energy E = 1
2mṙ2 of the charge, which

therefore travels at a constant speed v0. (In Cartesian coor-
dinates, the Hamilton function takes the form H = 1

2m
(p −

qA)2, which is useful for the quantum description; see the
Appendix.)

Solving the equations of motion for a trajectory emitted
under polar angle (θ0,φ0) yields the familiar helical orbit:

ρ(t) = v0

ωL

sin θ0| sin(ωLt)|, z(t) = v0t cos θ0,

φ(t) = φ0 − ωLt. (7)

Note that all trajectories share the same rotational motion. It
is therefore sufficient to study the charge dynamics in the ρ-z
space, where the path becomes a simple sine curve whose
frequency and amplitude depend on the polar emission angle
θ0. [It is convenient to dispense with the absolute value in
Eq. (7) and formally allow negative values for ρ.]

We point out that the trajectory field (7) is universal in
the sense that for any given set of parameters, the motion of
the charge differs only in its range and speed. We measure
distances ρ̂ = ωLρ/v0, ẑ = ωLz/v0 in units of the maximum
cyclotron orbit diameter v0/ωL and introduce a dimensionless
time τ = ωLt . The charge then completes a cyclotron orbit of
radius sin θ0 within a time period τcyclo = π :

ρ̂(τ ) = sin θ0 sin τ, ẑ(τ ) = τ cos θ0, φ(τ ) = φ0 − τ. (8)

B. Finding trajectories

While Eq. (8) details all trajectories, we are interested
in finding those paths that lead to a given target r with
dimensionless coordinates (ρ̂,ẑ,φ). Eliminating the emission
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FIG. 2. (Color online) Graph of the dimensionless energy func-
tion ε̂(τ ) [red (gray) curve]. The intersections with the horizontal line
ε̂ = 1 (blue) correspond to the possible times of flight τ . Starting
from some initial value ν0 (here, ν0 = 2), we find two solutions per
cyclotron interval νπ < τ < (ν + 1)π , implying an infinite number
of trajectories. (Parameters used: ρ = 0.5, ẑ = 5.)

angle θ0 in the set of equations (8) yields implicit solutions in
terms of a function ε(τ ) of the time of flight τ :

ε̂(τ ) = ρ̂2

sin2 τ
+ ẑ2

τ 2
= 1. (9)

It is easily verified that there is exactly one trajectory r(t) that
connects the source with the destination (ρ,z) in a given time
T if one allows the energy of the charge to vary; ε̂(τ ) (9),
then indicates the energy of this trajectory in units of the fixed
source energy E = 1

2mv2
0. We therefore denote ε̂(τ ) the energy

function in this problem, and the condition (9) is now seen to
pick the trajectories of the “correct” energy.

Figure 2 shows a plot of ε̂(τ ) that reveals some important
features of this function: It is strictly positive and diverges at
every integer multiple τ = νπ of the cyclotron period τcyclo,
giving the graph the appearance of a succession of disjointed
U-shaped curves in each interspersed region. The minima of
these curves, located at the roots of ε̂′(τ ) [63],

dε̂

dτ
(τ ) = −2

(
ρ̂2 cos τ

sin3 τ
+ ẑ2

τ 3

)
, (10)

form a monotonically decreasing sequence that tends toward
ρ̂2 as the number ν of the cyclotron interval tends toward
infinity. Hence, classical trajectories do not reach beyond
the cylindrical region ρ̂ � 1. [We note, however, that the
analytic continuation of ε̂(τ ) formally admits complex-valued
solutions for the time of flight τ . These lead to complex “ghost
orbits” that lack physical reality from the classical viewpoint,
but acquire meaning in the semiclassical description as
exponentially suppressed “tunneling trajectories” that make
the classically forbidden region accessible to waves. We use
them in our simulations in this paper.]

Conversely, inside the cylinder ρ̂ < 1, there will always
be an infinite set of trajectories solving our problem. Starting
from some initial cyclotron orbit ν0, the graph of ε̂(τ ) will
intersect ε̂ = 1 twice in every subsequent interval ν � ν0,
corresponding to a pair of “fast” and “slow” trajectories that

undergo ν complete cyclotron orbits before arriving at (ρ̂,ẑ).
Physically, these trajectories form ever more tightly wound
helices leading from source to destination.

In general, the transcendental equation (9) has no analytic
solutions, so we rely on numerical methods to find the times
of flight τν and corresponding trajectories rν(τ ) of the charge.
Our fast and reliable scheme is based on Newton’s method.
Since all other physical quantities of interest can be expressed
as functions of the time of flight τ , finding the roots in Eq. (9)
is the only instance where we resort to numerical computation.
We note, however, that in the limit ν → ∞, the times τ

asymptotically approach a regular sequence:

τ ∼ νπ + arcsin ρ̂ and τ ∼ (ν + 1)π − arcsin ρ̂

(ν → ∞). (11)

This approximation is helpful when studying the convergence
properties of the source problem from the classical and
semiclassical perspective.

C. Caustics

Although an infinitude of classical paths will connect any
destination point r (with ρ̂ < 1) to the origin, the qualitative
character of the solutions generally differs among these points,
because they do not all share the same minimum amount ν0

of cyclotron orbits required to reach the destination. For each
value of ν0, the set of destinations forms a separate manifold,
and a pair of trajectories is gained or lost whenever r crosses
over its boundary to the “neighboring” manifolds requiring
ν0 ± 1 cyclotron orbits. These singularities in the trajectory
field, where the smooth mapping between trajectories r(t) and
the target r breaks down, are known as the caustic set [46,50].

In our problem, two distinct types of caustic points are
present [45]: There is an infinite sequence of rotationally
symmetric, onion-shaped caustic surfaces that are nested
inside each other. These surfaces are related to the cyclotron
motion of the charge and the νth surface [64] introduced
above. Accordingly, the νth caustic is composed of those points
where the intersection of the energy functional ε̂(τ ) with the
line ε̂ = 1 in the νth cyclotron interval is lifted, so ε̂ = 1 is
tangential to the graph of ε̂(τ ). Thus, the caustic is implicitly
defined through the pair of equations:

ε̂(τ ) = 1 and
dε̂

dτ
(τ ) = 0, (12)

where νπ < τ < (ν + 1)π . Due to the transcendental nature of
Eqs. (9) and (10) the shape of the caustic cannot be represented
by a closed expression ρ̂(ẑ). However, it is possible to reorder
them, and obtain a parametrization of the caustics by the time
of flight τ :

ρ̂(τ ) =
√

sin3 τ

sin τ − τ cos τ
, ẑ(τ ) = ±

√
τ 3 cos τ

τ cos τ − sin τ
,

(13)

where τ runs through the interval (ν + 1
2 )π � τ � (ν + 1)π .

Note that at the lower limit τ = (ν + 1
2 )π of this interval,

one finds ρ̂ = 1 and ẑ = 0. As τ increases, ρ̂ shrinks and
|ẑ| increases, until the caustic ends in a cusplike structure at
the symmetry axis (ρ̂ = 0) at the locations ẑ = ±(ν + 1)π ,
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FIG. 3. (Color online) Caustic pattern in the ρ̂-ẑ plane for the
motion of a charge in a magnetic field. During their νth cyclotron
orbit, the trajectories (thin curves) trace out the νth caustic surface
(bold blue curves). They form an onionlike nested set. Besides
these surfaces, a singularity in the trajectory field occurs along the
symmetry axis ρ̂ = 0 (dashed red line).

the distance traveled in ν + 1 complete orbits. Therefore, the
caustics are symmetric surfaces stacked inside each other and
are joined at the circle ρ̂ = 1 in the x-y plane. (An alternative,
more complicated parametrization using the emission angle
θ0 has been proposed by Berry [45].) The pattern is shown in
Fig. 3. To illustrate the relation between caustics and orbits
further, we include a few trajectories in the graph (thin line).
They cross the symmetry axis ν times, corresponding to ν

complete cyclotron orbits, before being “reflected” off the νth
caustic surface. Note that like the trajectory field, the caustic
set has a universal shape, only subject to scaling.

