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Dipolar collisions of ultracold polar molecules in a microwave field
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Collisions at ultracold temperatures between 1�-state diatomic polar molecules in a circularly polarized
microwave field are theoretically analyzed. We demonstrate that elastic and inelastic collisions of polar molecules
at ultracold temperatures are affected by an external microwave field and that they are enhanced at resonance
frequencies. We show that the collision dynamics of polar molecules in a microwave field is largely determined by
the long-range dipole-dipole interaction. Through this interaction, two polar molecules can resonantly exchange
internal energy by undergoing a transition between neighboring rotational levels. This process may stabilize
the system and enable the successive evaporative cooling of molecules. This paper discusses fermionic polar
molecules at ultralow temperatures (1 μK).
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I. INTRODUCTION

Recent progress in creating and manipulating ultracold
polar diatomic molecules [1–13] has inspired the explo-
ration of new methods for achieving quantum control and
manipulating collisions. Because of its rotational nature, a
microwave field can be used to manipulate the states of
ultracold polar diatomic molecules. Molecular motion and
interactions between molecules can be controlled through both
the amplitude and the frequency of microwave radiation. There
are other relatively well-established methods for controlling
cold atoms, such as Feshbach resonance and optical shielding.
However, polar molecules at low energies exhibit several
distinctive characteristics. First, a large dipole moment permits
the manipulation of strongly correlated condensed-matter-like
systems [14–24], two-body interactions [25–37], and three-
body interactions [38]. Second, a combination of static and
dynamic electric fields can be used to enhance elastic collision
rates and suppress inelastic ones in a more sophisticated way
than other techniques [39]. Third, the spontaneous-emission
lifetimes of rotational states are much longer than typical
trap times, making it possible to design microwave traps
that are much larger than optical traps [40]. This makes it
possible to use very small detunings and so investigate different
regimes using microwave fields with low to high electric
fields and low to high frequencies. Thus, microwave traps
can potentially be large and deep and have the ability to trap
many molecules at temperatures as high as 1 K. However,
collisional cooling (evaporative or sympathetic) seems to be
the only way to achieve ultracold temperatures and sustain
dense samples. In a previous study [26], we considered various
aspects of the collision dynamics of cold polar molecules
in a circularly polarized microwave field. We considered
dipolar collisions and sought to determine how to control
them using a microwave field. The use of microwave fields
to control collisions between cold polar molecules and atoms
has been analyzed [41–43] and it has been demonstrated that
microwave fields induce couplings between Zeeman states and
thus enhance inelastic relaxation. It has also been demonstrated
that Feshbach resonances can be tuned by varying both the
intensity and the frequency of the microwave field. Microwave

fields have been shown to have the same effect on Feshbach res-
onances for NH-NH collisions [43] for which the long-range
dipole-dipole interaction may be more influential. The main
difference between molecule-molecule and molecule-atom
systems is that applying an electric field to two polar molecules
induces a strong long-range dipole-dipole interaction, whereas
a molecule and an atom interact only through short-range
interactions. Consequently, applying an ac electric field to
a molecule-molecule system can generate larger and deeper
traps than for molecule-atom systems. Another important
aspect of molecule-molecule systems is that they can undergo
chemical reactions even at ultracold temperatures [44–47].
Some of them, such as alkali-metal dimers KRb and LiCs, have
exergonic reactive collision channels [48] even when they are
in their vibrational and rotational ground state. Moreover, the
reaction-rate constant increases with increasing electric-field
strength as the dipole-dipole interaction is activated [49]. Some
other bialkali molecules (e.g., RbCs) have no reactive channels
in their rovibrational ground state and are thus promising for
obtaining stable molecular systems in the quantum regime.
Accounting for chemical reactions is beyond the scope of the
present study and thus our analysis of dipolar collisions in a mi-
crowave field is only appropriate for molecules with no reactive
channels in their ground state. In the present study, we investi-
gate dipolar collisions of 1� polar molecules in their rotational
and vibrational ground state trapped in a circularly polarized
microwave field. We consider circular polarization rather than
linear polarization since ac-Stark shifts contain many avoided
crossings, which enhance the collisional loss [40]. We consider
low-temperature collisions of polar molecules in the strong
molecule-field coupling and strong resonant molecule-field
coupling regimes. As polar molecules have large permanent
electric dipole moments, the strong dipole-dipole interaction
can be activated in such regimes and thus the collision
dynamics in a relatively strong external microwave field is
mostly determined by this long-range, anisotropic interaction:

VDD(R,ωA,ωB) = μ1 · μ2 − 3(R̂ · μ1)(R̂ · μ2)

R3

= −
√

6

R3

∑
q

(−1)qC2
−q(ω)[μ1 ⊗ μ2]2

q, (1)
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where ωA,B = (θA,B,φA,B) are the polar angles of molecules
A and B with respect to the laboratory-fixed quantization axis
and R = (R,ω) is the vector connecting the centers of mass of
the molecules in the laboratory-fixed coordinate frame. Here,
C2