Besides these “fold” caustics [46,48–50], there is an
unrelated second type of caustic that extends along the entire
symmetry axis (ρ̂ = 0) of the problem. Along the symmetry
axis, all trajectories emitted under a fixed polar angle θ0 will
converge again in a single point, irrespective of their azimuthal
emission angle φ0. Again, this symmetry lifts the smooth
mapping between trajectories and destination point, and leads
to the formation of the caustic. Finally, we emphasize that the
singularities are associated with the trajectory field only; the
propagation of a charge along a given trajectory r(t) is always
smooth, even when it traverses a caustic point.

D. Classical density

Having identified the individual trajectories rν(t) that lead
to the destination r, we need to find the relative weight
carried by each of these paths in order to fully establish the
classical and semiclassical dynamics of the charge in a uniform
magnetic field. To this end, we examine how a bundle of

“neighboring” trajectories akin to rν(t) spreads as it travels
from the source to the target.

Consider an infinitesimally small volume dV =
ρdρdzdφ = (v0/ωL)3ρ̂dρ̂ dẑ dφ surrounding the destination
r. Assuming that the trajectory rν(t) arriving at r is emitted
under angles (θ0,φ0) and has a time of flight τ to the destination,
the trajectories leading into the surrounding volume will have
a spread (dθ0,dφ0) in emission angle, and dt = dτ/ωL in the
time of flight. Assuming isotropic characteristics of the source,
and a total flux of J charges per second, the number of particles
emitted within this spherical angle and time interval is

dNν = J

4πωL

sin θ0dθ0 dφ0 dτ. (14)

Since the number of particles is conserved during propagation,
and the source is stationary, dNν is also the number of charges
populating the volume dV that stem from the trajectory family
associated with rν(t). Hence, the density nν(r) = dNν/dV due
to these trajectories is

nν(r) = Jω2
L

4πv3
0

sin θ0

ρ̂

∂(θ0,φ0,τ )

∂(ρ̂,ẑ,φ)
= Jω2

L

4πv3
0

sin θ0

ρ̂
| detJ |−1,

(15)

where J = ∂(ρ̂,ẑ,φ)/∂(θ0,φ0,τ ) is the Jacobian matrix for
the transformation (8) relating the initial conditions (emission
angle and time of flight) to the final position. Its determi-
nant is detJ = sin2 θ0τ cos τ + cos2 θ0 sin τ . Using Eq. (8),
we substitute the emission angles via sin θ0 = ρ̂/ sin τ and
cos θ0 = ẑ/τ :

nν(r) = Jω2
L

4πv3
0

1

τ sin2 τ

∣∣∣∣ ρ̂2 cos τ

sin3 τ
+ ẑ2

τ 3

∣∣∣∣
−1

= Jω2
L

2πv3
0τ sin2 τ |dε̂/dτ | , (16)

by comparison with the energy functional in Eq. (10). As an
immediate consequence, we infer that the classical particle
density nν(r) diverges at the location of the source (where
τ → 0) and at both types of caustics: For sin τ = 0, that is,
τ = νπ , the charge traverses the symmetry axis (ρ̂ = 0), while
dε̂/dτ = 0 holds along the off-axis caustic surfaces according
to the condition (12).

Outside the caustic set, the density nν(r) is finite for each
individual trajectory rν(t). However, the total classical particle
density ncl(r), obtained by summation over all paths leading
to the destination, still diverges, as there is an infinite number
of slow paths. The density contribution due to such a path
undergoing a large number ν → ∞ of cyclotron orbits is
approximately

nν(r) ∼ Jω2
L

4π2v3
0

1

ρ̂
√

1 − ρ̂2

1

ν
(ν → ∞). (17)

[According to Eq. (11), τ ∼ νπ , and sin τ ≈ ρ.] Summation
over all ν therefore yields a divergent harmonic series,
indicating an infinite classical density throughout the cylinder
ρ̂ < 1. This result indicates that the concept of a perfectly
stationary source in a magnetic field is invalid from a classi-
cal perspective. Remarkably, the quantum and semiclassical
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solutions to the problem do not suffer from this defect, as we
demonstrate now.

III. SOLVING THE QUANTUM PROBLEM

We now turn our attention to the quantum mechanical
description of the problem and study the propagation of a
wave under the time evolution operator U = exp(−iHt/h̄),
where H(r,p) = 1

2m
[p − qA(r)]2 is the Hamilton operator for

a charge in a purely magnetic field. Being mainly concerned
with the results, we leave a sketch of the solution to the
Appendix.

A. Quantum mechanics with sources

One conceptual difficulty that arises in the quantum
problem is that the classical trajectory field (8) describes
particles spreading from the origin. Thus, “new” particles are
continuously generated there at a constant rate. This is at odds
with the conventional picture of quantum mechanics, where the
equation of continuity ∂tn + ∇ · j = 0 for probability density
n(r,t) and current density j(r,t) implies that the number of par-
ticles is conserved. One workaround to the problem modifies
the stationary Schrödinger equation itself and introduces an
inhomogeneous source term into the equation. For a pointlike
source of “unit strength,” the Schrödinger equation takes the
form (A1):

[E − H(r,p)]ψ(r) = δ(r). (18)

A review of the source formalism, including spatially extended
sources, is contained in Ref. [25].

Mathematically, Eq. (18) represents the concept of a
Green’s function, and so we call the set of solutions ψ(r) =
G(r,0; E) the energy Green’s function of the charge in the
magnetic field. (See the Appendix for a discussion.) We pick
a wave function with a current field j(r) that radially spreads
from the source, matching the isotropic emission pattern we as-
sumed for the classical trajectory field in Eq. (14). [The source
δ(r) has no preferred direction in space and therefore invariably
has s-wave characteristics. The point source formalism can be
modified to comprise emission into p waves and higher angular
momenta [65], an extension we do not address in this paper.]
In a more traditional interpretation, this “retarded” solution
represents the outgoing wave part of a scattering wave function
solving the conventional Schrödinger equation. Interestingly,
the total particle current J (E) = − 2

h̄
Im[G(0,0; E)] emitted

by the point source can be directly read off the imaginary part
of G(r,0; E) at the location of the source, as shown in the
Appendix.

If the motion of the charge is restricted to a two-dimensional
plane, the problem of propagation in a magnetic field admits
a closed-form quantum solution [30,66], while in the three-
dimensional problem, the Green’s function takes the form of
an infinite series [29,67], as outlined in the Appendix.

B. The magnetic Green’s function

In order to establish the energy Green’s function G(r,0; E)
for a charge in the magnetic field in analytic form, we note
that the Hamiltonian operator H(r,p) = 1

2m
[p − qA(r)]2 is a

sum of two commuting parts, a perpendicular operator H⊥

which details the cyclotron motion in the magnetic field and a
longitudinal operator H‖ covering the free motion in field
direction. (This is analogous to the classical case, where
the energies in transversal motion E⊥ = 1

2mv2
0 sin2 θ0 and

motion parallel to the field E‖ = 1
2mv2

0 cos2 θ0 are separately
conserved.) G(r,0; E) then can be expressed as a sum over
products of the various “transversal” eigenfunctions of a
charge in the magnetic field, which are arranged in Landau
levels El = (2l + 1)h̄ωL [68], with the simple free-particle
Green’s function in one dimension, evaluated for the matching
energy E‖ = E − El . A derivation of the magnetic Green’s
function using this product approach is sketched in the
Appendix. [A similar procedure leads to the Green’s function
for a charge in parallel electric and magnetic fields [15,40,42],
from which it emerges in the (nontrivial) limit E → 0.] For
an overview of methods to calculate energy Green’s functions,
we refer to Ref. [67], which contains an alternative derivation
of G(r,0; E) in the magnetic field environment. Yet another
approach is due to Gountaroulis [29].

Unlike the classical trajectory field, the wave function
G(r,0; E) is no longer universal, but depends on a dimension-
less energy parameter ε, measured in terms of the ground-state
energy h̄ωL of the charge in the magnetic field:

ε = E/h̄ωL. (19)

Alternatively, the parameter ε can be interpreted as the
ratio ε = 2πρcyclo/λ of the classical cyclotron radius ρcyclo =
v0/(2ωL) and the de Broglie wavelength of the charge λ =
2πh̄/(mv0); large values of ε imply that the quantum length
scale λ is small compared to the classical length scale ρcyclo.
In terms of ε and the scaled coordinates ρ̂ and ẑ, the Green’s
function has the series representation [see Eq. (A16) in the
Appendix]:

G(r,0; E) = mk

2πh̄2 e−ερ̂2

( ∑
2l+1<ε

Ll(2ερ̂2)
e2i

√
ε(ε−2l−1)|ẑ|

i
√

ε(ε − 2l − 1)

−
∑

2l+1>ε

Ll(2ερ̂2)
e−2

√
ε(2l+1−ε)|ẑ|

√
ε(2l + 1 − ε)

)
, (20)

where k = √
2mE/h̄ is the wave number, Ll(u) denotes a

Laguerre polynomial, and the sum runs over all Landau
levels (l = 0,1,2,3, . . .). As the individual terms generally
drop exponentially once l > ε/2, the series converges rapidly,
and G(r,0; E) can be accurately evaluated numerically. The
only exception is the perpendicular plane ẑ = 0 containing the
source.

Finally, we point out that the Green’s function G(r,0; E) is
not defined at the Landau levels εl = 2l + 1 itself. In the vicin-
ity of these energies, G(r,0; E) grows indefinitely. Mathemati-
cally, this relates to the observation that the Green’s function as
the configuration space representation of the resolvent operator
(E − H)−1 will diverge at eigenenergies El in the discrete
spectrum of H. (See also the discussion in the Appendix.)
Although there are no bound states in the full scattering
problem, the periodic motion of the charge in the perpendicular
x-y plane caused by the magnetic field, and the ensuing quan-
tization of the energy E⊥ in transversal motion into Landau
levels, becomes manifest in the singularities of G(r,0; E).
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C. Quantum charge densities and currents

From the energy Green’s function G(r,0; E) we obtain both
the probability density of the electron in the emitted wave,

nqm(r) = |G(r,0; E)|2, (21)

and the probability density current jqm(r), which yields the
rate j · da at which charges would impinge on a detector area
element da(r) (where a is the normal vector to the detector
surface):

jqm(r) = 1

2m
{G(r,0; E)∗[p − qA(r)]G(r,0; E) + c.c.}.

(22)
Unlike in the presence of an electric field E [40,42], where
continuous acceleration tends to align the current profile
with the density profile far from the source, the charge and
current distributions retain their individual character in a purely
magnetic environment, so the vector field jqm(r) warrants a
detailed study.

Given the symmetry of the problem, it is convenient to
extract the radial component jρ and a component jz parallel to
the field:

jz(r) = h̄

m
Im[G(r,0; E)∗∂zG(r,0; E)],

(23)

jρ(r) = h̄

m
Im[G(r,0; E)∗∂ρG(r,0; E)].

Since G(r,0; E) is a function of ρ̂ and ẑ only, the remaining
azimuthal component jφ is related to the vector potential term
in Eq. (22), and therefore proportional to the particle density
nqm(r),

jφ(r) = −v0ρ̂|G(r,0; E)|2, (24)

indicating uniform rotation of the particle wave with the
Larmor frequency ωL, familiar from the classical dynamics
(7). We examine these quantities further in Sec. V.

Finally, the total current J (E) can be read off the Green’s
function. Applying relation (A3) in the Appendix, we find
that only the first sum in Eq. (20), corresponding to the open
scattering channels, contributes to the current:

J (E) = Jfree(E)
∑

0<2l+1<ε

1√
ε(ε − 2l − 1)

. (25)

Here, Jfree(E) = mk/(πh̄3) is the current (A7) emitted by a
free particle source in the absence of the magnetic field. Note
that the total current J (E), like G(r,0; E) itself, diverges at
the energies εl = 2l + 1, that is, whenever a new scattering
channel “opens” [69]. As our sample calculations will show,
the simplicity of the result (25) belies the intricate and unusual
structure present in the charge and current distributions.

IV. SEMICLASSICAL ANALYSIS

In order to gain insight into the features of the quantum
density and current distributions, we now embark on a
semiclassical study of electron dynamics in the magnetic field,
based on the helical trajectories we identified in Sec. II. While
not an exact method, we find that the semiclassical model
faithfully reproduces the quantum results, in particular when
used in conjunction with the uniform approximation which

lifts the singularities of the semiclassical method that occur at
the caustics.

A. The semiclassical wave function

To start, we assemble the semiclassical wave function ψsc(r)
in an intuitive, step-by-step approach. (For formal reviews of
the topic, see, e.g., Refs. [21–23].) The basic idea is to assign a
wave ψν(r) to every trajectory rν(t) that leads from the source
to the destination r; the semiclassical wave function itself then
is the sum of the individual wave amplitudes associated with
the various paths rν(t):

ψsc(r) =
∞∑

ν=1

ψν(r) =
∞∑

j=ν

|ψν(r)| ei�ν (r). (26)

Note that ψsc(r) involves an infinite sum in our problem. We
now proceed to define the modulus |ψν(r)| and the phase �ν(r)
of each contribution.

The modulus ψν(r) is chosen so that the trajectory on
its own contributes its classical weight nν(r) (16) to the
particle density. Since |ψ(r)|2 (21) yields the probability
density, we set |ψν(r)| = √

nν(r). We note that the classical
density diverges at the caustic set (the symmetry axis, and the
nested turning surfaces displayed in Fig. 3). Therefore, ψsc(r)
will show unphysical behavior near the caustics. Uniform
approximations (see below) are available to remove the
divergence and replace it with a smooth transition of the wave
function across the caustic.

For the phase �ν(r), we adapt the de Broglie relation
p = h̄k valid for a free particle to the accelerated motion of
the charge in the magnetic field. The classical momentum
pν(r) then becomes position-dependent, and we postulate that
the local change of the phase in space is again given by
de Broglie’s relation: ∇�ν(r) = kν(r) = pν(r)/h̄. Integrating
along the trajectory from the source to the destination yields a
phase difference,

��dyn
ν (r) = 1

h̄

∫ r

0
pν(r′) · dr′ = 1

h̄
Wν(r,0; E), (27)

that is proportional to the classical Hamilton-Jacobi ac-
tion functional Wν(r,0; E) [70]. Using p = mṙ + qA(r), we
rewrite Eq. (27) as a temporal integral and insert the equation of
motion (7). We integrate, switch to dimensionless coordinates
ρ̂ and ẑ, eliminate the emission angles, and find [71]

��dyn
ν (r) = ε(ρ̂2 cot τ + ẑ2/τ + τ ), (28)

where ε = E/(h̄ωL) is the quantum mechanical energy param-
eter (19).

Beside this “dynamical” contribution to the phase, one
must also consider a discrete correction that traces back to
the evolution of the particle density along the trajectory. Equa-
tion (15) shows that the classical density nν(r) is a function
of the determinant of the Jacobian J = ∂(ρ̂,ẑ,φ)/∂(θ0,φ0,τ ),
where a zero of detJ implies a singularity in the density.
For the semiclassical analysis, nν(r) is an analytic function of
detJ and changes its sign at each simple root of detJ , that
is, whenever the trajectory runs through a caustic. Taking the
square root of nν(r) to find the modulus of the semiclassical
wave function, each sign change in nν(r) translates into an
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additional factor −i, which we include into the phase �ν as
a discrete shift of −π

2 [72]. The Maslov index μν denotes the
number of sign changes of detJ along a trajectory rν(t), so
the total phase accumulated from 0 to r is

��ν(r) = ��dyn
ν (r) − π

2
μν. (29)

The Maslov index μν can be read off Eq. (16) in a straightfor-
ward manner. Whenever the charge has completed a cyclotron
orbit and returns to the symmetry axis, sin τ = 0 holds, and
detJ changes sign. In addition, within each cyclotron interval,
dε̂/dτ drops monotonically from +∞ to −∞, implying one
more simple root of detJ which corresponds to the turning
point of the path on the fold caustics. Hence, with every
completed cyclotron orbit, the Maslov index grows by two.
In the final arc of the orbit, when the trajectory reaches its
destination, the path arrives either before touching the caustic,
or afterward, corresponding to the “fast” and “slow” solutions
in this cyclotron interval shown in Fig. 2, respectively. (Note
that these solutions differ in the sign of dε̂/dτ .) Hence, the
Maslov index μν for a solution in the νth cyclotron interval
νπ < τ < (ν + 1)π is

μν =
{

2ν (“fast” path, dε̂/dτ > 0),
2ν + 1 (“slow” path, dε̂/dτ < 0). (30)

Note that the semiclassical wave function ψsc(r) can be
expressed as a function of the times of flight τν of the
trajectories.