−q(ω) is a reduced spherical harmonic. The short-range po-
tential for the diatom-diatom interaction is generally unknown
or poorly known. It is not generally possible to completely
ignore the short-range interaction, even when the collision
dynamics is mostly determined by the dipole-dipole interac-
tion. However, collisions of ultracold (i.e., temperatures below
ED = μ2

eff/D
3) polar molecules in their ground state possess a

universal threshold under a wide variety of circumstances [29,
37]; in other words, threshold cross sections approach the Born
limit of σ ∝ D2, where D = Mμ2

eff/h̄
2 is the dipole length,

M is the reduced mass, and μeff is the effective electric dipole
moment. This universality does not hold for bosonic species
at resonances where threshold cross sections are determined
by the s-wave scattering length [29]. Due to the strong dipole-
dipole interaction, the dipole length D is the dominant factor
and it is much larger than the size scale (typically R0–100 a.u.)
below which short-range interactions become significant. For
example, short-range boundaries for KRb and RbCs molecules
lie between 50 and 80 a.u., which are shorter than the van der
Waals length [50]. Because the present study considers ultra-
cold molecules, the discussion can be simplified by replacing
the short-range interaction by a zero boundary condition for the
wave function at a fixed interparticle separation of R0 � D.
This approximation is not helpful when it is desired to describe
resonances precisely, which requires an exact knowledge
of the short-range potentials. The strong long-range dipole-
dipole interaction between ground-state polar molecules can
be activated by both dc and ac fields. The advantages of
ac fields have been briefly described by DeMille [40]. The
main disadvantage of using ac fields is that even ground-
state molecules may undergo inelastic collisions, resulting in
collisional losses. Here, inelastic processes refer to processes
in which spin changing transitions occur that do not involve
other losses, such as those due to chemical reactions. We thus
wish to determine how critical this disadvantage is and whether
polar molecules can survive collision-induced Stark relaxation
processes and so be used for evaporative cooling in microwave
traps.

We expect to find the same universal threshold behavior that
has previously been observed [29,37], but the dipole length
and the effective dipole moment depend on both the electric-
field strength and the microwave frequency. On the whole,
collisions at ultracold temperatures are mostly controlled by
the two ratios ν/B and μE/hB, where ν is the microwave
frequency, B is the molecular rotational constant, and E is the
electric-field strength. As we show below, this is also true for
inelastic collisions of polar molecules and such collisions are
very sensitive to these two parameters. This phenomenon can
be clearly explained in terms of the field-dressed formalism,
which is a very appropriate approach for studying slow
collisions in ac fields because molecules can essentially be
“dressed” by such fields. As a dressed state is a superposition
of many pure states, inelastic collisions always occur between
dressed molecules (although they may have small cross
sections) and inelastic collisions can be drastically enhanced in
strong and/or resonant fields. The main reason why collisions

are inelastic is that dressed molecules effectively interact
through the dipole-dipole potential, whereas a larger field
in conjunction with a smaller detuning produces a stronger
dipole-dipole interaction. In the present case, we consider
polar molecules to be rigid rotors so that a dressed state is
a superposition of rotational states |J,MJ 〉. We are interested
in collisions of polar molecules in the dressed state, which
evolves adiabatically from the absolute ground state at zero
field, |J = 0,MJ = 0〉. This dressed state is a superposition of
|0,0〉, |1, ± 1〉, |2, ± 2〉, . . . states in the circularly polarized
microwave field. If the microwave frequency is considerably
smaller than the energy of the first excited rotational state
(i.e., ν � 2B), then few two-body inelastic collisions will
occur so that collision losses will be small. This condition
will be satisfied when there is a weak field (μE � hB). In
this case, almost no inelastic collisions will occur, as almost
all of the molecules will be in the pure |0,0〉 state, which
is beneficial for evaporative cooling. However, we are not
currently interested in this case because at such weak fields
the dipole-dipole interaction will not be strongly activated,
as the effective dipole moment will be very small. Thus, it
is not a long-range interaction system. We require a larger
field to exploit dipoles and small detunings (near-resonance
frequencies) to obtain a greater trap depth, which implies
ν ∼ B and μE ∼ hB. However, an unfortunate consequence
of such field parameters is that inelastic collisions are enhanced
under such conditions and molecules are already essentially
dressed by a microwave field and so undergo many more
inelastic collisions [26]. We analyze the nature of such
inelasticity and define the range of parameters for which
the system will have long interactions and have reasonably
small inelastic rates. We show that it is possible to have
relatively small inelastic cross sections at different nonres-
onance frequencies such as 2B < ν < 4B, where 2B, 4B, . . .

are resonance frequencies if the field strength is relatively
large (i.e., μE ∼ hB). Here resonance frequencies correspond
to the energy differences between the neighboring rotational
states.