In order to compare the quantum result to the semiclassical
approximation quantitatively, we finally need to fix the
previously unspecified emission rate J of the classical source

in Eq. (14). For this purpose, we identify J with the quantum
mechanical current Jfree(E) = mk/(πh̄3) (A7) emitted by a
unit source of free particles in the absence of the magnetic
field (see Appendix).

To improve the semiclasssical approximation, we also
include tunneling trajectories into our calculations. For these,
conjugate complex solution pairs for the times of flight τν

are obtained. Their semiclassical contributions follow from
complex continuation of the expression for the dynamical
phase (28); only the physically acceptable solution which leads
to an exponentially decaying wave function is included with
the sum (26).

B. Convergence properties

Recall that the number of classical trajectories connecting
source and destination in the magnetic field environment is
infinite and that the concept of a stationary emitter is ill defined
in a purely classical description. In the semiclassical picture,
the wave function ψsc(r) therefore becomes an infinite sum
(26), and it is of interest to study its convergence as a function
of the particle energy ε. For this purpose, it suffices to consider
the behavior of the individual waves ψν making up the series
in the asymptotic limit ν → ∞.

In the long-time limit, the classical density nν(r) (17)
drops inversely with the number of cyclotron orbits ν. For
the complex series (26), we now additionally inquire into
the limiting behavior of the phase ��ν (29) for large
ν. Since sin τ ∼ ρ̂ holds in the long-time limit, we find
cot τ ∼ ±

√
1 − ρ̂2/ρ̂, so the phases for the “fast” and “slow”

trajectories asymptotically approach the values

��ν ∼
{
ε(νπ + arcsin ρ̂ + ρ̂

√
1 − ρ̂2) − νπ (“fast” path),

ε((ν + 1)π − arcsin ρ̂ − ρ̂
√

1 − ρ̂2) − (
ν + 1

2

)
π (“slow” path),

(31)

as ν → ∞. [Note the second contribution arising from the
growing Maslov index μν (30).] In either case, as we
increment the number of cyclotron orbits ν → ν + 1, the phase
asymptotically increases by an overall amount π (ε − 1). Thus,
the semiclassical series has the asymptotic form

ψsc(r) ∼ [Cfast(ρ̂) + Cslow(ρ̂)]
∑

ν

eiπ(ε−1)ν

√
ν

, (32)

where the prefactor is a function of the lateral distance ρ̂ only
and can be read off Eqs. (17) and (31).

In the mathematical literature, the complex sum in Eq. (32)
is known as a periodic ζ function F [ 1

2 (ε − 1), 1
2 ] [73]. Unless

the phase increase in the exponent is a multiple of 2π , the
sum is alternating and conditionally convergent. Otherwise,
the sum is real and divergent, growing with the square root of
the summation limit. This happens whenever ε = εl = 2l + 1
is an odd integer. Hence, the semiclasssical approximation
reproduces a key property of the quantum solution: Unlike the
classical density, ψsc(r) is well-defined, unless the energy of

the particles coincides with one of the Landau levels in the
magnetic field.

In practice, convergence of the series (32) is slow, in
particular in the vicinity of the Landau level thresholds
where ε almost matches an odd integer value. In numerical
simulations, we found it necessary to adjust the number
of trajectories included in the summation to achieve good
agreement with the quantum solution. We experimented with
a number of sophisticated schemes to accelerate convergence
of the semiclassical series, but found no consistent superior
performance compared to a “hard cutoff” in the summation.
We therefore adopted this simple method in our simulations
below.

C. Semiclassical density and current

Once the semiclassical wave function �sc(r) (26) is estab-
lished, the analysis proceeds in the same vein as in the quantum
case. As in Eq. (21), the approximation to the particle density

022715-8



PROPAGATION OF CHARGED PARTICLE WAVES IN A . . . PHYSICAL REVIEW A 86, 022715 (2012)

nsc(r) = |ψsc(r)|2 is given by the absolute square of the wave
function and now becomes a sum over all pairs of trajectories:

nsc(r) =
∞∑

α,β=1

√
nα(r)nβ(r) ei[�α (r)−�β (r)]. (33)

It is worth noting that this sum, like the semiclassical wave
function itself, is conditionally convergent. As a result, it
cannot be reordered into a classical density ncl(r), given by
the diagonal terms with α = β, and “interference terms” with
α �= β, as the classical density diverges (see Sec. II).

For the current density jsc(r), we start from the quantum
expression (22) and replace the operator p − qA(r) with its
classical counterpart, the kinematic momentum mṙ(t) [74].
We obtain again a sum over pairs of trajectories, now weighted
with the mean particle velocity v(r) at the destination point:

jsc(r) = 1

2

∞∑
α,β=1

√
nα(r)nβ(r)[vα(r) + vβ(r)]ei[�α (r)−�β (r)].

(34)
This is suggestive of the classical relation j = nv, but we note
again that the sum (34), due to its conditionally convergent
nature, cannot be reordered at will. In fact, the current
flowing from a source in a magnetic field features rather
counterintuitive behavior, as discussed in Sec. V.

D. Uniform approximation

Because the classical density ncl(r) becomes singular
there, the “primitive” semiclassical approximation (26) to the
wave function is bound to fail near the caustics. Still, it is
possible to find higher-level uniform approximations, based
on classical trajectories, that correct the divergent behavior.
The idea behind these approximations is that caustic points
share generic types of divergence (“catastrophes”) [46–50],
and therefore a wave solution valid in the vicinity of any
such point provides a template for the solution at all related
points. For the simplest catastrophe, the fold-type caustic, the
prototype solution [46,48,51] is an Airy function Ai(u) [57],
the wave solution for a quantum particle “turning around”
under a constant force in one dimension [75].

Fold caustics are associated with pairs of trajectories
coalescing and disappearing, which occurs in the magnetic
field problem at the nested onion-shaped turning surfaces
parametrized by Eq. (13), and displayed in Fig. 3. Hence, in the
vicinity of these points, the contribution of the affected pair of
trajectories to the semiclassical wave function (26) should be
replaced by an Airy function, with an argument appropriately
matched to the change in their dynamical phase ��

dyn
ν (27).

In our simulations, we adapted a technique developed in
Ref. [42] and assigned a combination of an Airy function and
its derivative to each pair of “fast” and “slow” classical paths
within a cyclotron period. Thus, the uniform approximation
used is an infinite sum of Airy functions.

The expansion in Airy function yields excellent results
near the turning surfaces, but is not suitable for the second
type of caustics encountered in our problem, the “focal line”
ρ̂ = 0. Bundles of trajectories periodically converge upon this
line under all angles φ, and their interference yields a Bessel
function of order zero J0(u) as an amplitude profile. (The

cylindrical cusps that form the joints between turning surfaces
and focal lines need to be considered separately [76]. Neither
focal lines nor cylindrical cusps are “generic” catastrophes
in the mathematical sense, but are commonly encountered
in systems with cylindrical symmetry.) Hence, the wave
function at small ρ̂ → 0 is more appropriately described by a
superposition of an infinite number of such Bessel functions.
While interesting in its own right, we did not attempt to model
the wave function near the symmetry axis in this way.

V. RESULTS

In this section, we present the findings from numerical stud-
ies for a representative set of values for the energy parameter
ε (19). Considering the simplicity of the setup, a surprisingly
rich set of features is found in these simulations, some of
which defy easy explanation. Another objective of our studies
is to assess the performance of the semiclassical and uniform
approximations in comparison to the exact quantum results.
We have pointed out that the semiclassical method operates
here under challenging conditions, with an infinite number
of classical paths present, wave functions represented by
conditionally convergent series, and the classical counterpart
of the problem being altogether ill-defined. However, we find
that in all cases studied, the semiclassical technique produced
reliable results, with an accuracy limited only by the time and
depth allotted to the computations.