Collisions in external fields not only enhance inelastic
processes, but also affect elastic processes. The latter is rather
well known and has been studied for many cases [29,37,
43,51,52]. However, elastic processes in a microwave field
have their own peculiarities, which can be better understood
in the field-dressed molecule picture. We found that at large
fields (i.e., μE > hB), the dipolar elastic collisions (elastic
collisions which are mostly determined by the dipole-dipole
interaction; see Sec. III) dominate over other collisions and
may provide successive evaporative cooling, especially for
fermionic molecules. The main aim of this study is to
determine the collision dynamics of ultracold polar molecules
in a microwave field. At ultracold temperatures, the long-range
dipole-dipole interaction follows the general behavior of a
molecule-molecule scattering process and it is sensitive to the
parameters of an external microwave field. In this study, we
focus on collisions of polar molecules in their strong-field-
seeking state; in other words, polar molecules prepared in the
absolute ground state and irradiated by a microwave field. After
discussing the model properties of 1� molecules in Sec. II, we
consider and illustrate some field-dependent characteristics of
elastic and inelastic cross sections in Sec. III.
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II. MODEL

The dressed-state formalism is particularly convenient for
describing the photon-atom interaction in the strong-field
limit [53,54], where the dressed states are eigenstates of the
Hamiltonian of the total system: particle plus photon. The same
holds for the molecule-field interaction. The idea of using the
field-dressed formalism for low-temperature atomic collisions
in optical traps was proposed and analyzed in [55–58]. Using
the basic ideas of this approach, we adapted it to analyze the
collisional dynamics of cold polar molecules in a microwave
cavity. To simulate dipolar collisions, we choose “typical”
(for heteronuclear alkali-metal dimers [59]) dipole moment
μ = 1 D.

A. Polar 1�-type molecules in a circularly
polarized microwave field

Here we analyze the ac-Stark effect for a polar molecule
in a circularly polarized microwave field and build dressed
states which are used for quantum scattering calculations.
The energy levels of 1�-type molecules can be described by
rotation J , total spin F (i.e., including nuclear spin), and
vibration υ quantum numbers. To simplify things, we will
neglect hyperfine splitting and consider molecules only in the
υ = 0 vibrational ground state. So we treat polar molecules as
rigid rotors with a permanent dipole moment. The basis states
of the rigid rotor plus field Hamiltonian H = Hrot + Hfield are

|J,M,n〉 ≡ |JM〉|N̄ + n〉, (2)

where M is the projection of J on the space-fixed axis, which
is conveniently chosen parallel to the wave vector of the
microwave field, N̄ + n is the dressed-state photon number,
and n � N̄ is the deviation of the photon number. The
ac-Stark splitting is caused by the molecule-field interaction
HStark = −	μ 	E . Thus the energy levels of the molecule in the
microwave field can be found by diagonalizing the following
Hamiltonian in the basis set (2) [60]:

Hmol,f = Hrot + Hfield + HStark

≡ BeĴ
2 + hν(a†a − N̄ ) − μE

2

1√
N

[(n · ε∗)a†

+ (n · ε)a]. (3)

Considering the circularly polarized microwave field (σ−),
the nonzero Hamiltonian matrix elements (normalized by hB)
are given by [40]

〈J,M,n|Hrot + Hfield|J,M,n〉 = J (J + 1) + n
ν

B
, (4)

〈J + 1,M + 1,n + 1|HStark|J,M,n〉

= x

2

√
J + M + 1

√
J + M + 2√

2J + 1
√

2J + 3
,

〈J − 1,M − 1,n − 1|HStark|J,M,n〉

= x

2

√
J − M + 1

√
J − M + 2√

2J + 1
√

2J + 3
, (5)

where x = μE/hB. Here, it is assumed that n is much
smaller than the mean photon number N̄ . In the case of the
circularly polarized field, which can be seen from the above
matrix elements [Eq. (4)], absorption (emission) of a photon

is accompanied by a change in angular momentum projection
M by 1. Figure 1 shows the energies of dressed states versus
applied electric-field frequency for the J = 0 and J = 1
states at x = 0.3 within the ν/B = [0,4] frequency range and
versus the applied ac-field strengths at some frequencies. The
ac-Stark shifts determine the trap depths for different states
as well. It should be noted that we show [Figs. 1(b)–1(d)]
dressed states | ˜(JMn)〉 with different numbers of photons,
which can be seen as a repetitive bunch of curves.

The dressed states of trapped molecules are not pure states
but the superposition of many states (see Sec. II B). Only
at weak fields (x � 1) and far-from-resonance frequencies
are molecules mostly in one state. For example, the dressed
“ground state” (it is marked as |000〉) molecules are mostly
in the J = 0,M = 0 state at ν < 2B frequencies, in the
J = 1,M = −1 state at 2B < ν < 4B, in the J = 2,M = −2
state at 4B < ν < 6B, and so on [Fig. 1(a)]. At around the res-
onance frequency ν = 2B, our state is a 50/50 superposition
of the J = 0,M = 0 and the J = 1,M = −1 states, while at
around the resonance frequency ν = 4B, our state is a 50/50
superposition of the J = 1,M = −1 and the J = 2,M = −2
states, and so on. At strong fields (x � 1), a dressed state will
be a superposition of many states, even far-from-resonance
frequencies.