A. Density profiles between Landau levels

For our first case study, we choose ε = 50 as a value for
the energy parameter. This places the electron energy right
between the 24th and the 25th Landau levels, whose thresholds
are located at 49 h̄ωL and 51 h̄ωL, respectively. Hence, 24
open scattering channels contribute to the electronic current,
while the quantum wave function G(r,0; E) (20) has additional
evanescent components that modify the density and current
profile near the source. Since we pick a value of ε removed
from the thresholds εl = 2l + 1, the various scattering chan-
nels have comparable contributions, none clearly dominating
the others. Hence, this example stands for a “regular” situation,
with results “typical” for most values of ε.

We first examine the charge density n(r) generated by the
source. In Fig. 4, we plot color-coded maps of the density
in the ρ̂-ẑ plane, that is, a cut through the three-dimensional
distribution parallel to the magnetic field axis that contains
the source. The figure shows the results of a semiclassical
calculation (left panel) using Eq. (33), a simulation using the
uniform approximation detailed in the previous section, based
on the same trajectories (middle panel), and the exact quantum
distribution (21) (right panel). For better display, we plotted the
“integrated” density 2πρ̂n(ρ̂,ẑ), summing up the contributions
for various azimuthal angles φ. Dark (blue) patches in the
images correspond to high density; white corresponds to low
density. Owing to the cylindrical symmetry inherent in the
problem, a section perpendicular to the magnetic field axis
yields an interference pattern of concentric fringes that does
not reveal any additional information. Figure 5 shows such a
density distribution, where the cut is taken along the bottom
edge of Fig. 4.
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FIG. 4. (Color online) Integrated charge density 2πρ̂n(ρ̂,ẑ)
emitted by an isotropic point source in a magnetic field (vertical
direction), along a radial cut in the ρ̂-ẑ plane, for dimensionless energy
ε = 50. (Left) Primitive semiclassical calculation (including tunnel-
ing trajectories). (Middle) Uniform approximation based on Airy
functions. (Right) Exact quantum result, evaluated using Eq. (20).
Up to 500 trajectories have been summed for the approximations.
The dark “streaks” tracing the location of the caustics in the left
panel are caused by the divergence of the semiclassical approximation
there, which otherwise agrees with the quantum simulation (right).
The uniform (middle) and quantum results (right) are visually
indistinguishable. The images cover the range 0 � ρ̂ � 1.1 in
horizontal direction and −1.1 � ẑ � 3.3 in vertical direction. The
source is conspicuous at the upper left edge of each image. Dark
spots correspond to high density. All units dimensionless.

The semiclassical calculations in the panels were performed
with an arbitrary time-of-flight cutoff at τ = 250π , corre-
sponding to at most 500 classical orbits, to keep the time
of calculation reasonable [77]. Nevertheless, the semiclassical
methods reproduce the quantum density distribution very well.
As expected, the “primitive” semiclassical computation fails
at the location of the caustics, where the calculated density
diverges, leading to linear “streaks” in the image. The uniform
approximation corrects this unphysical behavior and provides
a density map that almost perfectly matches the quantum
result. Note that the quantum image clearly displays a strong
increase in density along the location of the first “onionlike”
caustic (see Fig. 3) and a set of interference fringes running
parallel to it, despite the fact that the quantum calculation never
invokes the concept of trajectories. This illustrates the power
of the semiclassical method to explain features of the quantum
solution.

FIG. 5. (Color online) Integrated charge density along a slice
perpendicular to the magnetic field for energy ε = 50, at a scaled
dimensionless distance ẑ = 3.3, corresponding to the bottom edge of
the radial density maps in Fig. 4. The frame extends 1.1 units from
the center in the x̂ and ŷ directions. Due to cylindrical symmetry,
the quantum simulation shows circular interference fringes. For
comparison, the concentric circles indicate the intersections with the
second and third turning surface (inner and outer short dashed lines)
and the boundary of classical motion ρ̂ = 1 (long dashed line).

FIG. 6. (Color online) Radial profiles of the integrated charge
density 2πρ̂n(ρ̂) at a vertical distance ẑ = 3.3 from the source,
for an energy ε = 50, using units of [mk/(4πεh̄2)]2 (A5). The
plot displays the primitive semiclassical approximation (33) (thin
red curve), uniform approximation (dashed green curve), and exact
quantum result (21) (bold blue curve), as shown in Fig. 4 (bottom
edge of maps); the blue curve corresponds directly to the density
cross section displayed in Fig. 5. Up to 5 × 104 trajectories have
been included in the semiclassical calculation. All three methods
yield good agreement, except that the semiclassical result diverges
at the intersections with the turning surfaces, a failure that does not
affect the uniform approximation. Both methods based on classical
orbits are unable to reproduce the quantum density profile near the
symmetry axis (inset detail plot).
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FIG. 7. (Color online) Integrated current density in field direction
2πρ̂jz(ρ̂,ẑ) in the ρ̂-ẑ plane. (Left) Primitive semiclassical calcu-
lation. (Middle) Uniform approximation based on Airy functions.
(Right) Exact quantum result, evaluated using Eq. (23). All parame-
ters are as in Fig. 4. Dark spots correspond to high current density;
blue (red) indicates downward (upward) orientation, prevalent for
ẑ > 0 (ẑ < 0).

For a quantitative assessment of the semiclassical approx-
imation, we also calculated a radial profile of the probability
density, taken at ẑ = 3.3, corresponding to the bottom edge
of Fig. 4, and representing the circular fringes in Fig. 5.
Here, we increased the cutoff time to τ = 25 000π and thus
added the contributions of up to 50 000 classical orbits for
the semiclassical and uniform approximations. The resulting
densities in “natural units” [mk/(4πεh̄2)]2 derived from the
free-particle Green’s function [see Eq. (A5) in the Appendix]
are plotted in Fig. 6. Both approximations quantitatively
coincide with the exact result sufficiently far from the caustics.
Whereas the primitive semiclassical method shows divergence
at the intersections with the turning surfaces for ρ̂ > 0, the
uniform approximation is not affected and provides results
virtually indistinguishable from the quantum calculation. Both
methods deviate from the exact result in the vicinity of the
symmetry axis ρ̂ → 0. This is not surprising, as ρ̂ = 0 is
itself part of the caustics, and a uniform expansion into Airy
functions is not appropriate for the focal line structure there.

In a second step, we repeat a similar set of calculations for
the current density j(r). We first concentrate on the current
density component jz(r) aligned with the field direction, and
perform again a comparison of the semiclassical and uniform
approximations (34) with the quantum result (23). A current
map, using the same parameters as the density map (Fig. 4),

FIG. 8. (Color online) Radial profiles of the integrated current
density 2πρ̂jz(ρ̂) for a distance ẑ = 3.3 and energy ε = 50, in units
of mk3/(16π 2ε2h̄3) (A6). As in Fig. 6, the primitive semiclassical
approximation (34) (thin red curve) displays singularities at the
intersection with caustics. The uniform approximation (dashed green
curve) and exact quantum result (21) (bold blue curve) are in excellent
agreement, except in the vicinity of the focal line ρ̂ = 0. Note that all
three methods indicate a reversal of the current at the center of some
interference minima.

is displayed in Fig. 7. We find again good agreement of
the three approaches, except near the caustics, where the
semiclassical approximation fails, as expected. While differing
in detail, the current distribution shares the same qualitative
features observed in the charge density distribution, including
enhancement and interference along the prominent onion-type
caustic. The most striking difference between the two maps
is that the flow of particles is reversed in the upper part of
the image (upward currents are encoded in red, downward
currents in blue), simply confirming the expectation that the
particles stream away from the source in either direction.
Again, a more quantitative comparison is undertaken in the
current profile displayed in Fig. 8, corresponding to the bottom
edge of the current maps in Fig. 7, computed using the same
conditions as in Fig. 6. The plot [which displays the current
density in “natural” units of mk3/(16π2ε2h̄3) (A6), extracted
from an analysis of a free-particle source] confirms the
observations about the convergence of the three calculations
we made before. Careful scrutiny reveals an interesting detail:
In the center of interference minima, jz(ρ̂) drops below zero,
indicating reversal of the flux in the upward direction. All
three methods of computation agree on this counterintuitive
backflow phenomenon.

Finally, we also performed quantum calculations for the
radial current component jρ(r) (23), displayed as a map in
Fig. 9 (left panel). Here, the current is seen to initially stream
away from the axis ρ̂ = 0 in the vicinity of the source, but
ultimately a complicated pattern of alternating inward flows
(red) and outward flows (blue) ensues that is difficult to explain
from a classical point of view. To illustrate the streaming
pattern of the charge, we have combined the radial and parallel
components of j(r) into a “quantum flow map” (right panel in
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FIG. 9. (Color online) Maps of the integrated current density
vector 2πρ̂j(ρ̂,ẑ) in the ρ̂-ẑ plane for energy ε = 50. (Left) Radial
component jρ(ρ̂,ẑ) of the current density. Blue indicates outward
flow from the symmetry axis, red inward flow; dark spots indicate
high current. (Right) Color-coded map of the current flows in the ρ̂-ẑ
plane. Brightness corresponds to current intensity, hue to the direction
of the current (red, to the right; green, to the lower left; blue, to the
upper left). Charge transport occurs both along the caustics, and in
peculiar bands (orange and teal pattern). (Parameters as in Fig. 4.)

Fig. 9). Here, brightness corresponds to the magnitude of the
current, whereas the color space indicates the direction of the
current probability vector in the ρ̂-ẑ plane, with red indicating
flux to the right, blue to the upper left, and green to the lower
left. Transport occurs parallel to the caustic surface, but also
along distinct paths of unexplained etiology that criss-cross
the classically allowed sector from the symmetry axis (ρ̂ = 0)
to the outer limits of motion (ρ̂ = 1), visible as orange and teal
bands in the image. [No plot of the azimuthal current density
jφ(r) is provided, as it is simply proportional to the particle
density n(r) (24). Classically, the whole distribution rotates
uniformly with frequency ωL.]

B. Density profiles near threshold

We now slightly increase the particle energy to ε = 51.01,
a value just above the threshold of the 25th Landau level
at ε25 = 51. Whereas all other terms in the series solution
for the energy Green’s function G(r,0; E) (20) undergo only
gradual change, the newly opened scattering channel adds

FIG. 10. (Color online) Integrated charge density 2πρ̂n(ρ̂,ẑ) in
the ρ̂-ẑ plane, for energy ε = 51.01. Shown: Semiclassical (left) and
uniform (middle) approximations, and exact quantum result (right).
Other parameters as in Fig. 4. The banded appearance is due to the
dominance of the scattering channel associated with the Landau level
l = 25.

an outsized contribution to this sum, as the relative weight
of a given Landau level l depends inversely on the energy
ε − 2l − 1 available for the motion in field direction. The new
emission mode flushes the environment with slowly drifting
particles, and we expect that the shape of the electronic density
distribution n(r) resembles the density profile of the dominant
eigenstate ψl0(ρ̂) (A11) with index l = 25 of the charge in the
magnetic field (see the Appendix). The influence of the new
scattering channel on the current distribution j(r) (22) is less
obvious, as the abundance of particles in this channel and their
slow drift velocity have opposite effects on j(r).

From a semiclassical perspective, choosing a near-threshold
energy value ε implicates slow convergence of the series (32)
for the approximate wave function ψsc(r) (26). For such values
of ε, the phase �ν (modulo 2π ) changes only slowly with
each trajectory ν, so the terms in the series (32) alternate over
long periods, leading to large fluctuations in the partial sums.
Hence, it is necessary to include many classical trajectories in
the summation to obtain accurate results in the semiclassical
approximation. Nevertheless, we observe that for a sufficiently
large sample size of classical orbits, the trajectory-based
methods (in particular, the uniform approximation) are able to
reproduce the at times counterintuitive results of the quantum
simulation.

For comparison with the results of the previous section,
we again provide maps of the particle density n(ρ̂,ẑ) on
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FIG. 11. (Color online) Radial profile plots of the integrated
charge density for energy ε = 51.01, at a distance ẑ = 3.3 from the
source (bottom edge in Fig. 10), using the same units as in Fig. 6.
Thin red curve, semiclassical approximation; dashed green curve,
uniform approximation; bold blue curve, quantum result. The density
profile |ψl0(ρ̂)|2 (A11) of the dominant scattering channel (Landau
level l = 25) is shown in the inset for comparison.

a section of the ρ̂-ẑ plane, calculated using the primitive
semiclassical and uniform approximations (left and middle
panels) as well as the quantum result (21) (right panel in
Fig. 10). The caustic surfaces which structure the maps for
ε = 50 (Fig. 4) are barely discernible now. Rather, the density
maps now present as a sequence of stripes parallel to the
magnetic field direction. From the quantum perspective, the
uniformity of the image is due to the dominance of
the near-threshold scattering channel, which imprints its lateral
profile onto the density distribution. It is remarkable that the
trajectory-based approximations perform so well in what is
essentially a rendering of a single quantum eigenstate in the
radial direction.

To study the density distribution quantitatively, we simu-
lated a profile of the integrated radial density, taken at the
bottom edge (ẑ = 3.3) of the maps, and plotted it in Fig. 11.
The peak density, near the outer classical limit, is more than
30 times larger than in the “regular” case ε = 50 (Fig. 6), and
the density profile strongly resembles the density distribution
|ψl0(ρ̂)|2 for the Landau level l = 25 (shown in the inset) as
predicted, even though the height of the individual maxima
is modulated in the actual profile. The semiclassical (thin red
curve) and uniform approximation (green dashed curve) again
reproduce the shape of the quantum result (bold blue curve),
save for their known failures at the caustics.

Unlike for ε = 50, the current density map jz(ρ̂,ẑ)
associated with the electron wave near threshold bears little
resemblance to the charge density map n(ρ̂,ẑ). We calculated
jz(ρ̂,ẑ) in the ρ̂-ẑ plane using the quantum result (23) and
the trajectory-based approximations (34) akin to Fig. 7. The
result, shown in Fig. 12, exposes a distinctive “checkerboard”
pattern. This pattern is partly defined by a sequence of node
lines running parallel to the field axis which clearly trace back

FIG. 12. (Color online) Integrated current density in field direc-
tion 2πρ̂jz(ρ̂,ẑ) in the ρ̂-ẑ plane for energy ε = 51.01. Semiclassical
calculation (left), uniform approximation (middle), quantum result
(right). Parameters as in Fig. 10. The conspicuous “checkerboard
pattern” of upward (red, light gray) and downward (blue, dark gray)
currents indicates widespread prevalence of backflow toward the
source.

to the zeros of the wave function ψl0(ρ̂) for the dominant
scattering channel (l = 25), prominent in the density plot
(Fig. 10). However, now the caustics are conspicuous in the
images and, most strikingly, a rapid succession of upward (red)
and downward (blue) current areas covers the entire plane.
While the net flux of particles still leads away from the source,
the current distribution is no longer uniform in direction and
almost as likely to point toward the source as away from
it. While it is hard to pinpoint the origin of this backflow
phenomenon, similar effects have been observed before in the
dynamics of quantum wave packets [78], albeit not on such a
massive scale as here. Since detectors typically are designed
to absorb particles, the presence of backflow has profound
implications for the quantum measurement process.

For a quantitative comparison, we plot the current density
profile jz(ρ̂,ẑ) in units of mk3/(16π2ε2h̄3) at a distance ẑ =
3.3, corresponding to the bottom edge of the maps in Fig. 12,
just as we did before in the regular case ε = 50 (Fig. 8). The
result is shown in Fig. 13. Apart from the known failures
near caustics, the orbit-based approximations again accurately
trace the quantum current density. Compared with Fig. 8, the
magnitude of the current has increased about fourfold, much
less than the corresponding increase in particle density. The
plot demonstrates that backflow (negative values of the current)
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FIG. 13. (Color online) Radial profiles of the integrated current
density 2πρ̂jz(ρ̂) for energy ε = 51.01; other parameters and units
as in Fig. 8. The semiclassical method (thin red curve), uniform
approximation (dashed green curve), and exact quantum result (bold
blue curve) all agree in their prediction of sizable ranges and
magnitudes of backflow, indicated by negative current values.

is a common occurrence and that the reverse and forward flow
are of comparable magnitude.