The trap depth is defined by both the strength of a
microwave field and its frequency, while the frequency
determines if molecules at a given state are attracted to or
repelled out of the region of a strong microwave electric
field. For example, if one wants to trap (attract) ground-state
(J = 0,M = 0) molecules to regions of a strong field, then
the detuning 
 = ν − 2B from the J = 0 ↔ J = 1 resonance
must be smaller than zero [Figs. 1(a) and 1(b)]. For the positive
detuning, the depth for J = 1,M = −1 state molecules will
be the largest, while ground-state molecules will be mostly
repelled out of it [Figs. 1(a) and 1(c)]. It should be noted
that the dressed |000〉 state is mostly the J = 1,M = −1
state for positive detunings at weak fields (x � 1) and far-
from-resonance frequencies. The same is applied for order
resonance frequencies: if the detuning 
 = ν − 4B from the
J = 1 ↔ J = 2 resonance becomes positive, then molecules
in J = 2, − 2 states will be mostly attracted to a strong-field
region, while molecules in J = 1 and J = 0,M = 0 states
will be mostly repelled out of it and the depth for the
J = 2,M = −2 state will be the largest [Fig. 1(d)].

B. Dressed states

The ac-electric field mixes states with different J , M , and n

and hence neither of them is a good quantum number. Thus we
can only mark our states by their origin at zero field (Fig. 1),
where they can be assigned by J and M quantum numbers.

In practice, we transform the molecular state to a field-
dressed basis for performing scattering calculations, and the
state with a given mean photon number N̄ is described as

| ˜(JMn)〉 ≡ | ˜(JMn); 	E〉 =
∑
JMn

p(JMn)|JMn〉, (6)

where p(JMn) stands for the eigenfunctions of the Hmol,f

Hamiltonian (3) determined numerically at each value of the
field. We will continue to refer to the molecular states by the
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(a) (b)

(d)(c)

FIG. 1. (Color online) (a) The energies of dressed states vs the applied ac-field frequency at μE/hB = 0.3. (b)–(d) The energies of dressed
states vs the applied ac-field strengths.

quantum numbers J , M , and n, with the understanding that
they are only approximately good in a field, and that Eq. (6)
is the appropriate molecular state. Note that ac-Stark splitting
should be irrelevant to the value of |n| as n � N̄ , so we choose
small values of n. For the numerical calculations, the Hilbert
space should be truncated at some values of J and n. The
larger the field, the larger values of J and n should be taken
into account simultaneously. As we are not going to consider
cases with a very large field (x � 1), we truncate the Hilbert
space by Jmax = 2 and −1 � n � 1 values. Figure 2 shows
the dressed-state energy-level diagram for the rotational states
of a diatomic molecule in a circularly polarized microwave
field for such a truncation. The ac-Stark splitting is the same
for each manifold, N̄ + 0, N̄ − 1, or N̄ + 1, as states from
different manifolds are not connected and the energies of
neighboring manifolds are simply shifted on the hν energy
[Figs. 1(b)–1(d)]. But the dipole-dipole interaction can cause
transitions between the neighboring manifolds (orange arrows
on Fig. 2). The N̄ + 0 manifold consists of three states: |000〉,
|1 − 1 − 1〉, and |2 − 2 − 2〉. Then we will mark the states for
this manifold as |0̃00〉, | ˜1 − 1 − 1〉, and | ˜2 − 2 − 2〉. The same
marking stands for other manifolds.

III. DIPOLAR COLLISIONS IN A MICROWAVE FIELD

Collisional dynamics in a microwave field has it
own peculiarities, which can be better understood in the

field-dressed molecule picture. For example, let us consider
collisions of two-level molecules in a circularly polarized
(σ−) microwave field for the case when the levels are the
ground state J = 0 and the first excited rotational state J = 1.
As we are considering a σ− polarized field, we only need
to consider the |J = 1,MJ = −1〉 state. Following [53,60],
the molecule-field interaction couples these two unperturbed

FIG. 2. (Color online) The dressed-state energy-level diagram for
the rotational states of a diatomic molecule in a circularly polarized
microwave field. The N̄ + 0 and N̄ ± 1 manifolds are shown.
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states, |J = 0,MJ = 0〉|N̄〉 and |J = 1,MJ = −1〉|N̄ − 1〉,
and we obtain two perturbed or dressed states,

|1(N̄ )〉 = cosθ |J = 0,MJ = 0〉|N̄〉
+ sinθ |J = 1,MJ = −1〉|N̄ − 1〉,

|2(N̄ )〉 = −sinθ |J = 0,MJ = 0〉|N̄〉
+ cosθ |J = 1,MJ = −1〉|N̄ − 1〉, (7)

where |N̄ + n〉 are the photon number states, N̄ is the average
number of photons in the field mode, and tan2θ = −�/
,
where � is the Rabi frequency. If we consider collisions of two
molecules in the dressed |1(N̄ )〉 state, then we can formally
state that if both molecules remain in the same |1(N̄ )〉 state
after scattering, then the process is elastic: |1(N̄ )〉1|1(N̄)〉2 =⇒
|1(N̄)〉1|1(N̄ )〉2. However, this is not the only possible elas-
tic process in our formalism and this definition of elastic
collisions excludes another important elastic process. As
our dressed states are a superposition of the |J = 0,MJ =
0〉|N̄〉 and |J = 1,MJ = −1〉|N̄ − 1〉 states, elastic scattering
of these unperturbed states implies that only two elastic
processes, |0,0〉1|0,0〉2 =⇒ |0,0〉1|0,0〉2〉 and |1, − 1〉1|1, −
1〉2 =⇒ |1, − 1〉1|1, − 1〉2, are possible because a two-body
interaction does not alter the number of photons (since
the number of photons are conserved for two-body matrix
elements). On the other hand, the process |1(N̄ )〉1|1(N̄)〉2 =⇒
|1(N̄) − 1〉1|1(N̄ ) + 1〉2 is also elastic because both the in-
cident and final channels have almost the same energies in
the strong-field limit N̄ � 1. In terms of our unperturbed
states, such elastic scattering is simply the |0,0〉1|1, − 1〉2 =⇒
|1, − 1〉1|0,0〉2〉 process. Formally, this process implies that
two polar molecules resonantly exchange internal energy by
undergoing a transition between the |J = 0,M = 0〉 and |J =
1,M = −1〉 levels. In the present case, this can only occur
by the dipole-dipole interaction, as the matrix element for the
direct term is zero. This classification of elastic collisions into
two types assists in analyzing the role of the dipole-dipole in-
teraction. Namely, the latter elastic collisions are mostly deter-
mined by the dipole-dipole interaction, whereas the same is not
true for the former elastic collisions (since the diagonal matrix
elements for the dipole-dipole interaction are absent). We refer
to such collisions as dipolar elastic collisions. However, it is
important to remember that the dipole-dipole interaction is also
involved, although to a lesser degree, in the first elastic process.

A. Scattering formalism

Here, diatomic molecule-diatomic molecule scattering in
the presence of a microwave field is modeled in terms of
the interactions between two rigid rotors with permanent
dipole moments. Our model only accounts for dipole-dipole
interactions, which provide the largest contribution to the
collisional dynamics. In practice, prior to each scattering
calculation, we numerically transform the molecular state
to a field-dressed basis defined by (2). The coupled-channel
Schrödinger equations in the field-dressed basis take the usual
form,{

d2

dR2
I + 2m

h2
[EI − Eth(E,ν) − V(R,E,ν)]

}
F̃(R,E,ν) = 0,

(8)

where E is the magnitude and ν is the frequency of the
microwave field used to parameterize these equations, Eth(E,ν)
is the diagonal matrix of the threshold energies (i.e., the Stark
energies),

V(R,E,ν) ⇒ 〈β1| ⊗ 〈β2| ⊗ 〈lMl|V (ωA,ωB,ω,R)|β ′
1〉 ⊗ |β ′

2〉
⊗ |l′M ′

l 〉 (9)

is the matrix containing the dipole-dipole interactions and the
centrifugal potential, and F̃(R,E,ν) is the matrix of radial wave
functions in the field-dressed basis,

̃Mc =
∑

β1,β2,l,Ml

{|β1〉 ⊗ |β2〉 ⊗ |lMl〉}Mc F̃β1,β2,Mc (R,E,ν),

(10)

where {·}Mc is the angular part of this wave function,
|β〉 ≡ | ˜(JMn)〉 is the wave function for each molecule, and
Ml is the projection of the partial-wave quantum number
l on the laboratory axis. As an external microwave field
is circularly polarized (σ−), the zcomponent of the total
angular momentum of the system of two molecules plus field,
Mc = (M1 + M2 + ml − N )h̄, is conserved, where each of N

photons has an angular moment −h̄ [60]. In practice, we use
Mc = (M1 + M2 + ml − n)h̄, where n is a deviation of the
photon number from the mean photon number N̄ . Thus we
express our Hamiltonian in a basis of total angular momentum
Mc. Since the projection of total angular momentum of
the system on the field axis, Mc, is a conserved quantity,
calculations can be performed for each value ofMc separately.
We generally find that the dominant contribution to cross
sections arises from the minimal allowed absolute value of
Mc and that the general behavior of cross sections for another
Mc is quite similar, and so we restrict calculations accordingly.

We solve these equations using the logarithmic-derivative
propagator method [61] to determine the scattering matrices.
These matrices are then used to calculate the total state-to-state
cross sections according to the procedure described in [62].