To complete our comparison with the previous case ε = 50,
we finally also examine the quantum current in radial direction
jρ(ρ̂,ẑ) and the current field j(ρ̂,ẑ) associated with the radial
and parallel components of the current for ε = 51.01. The
results are displayed in Fig. 14, using the same color coding
scheme as in Fig. 9. In the radial current map (left panel),
we observe a pattern of intense, roughly horizontal bands of
inward (red) and outward currents (blue) that almost exactly
repeats in the plot of the current field as teal and red patterns
(right panel). This means that the radial component jρ(ρ̂,ẑ)
dominates the current distribution: The particles flow roughly
back and forth from the symmetry axis, perpendicular to the
magnetic field, with a small and variable contribution in field
direction that gives rise to the checkerboard pattern in Fig. 12.
In fact, transport parallel to the magnetic field axis (green and
purple) is almost exclusively limited to the outermost range of
motion, ρ̂ ≈ 1.

C. Exploring the classical limit

Another avenue of inquiry is the behavior of the charge
in the magnetic field if its energy E is large compared to
the typical energy quantum h̄ωL. Its wave function (20) then
has contributions from many open scattering channels, and by
the correspondence principle, we would expect that classical
dynamics emerges from the quantum solution. However, since
this problem has no meaningful classical limit, it is of interest
to study the features of the density and current distributions
obtained for large values of ε. For our model simulations, we
use ε = 500, a choice for which the quantum calculation still
remains easily manageable.

Figure 15 shows the integrated density distribution in this
case, while Fig. 16 displays a map of the current density field

FIG. 14. (Color online) Integrated current density vector
2πρ̂j(ρ̂,ẑ) in the ρ̂-ẑ plane near threshold (ε = 51.01). (Left) The
component jρ(ρ̂,ẑ) shows alternating radial flows away (blue) or
toward (red) the symmetry axis. (Right) Color-coded current vector
field, with brightness indicating magnitude, and hue representing
direction (cf. Fig. 9). Note that the same underlying pattern structures
both maps.

of the charge. The color coding in the two images follows
the same model as in Figs. 4 and 9, respectively. At this high
energy, individual interference fringes are too densely spaced
to be resolved in these images, save for the outermost range
of classical motion [79]. Virtually all of the patterns seen are
emergent “superstructure.” Both images clearly display the
first few nested caustics as curves of enhanced density and
current, accompanied by supernumerary fringes due to the
interference of the incoming and reflected path at the turning
surface. The presence of the caustics is well understood from
a semiclassical perspective. However, the images also show
another type of superstructure, a multitude of thin “arcs” of
various intensity that carry charge from the symmetry axis at
the center of the distribution toward the limits of the classical
range of motion and back, crossing through the caustics on
their way. These arcs, descendants of the wide bands of current
seen in the examples before for lower energies (Figs. 9 and 14),
funnel the current away from the source.

The arc structure resembles in appearance the “quantum
scars” frequently observed in billiard problems [52,53,58],
which are linked to classical periodic orbits in such bound
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FIG. 15. (Color online) Integrated charge density 2πρ̂n(ρ̂,ẑ) in a magnetic field (oriented horizontally) along a radial cut in the ρ̂-ẑ plane,
for energy ε = 500, evaluated using the quantum result Eq. (20). Canvas dimensions are 0 � ρ̂ � 1.1 and 0 � ẑ � 4.4, with the source located
at the center of the left edge. Dark spots indicate high density.

systems. However, the dynamics of a charge in a magnetic
field is a scattering problem, with open trajectories, so
periodic orbits are absent. Moreover, the motion is classically

integrable, unlike the chaotic dynamics underlying quantum
billiards, which renders the significance of the arc pattern
even more mysterious. We have examined maps of varying

FIG. 16. (Color online) Integrated current density vector field 2πρ̂j(ρ̂,ẑ) corresponding to the density map shown in Fig. 15. Brightness
corresponds to the magnitude of j, while the color hue encodes its direction (red, upward; teal, downward; yellow, to the upper left; green, to
the lower left). Current flow occurs at the caustics, as well as along “arcs” that transport charge inward and outward.
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energy ε like those shown in Figs. 15 and 16, and have
found empirically that arcs are present at all energies and
that individual arcs persist as the energy ε is increased from
a Landau level threshold to the following threshold, heading
slowly away from the source while undergoing fluctuations in
intensity. As the energy sweeps over this interval, it appears
that a new arc emerges closest to the source (leftmost arc in
the images shown).

VI. CONCLUSION

We conclude with a brief summary of our observations,
and an outlook discussing their experimental confirmation.
Notwithstanding the simplicity of the setup, the system harbors
interesting behavior and complex features that ultimately trace
back to its position at the junction between scattering motion
common to open systems, and the periodic motion typical of
bound systems. At the classical level, this complementarity
manifests itself in the presence of an infinite number of
orbits connecting the source to any destination inside the
classically allowed domain ρ̂ < 1, and as a consequence,
an infinite classical density ncl(r) that renders the stationary
source problem ill defined. Thanks to interference between
trajectories, the semiclassical model is able to lift this global
singularity and returns finite values for the wave function
ψsc(r) and derived quantities like the semiclassical density
nsc(r) and current density jsc(r), except for a regular sequence
of energy values El = (2l + 1)h̄ωL (l = 0,1,2, . . .), where the
divergence persists. The semiclassical results take the form of
conditionally convergent sums over the contributions of the
individual orbits. The same singularities occur in the energy
Green’s function G(r,0; E), the quantum mechanical solution
of the problem, where they are identified as the Landau levels,
the discrete eigenenergies of a charge confined to a plane
perpendicular to the magnetic field. In general, the quantum
solution is a rapidly converging sum over scattering channels,
combinations of plane waves in field direction with the various
radial eigenstates associated with the Landau levels. Using
extensive simulations, we inquired into the properties of the
charged particle wave emerging from the source and compared
the different approaches. We found that the semiclassical
results, despite their tenuous convergence properties, were
generally in excellent agreement with the quantum solution,
in particular when the technique was extended to incorporate
uniform approximations based on Airy functions. The charge
and current distributions display rich detail and a hierarchy
of features, from individual interference fringes to various
“superstructure.” A nested set of shells ending in cusps on
the symmetry axis is easily identified with the classical
caustics of the system, whereas pervasive arclike features in the
density and current maps, reminiscent of the quantum “scars”
occurring in closed chaotic systems, defy easy explanation.
The simple energy dependence of the total current J (E)
emitted by the source sharply contrasts with the complex
spatial distribution of the current density j(r) which exhibits
intriguing phenomena like backflow toward the source.

Experimental verification of the results and simulations
presented in this paper is a challenging task, and likely
not possible with state-of-the-art equipment. The established
standard for recording the current distribution of charged

particle waves propagating in external fields is photodetach-
ment microscopy [34,35,43]. In electric field experiments,
the interference images obtained have diameters d of several
mm, and individual fringes are resolved if their spacing R

exceeds about 100 μm [36–39]. In a magnetic field, the size
of the electron distribution is given by d = v0/ωL (7), and
the composition of the interference pattern itself depends only
on the dimensionless energy ε = E/(h̄ωL) (19). The results
of Sec. V indicate that the spacing of individual fringes is
approximately their ratio d/ε = λ/π , which depends solely
on the de Broglie wavelength λ = h/

√
2mE of the charge.

Hence, the energy should not exceed E = 2h̄2/(mR2) ≈
1.5 × 10−11 eV, an extraordinarily small value compared to
the energies used in electric field experiments (10−5 eV).
The spacing R and the radius d of the pattern then fix
the magnetic field, B = 4h̄/(qRd). For d = 5 mm and R =
100 μm, corresponding to the values ε ≈ 50 studied in Sec. V,
the field strength thus obtained is minuscule, B ≈ 5 × 10−9 T.
Therefore, observation of individual interference fringes is
currently not feasible.