B. Microwave field dependence

The channel states of the scattering problem under consid-
eration are

|β1〉 ⊗ |β2 > ⊗|lMl〉 ≡ | ˜(JMn), ˜(JMn)′〉 ⊗ |lMl〉. (11)

Because collisions between two identical particles are consid-
ered here, it is necessary to introduce a symmetrized basis:

{|β1〉 ⊗ |β2〉 ⊗ |lMl〉}sym

= [|β1〉 ⊗ |β2〉 + η(−1)l|β2〉 ⊗ |β1〉] ⊗ |lMl〉
[2(1 + δβ1β2 )]1/2

, (12)

where η accounts for the exchange symmetry. For fermionic
molecules at ultralow temperatures, for most cases it is
sufficient to account only for the p-wave (l = 1) and f -
wave (l = 3) partial waves. We are particularly interested
in the lowest-energy strong-field-seeking state for the N + 0
manifold. This | ˜(000)〉 state is indicated by the black circles
in Fig. 1. As mentioned in Sec. II A, the energy levels for
each manifold are the same as those of the ac-Stark shifts. As
such, it is sufficient to consider molecules in their incident
channels from any manifold, and the N + 0 manifold is
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the most convenient. Dipole-dipole interactions can induce
transitions between different manifolds, which can produce
inelastic relaxation. For example, the inelastic channels for
our incident channel | ˜(000), ˜(000)〉 are

| ˜(00 − 1), ˜(00 − 1)〉,| ˜(00 − 1), ˜(1 − 1 − 2)〉,
| ˜(1 − 1 − 2), ˜(1 − 1 − 2)〉, (13)

| ˜(00 − 1), ˜(2 − 2 − 3)〉,| ˜(1 − 1 − 2), ˜(2 − 2 − 3)〉,
| ˜(2 − 2 − 3), ˜(2 − 2 − 3)〉, (14)

and so on. Larger frequencies and field strengths result in
larger contributions of the channels to the total inelastic cross
section. It should be noted that all final states of an inelastic
process belong to the N − 1 manifold for both molecules.
The states of the N − 2 manifold only provide second-order
contributions to the total inelastic cross section and can be
safely neglected here. The threshold energies of the channels
of the N + 1 manifold are higher than the threshold energy
of our incident channel and do not contribute significantly to
the scattering dynamics at ultracold temperatures. However,
in contrast to the inelastic channels defined above, the
| ˜(00 − 1), ˜(001)〉 channel states belong to different manifolds:
the | ˜(00 − 1)〉 state belongs to the N − 1 manifold, whereas
the | ˜(001)〉 state belongs to N + 1 manifold. Additionally, the
threshold energies of this channel and our incident channel
are equal in the limit of a strong field (N → ∞). Another
important feature is that to a first-order approximation,
these two channels interact strictly through dipole-dipole
interactions:

〈 ˜(000), ˜(000)|VDD| ˜(00 − 1), ˜(001)〉
∝ 〈(00),(1 − 1)|VDD|(1 − 1),(00)〉. (15)

Thus, the | ˜(000), ˜(000)〉 =⇒ | ˜(00 − 1), ˜(001)〉 process is
caused, to the first-order approximation, by the exchange
of ground |J = 0,MJ = 0〉 and excited |J = 1,MJ = −1〉
rotational states, and it is isoenergetic. Formally, this exchange
describes dipolar elastic collisions and is the process described
above. The elastic | ˜(000), ˜(000)〉 =⇒ | ˜(000), ˜(000)〉 process,
to the first order, can only proceed through short-range
interactions.

Figure 3 shows the total elastic and total inelastic cross
sections at cold temperatures for our prototype molecule. Here

the total elastic cross section is the sum of cross sections
for the | ˜(000), ˜(000)〉 =⇒ | ˜(00 − 1), ˜(001)〉 process, which we
called the dipolar elastic one, and the | ˜(000), ˜(000)〉 =⇒
| ˜(000), ˜(000)〉 process, which is the “ordinary” elastic one. For
our initial state | ˜(000), ˜(000)〉, channels withMc = 0, ± 1 give
the main contribution, as only they have contributions from the
p-wave scattering. At ultracold temperatures, contributions
from larger |Mc| become large at larger fields (x � 1) and/or
near resonance frequencies (ν/B = 2,4, . . .). Figure 3 shows a
typical behavior of cross sections near and far from resonance
frequencies at a rather small field strength (x = 0.01). The
case in which the resonance frequency is ν/B = 2 is shown
in Fig. 3(a). At this frequency, the dipolar elastic process is
dominant, and at a temperature below ∼1 μK the total elastic
cross section follows the well-known Wigner threshold law for
dipolar collisions, σdip ∝ const, as a consequence of the fact
that the dipole-dipole interaction is fully engaged. In the case
of a far-from-resonance field [Fig. 3(b)], the dipole-dipole
interaction is weak and the elastic cross section follows the
Wigner threshold law for short-range interactions, namely,
σel ∝ E2. The inelastic cross sections at threshold regime
obey the familiar Wigner law for p waves, σin ∝ E1/2, at
any frequency. One can see that the inelastic cross sections
are quite large for ground-state molecules at the resonance
frequency, as both elastic and inelastic processes are enhanced
by the strong dipole-dipole interaction.