Experimentally accessible values for E and B lead to
fringe separations R that are much smaller than the resolution
of the instrument. In this case, the photodetachment image
will be governed by the superstructure imposed on the
electron distribution. Because their location and strength
shift significantly between two Landau level thresholds, the
variation in ε = E/(h̄ωL) = d/R must be below unity in order
to record the arclike structures. Meeting this condition requires
uncertainties in the energy distribution of the electrons, and
drifts of the magnetic field, well below the ratio 1/ε = R/d.
For energies in the μeV range, the uncertainties must be
of order 10−5, a very difficult feat to achieve. In addition,
the unavoidable velocity spread of the negative ions in the
beam [80] causes varying motional electric fields Emot that
must be kept small in comparison to the Lorentz force on
the electron, Emot � v0B. Thus, unless conditions are very
precisely controlled, the spread in ε will wash out the modula-
tions in the image due to the arclike features. In comparison,
the location of the caustic surfaces is rather insensitive to
small changes in the parameters, and they should therefore be
most easily recognized in photodetachment images as bands
of increased intensity, as discussed earlier by Berry [45].
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APPENDIX: ENERGY GREEN’s FUNCTION OF A CHARGE
IN A MAGNETIC FIELD

In this Appendix, we briefly discuss the relationship
between the energy Green’s function G(r,0; E) and the current
emitted by a monochromatic point source located at the origin,
establish the particle density and currents associated with a
free-particle source as useful quantities for scaling the results
in a magnetic field, and outline a method to find the Green’s
function in a homogeneous magnetic field itself.
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1. Green’s function and current

The energy Green’s function G(r,0; E) associated with a
stationary Hamiltonian H(r,p) is a solution of the inhomoge-
neous Schrödinger equation with energy E:

[E − H(r,p)]G(r,0; E) = δ(r). (A1)

It can be shown [81] that the Green’s function is uniquely
defined only if E is not part of the energy spectrum ofH. If E is
one of the discrete eigenenergies of the Hamiltonian, G(r,0; E)
does not exist at all, whereas an entire space of solutions
is available if E is a member of the continuous spectrum
of H. This situation occurs in scattering problems without
a confining potential, where the particles are free to leave the
system. For our magnetic field problem, an interesting “mixed”
case arises where the motion is bound in the x-y plane, leading
to discrete Landau energy levels associated with the magnetic
field, but particles are traveling freely along the z axis, with a
continuous range of energies.

The degeneracy in the solutions for Eq. (A1) in the
continuous spectrum corresponds physically to the ability to
impose boundary conditions on scattering wave functions.
Since we study a source of particles, we are interested in
the retarded Green’s function, the particular outgoing wave
solution that carries particles away from the source. In
the vicinity of the origin, this wave invariably gains the simple
isotropic characteristics of a spherical s-wave [81], and we
therefore identify it with the radially spreading trajectory field
employed in the semiclassical study.

The usual expressions for the particle density nqm(r) (21)
and the current density jqm(r) (22) hold in the outgoing electron
wave. To find the total current J (E) emitted by the source, we
note that the solutions to Eq. (A1) obey a modified equation
of continuity that includes a source term at the origin [25]:

div jqm(r) = −2

h̄
Im[G(r,0; E)]δ(r). (A2)

While the Green’s function G(r,0; E) is itself divergent near
the source, its imaginary part has a well-defined limit which
directly yields the total current J (E). We apply Gauss’ theorem
to Eq. (A2) and integrate over a surface enclosing the origin
to find

J (E) = −2

h̄

(
lim
r→0

Im[G(r,0; E)]

)
. (A3)

2. Free-particle Green’s function

In the absence of electric and magnetic fields, that is,
for the free-particle Hamiltonian Hfree = p2/(2m), the energy
Green’s function becomes an outgoing spherical s wave. A
detailed analysis yields [81]

Gfree(r,0; E) = − m

2πh̄2

eikr

r
, (A4)

where k = mv0/h̄ is the wave number of the electron. For
comparison, we state the particle density nfree(r) and current
density jfree(r) for the free-particle source, using the cyclotron
length units introduced in Sec. II. We set r̂ = ωLr/v0 and note
that the dimensionless quantity kr = 2εr̂ becomes a function

of the dimensionless energy ε = E/(h̄ωL). Then,

nfree(r̂) = m2k2

16π2ε2h̄4

1

r̂2
, (A5)

while the magnitude of the current density is

jfree(r̂) = nfree(r̂)v0 = mk3

16π2ε2h̄3

1

r̂2
. (A6)

Finally, applying Eq. (A3) to the Green’s function yields the
total current Jfree(E):

Jfree(E) = mk

πh̄3 . (A7)

The characteristic growth of the source efficiency with the
square root of the energy is known as Wigner’s law [82].

3. Finding the magnetic Green’s function

Finally, we briefly outline a derivation of the energy Green’s
function in a uniform magnetic field. A detailed discussion,
including an alternative approach to obtain G(r,0; E), is found
in Ref. [67].

We first note that the Hamiltonian H is separable into two
commuting parts, a two-dimensional operator H⊥ that de-
scribes the dynamics of the electron in the plane perpendicular
to B, andH‖, a one-dimensional free-particle Hamiltonian that
describes the drift along the magnetic field axis,

H = 1

2m
(p − qA)2 = H⊥ + H‖, (A8)

where H‖ = p2
z/(2m). H⊥ is closely related to the two-

dimensional quantum harmonic oscillator:

H⊥ = 1

2m

(
p2

x + p2
y

) − ωLLz + mω2
L

2
(x2 + y2). (A9)

(Lz denotes the angular momentum component in the z

direction.) Since the electron motion is bound in lateral
direction, the spectrum of H⊥ is discrete and given by the
Landau levels:

Elμ = (2l + 1)h̄ωL, (l = 0,1,2, . . .); (A10)

that is, εlμ = 2l + 1. Each Landau level has infinite de-
generacy, as the magnetic quantum number of the electron
μ = −l,−l + 1,−l + 2, . . . can take any integer value greater
or equal to −l. However, only the eigenstates ψlμ with μ = 0
are of interest here, since all others vanish at the source
location. In polar coordinates, the corresponding normalized
eigenfunctions ψl0(ρ̂) read, using again the dimensionless
length ρ̂ = ωLρ/v0:

ψl0(ρ̂) =
√

mωL

πh̄
Ll(2ερ̂2)e−ερ̂2

, (A11)

where Ll(u) denotes a Laguerre polynomial [68]. Since
Ll(0) = 1, ψlμ(0) = [mωL/(πh̄)]1/2 δμ0 holds at the origin
ρ̂ = 0. Therefore, the completeness relation for the eigenstates
of H⊥ can be stated as

∑
l,μ

ψlμ(x,y)ψlμ(0,0)∗ = mωL

πh̄
e−ερ̂2

∞∑
l=0

Ll(2ερ̂2)

= δ(x)δ(y). (A12)
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Physically, the separability of the problem implies that
the wave function of the electron is a superposition of
scattering waves that occupy different Landau levels ψl0, with
the “remaining” energy E‖ = E − El0 associated with the
drift motion in the z direction. Indeed, if we introduce the
one-dimensional free-particle Green’s function G1D(z,0; E)
as the solution of [E − H‖]G1D(z,0; E) = δ(z), we find

[E − H]ψl0(ρ̂)G1D(z,0; E − El0)

= ψl0(ρ̂)[E − El0 − H‖]G1D(z,0; E − El0)

= ψl0(ρ̂)δ(z). (A13)

In view of Eq. (A12), the full Green’s function G(r,0; E) has
the series representation

G(r,0; E) =
∞∑
l=0

ψl0(ρ̂)ψl0(0)∗G1D(z,0; E − El0). (A14)

The remaining task is to find an expression for G1D(z,0; E‖).
As a free-particle Green’s function, it must have the form of an

outgoing wave in either direction of the z axis (or in the case
E‖ < 0, an evanescent wave). A simple analysis [67] shows
that

G1D(z,0; E‖) =
{

m

ih̄2k‖
eik‖|z| (E‖ > 0),

− m

h̄2k‖
e−k‖|z| (E‖ < 0),

(A15)

where k‖ = √
2m|E‖|/h̄. We introduce again dimensionless

coordinates, combine Eqs. (A12)–(A15), and finally obtain
the full Green’s function:

G(r,0; E)

= mk

2πh̄2 e−ερ̂2

( ∑
2l+1<ε

Ll(2ερ̂2)
e2i

√
ε(ε−2l−1)|ẑ|

i
√

ε(ε − 2l − 1)

−
∑

2l+1>ε

Ll(2ερ̂2)
e−2

√
ε(2l+1−ε)|ẑ|

√
ε(2l + 1 − ε)

)
. (A16)

The summation runs over all l = 0,1,2, . . .. If the energy
coincides with one of the Landau levels εl = 2l + 1, the
Green’s function diverges.
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