Figure 4 shows contributions from different channels to the
total cross sections only for the Mc = 1 case. It is clearly seen
that with changing field frequency, from its resonance value
(ν/B = 2) through some intermediate value (ν/B = 1.5) to
the far-from-resonance case (ν/B = 1), the threshold behavior
for the elastic process becomes less and less of the dipolar
nature and eventually follows the Wigner law for short-range
interactions. As we noted above, the cross section of dipolar
elastic collisions rather precisely follows universal, σdip ∝ D2,
threshold behavior, while the threshold behavior of elastic
collisions follows the well-known formula for the p-wave scat-
tering of two indistinguishable fermions [63], σel = 24πk4a2

p,
where k is a wave number and ap is a scattering volume. As we
do not have a realistic short-range potential, here it is defined
by the effective van der Waals forces C6/R

6, where C6 =
μ4

eff/4B. In this case, the scattering volume can be estimated
by the simple semiclassical formula [64] ap = āp[1 + tan(A −

(a) (b)

FIG. 3. (Color online) Total elastic (solid lines) and total inelastic (dotted lines) cross sections vs the collisional energy for (a) ν/B = 2
and (b) ν/B = 1 at x ≈ 0.01 strength for the prototype molecule with μ = 1 D. See the text for details.
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(a) (b)

(c)

FIG. 4. (Color online) Total elastic (thick solid lines), elastic (solid lines), dipolar elastic (dashed lines), and total inelastic (thick dotted
lines) cross sections vs the collisional energy for (a) ν/B ≈ 2, (b) ν/B = 1.5, and (c) ν/B = 1 at x ≈ 0.01 strength for the prototype molecule
with μ = 1 D. State-to-state inelastic cross sections are shown by thin lines of a different color. See the text for details.

3π/8)], where āp = (2mC6/h̄
2)3/4�(1/4)/[24

√
2�(7/4)] and

A = (1/h̄)
∫ ∞
R−

√−2mV (R)dR. This means that the “typical”
elastic cross section can be described reasonably well, knowing
only the mean scattering volume āp in the case that is far
from a p-wave resonance, which means that the typical elastic
cross section is mostly defined by the dipole moment and
the rotational constant. It is quite easy to verify that as soon
as the van der Waals length lvdW = (2mC6/h̄

2)1/4 becomes
larger than the dipole length D, the threshold behavior mostly
follows the Wigner law for short-range interactions [Figs. 4(b)
and 4(c)]. Although, if both of these lengths are of the same
order, one can find a transition from σtot.el ∝ E2 to σtot.el ∝ D2

behavior [Fig. 4(b)] at ultracold temperatures.
The main contribution to the total inelastic cross section

comes from the relaxation to the | ˜(00 − 1), ˜(00 − 1)〉 channel,
which is true at least for frequencies smaller than the first
resonance one (ν/B = 2). But for near-resonance frequencies
[Fig. 4(a)], the other inelastic cross sections are rather large
as well, and considerable contributions from other channels
[| ˜(00 − 1), ˜(2 − 2 − 3)〉,| ˜(1 − 1 − 2), ˜(2 − 2 − 3)〉,| ˜(10 − 1),˜(10 − 1)〉] appear at lower temperatures when these channels
become open. Here we would like to mention the peculiarity
of the | ˜(00 − 1), ˜(00 − 1)〉 state noted in [26], namely, that
the relaxation to this channel cannot cause any trap losses, as
both molecules do not change their internal states but only
transit from the (N̄ + 0) manifold to the (N̄ − 1) manifold.
The first “real” inelastic process is the relaxation to the
| ˜(00 − 1), ˜(1 − 1 − 2)〉 channel, which opens at ν/B = 1.

Further, here we consider collisional dynamics only in
the ultracold regime (E < ED), namely, at temperatures of
1 μK, which usually implies a threshold regime in which
dipolar collisions may be described as exhibiting universal
behavior [29]. Figure 5 shows the cross sections as a function
of the frequency for fermionic prototype molecules; the
left panels show cases when molecules are in the lowest
(for N̄ + 0 manifold) strong-field-seeking state | ˜(000)〉 and
which is a ground state (see Figs. 1 and 2), while the right
panels show cases when molecules are in the first (for this
manifold) excited state | ˜(1 − 1 − 1)〉 and which is a weak-
field-seeking one at considered field strengths. Two types of
pronounced resonance structures are apparent. First, the broad
resonances at ν/B = 2,4 reflect the resonance frequencies
[and, therefore, the avoided crossings; Fig. 1(a)] between the
|0,0〉 and|1,−1〉 states, between the |1,−1〉 and |2,−2〉 states,
and so on. The second type of resonance structure includes a
large number of sharp resonances (Feshbach resonances) as a
consequence of short-range interactions. These structures will
not be considered here because short-range interactions are
unknown, and their appearance is defined by the inner wall of
the potential. It should be noted that such resonance structure
is quite intensive for molecules in the | ˜(000)〉 state, while it is
almost absent for molecules in the | ˜(1 − 1 − 1)〉. The reason
for it is quite simple: the dressed adiabatic potential for the
| ˜(1 − 1 − 1), ˜(1 − 1 − 1)〉 is always repulsive, which includes
a van der Waals repulsion as well, and so is shielded from
the short-range region at ultracold temperatures. The inelastic
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(a) (d)

(b) (e)

(c) (f)

FIG. 5. (Color online) Elastic (solid lines), dipolar elastic (dashed
lines), and inelastic (dotted lines) cross sections vs the frequency of
the microwave electric field at the collision energy 1 μK for (a),
(d) x = 0.01, (b), (e) x = 0.1, and (c), (f) x = 0.5 strengths for
the prototype molecules with μ = 1 D. The (a)–(c) cases are for
molecules in the | ˜(000)〉 state; the (d)–(f) cases are for molecules in
the | ˜(1 − 1 − 1)〉 state. See the text for details.

processes are mostly caused by the diabatic crossings, which,
as a rule, happen at distances larger than a characteristic scale
for short-range interactions [(μ2/B)1/3] and limit the barrier
height [39,65]. The detailed picture of it will be considered
elsewhere.

At small field strengths, such as x � 1 and out-
of-resonance frequencies, the elastic cross sections
of the | ˜(000), ˜(000)〉 =⇒ | ˜(000), ˜(000)〉 [or | ˜(1 − 1 − 1),˜(1 − 1 − 1)〉 =⇒ | ˜(1 − 1 − 1), ˜(1 − 1 − 1)〉] process depend
extremely weakly on the frequency [Figs. 5(a) and 5(d)].
The cross sections appear as straight lines, indicating that
this type of elastic collision is mainly determined by the
short-range components of the interaction potential, and the
dipole-dipole interactions are not extensively involved. As we
mentioned above, the elastic cross section for molecules in the
| ˜(1 − 1 − 1)〉 state is mostly defined by the repulsive van der
Waals interaction in such cases.

The dipolar elastic process almost always dominates the
collision dynamics, especially at large field strengths and
small detunings around the resonant frequencies. Figure 5
also demonstrates that the dipolar elastic cross sections agree
rather well with the universal threshold behavior ∝D2 near
the resonance frequency (ν = 2B), where such behavior can
be easily determined in the dressed-molecule picture because
the effective dipole moment for each molecule is defined
as

√
2λ�μ/(λ2 + �2) (see, for example, [18]), where λ =

(
 + √

2 + 4�2)/2, 
 = ν − 2B, and � = μE/h is the

Rabi frequency. This agreement is true for any resonance
frequency and at not very large field strengths (x � 1). At
large field strengths (x = 1, for example), the effective dipole
moment and, therefore, the dipole scattering length should
not be defined according to this simple formula because the
dressed states are a superposition of more than two states.

Ground-state polar molecules can undergo inelastic colli-
sions in the presence of a microwave field, and the collision
rates can be quite enhanced. This was demonstrated in [66]
using a simple model based on the Born approximation.
The same effects were observed in [42] for atom-molecule
collisions, and the inelastic rates were found to be enhanced
near the avoided crossings between different Zeeman levels.
Here, we see the same effects near the resonance frequencies,
except for molecule-molecule collisions in which crossings
between different Stark levels are avoided. Thus, if the
detuning is small (near-resonance frequencies), both elas-
tic and inelastic collisions are enhanced, and the inelastic
cross sections can be easily compared with the elastic ones
(Fig. 5). Although the near-resonance frequencies provide
deep traps, their use may be impractical for evaporative cooling
because of the large rate of inelastic collisions. At small
field strengths (x = 0.01, for example) and at frequencies
far from resonance, the inelastic cross sections are indeed
small. The reason for this is clear: ground-state molecules
are “weakly dressed,” and inelastic collisions are “weak” as
well. By the same reasoning, however, the dipolar elastic cross
sections can be quite small. This does not contribute positively
toward effective evaporative cooling, although it can still be
helpful.

Another interesting feature arises from the fact that our
state of interest is a superposition of |0,0〉, |1,−1〉, |2,−2〉,
and similar states. However, at low field strengths, this state is
almost a pure |0,0〉 state at 0 < ν � 2B frequencies, almost
a pure |1, − 1〉 state at 2B � ν � 4B frequencies, and so on
[Fig. 1(a)]. Moreover, it is possible to achieve rather small
inelastic collision rates between these resonance frequencies
[Fig. 5(b)]. Thus, to optimize the loading of a microwave trap
with molecules, we suggest that it is “safer” to load |J =
0,M = 0〉 molecules at ν/B < 2; |1,−1〉 at around ν/B = 3;
|2,−2〉 at around ν/B = 5; and so on, and it would be better
to define x < 1, which decreases the regions of strong mixing.
Although, for example, if the loading of ground-state (|J =
0,M = 0〉) molecules is at red-detuned frequencies [ν/B < 2;
Figs. 5(a)–5(c)], then one can easily catch some of Feshbach
resonances, which are especially abundant at near-resonance
frequencies ν/B = 2,4, . . .. On the other hand, if ground-state
molecules are loaded at blue-detuned frequencies and the
microwave field (MW) is ramped on adiabatically, then the
ground state evolves into the state | ˜(1 − 1 − 1)〉 [ν/B > 2;
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(a) (b)

(b) (e)

(c) (f)

FIG. 6. (Color online) Elastic (solid lines), dipolar elastic (dashed lines), and total inelastic (dotted lines) cross sections vs the microwave
electric-field strength at the collision energy 1 μK for (a), (d) ν/B = 1, (b), (e) ν/B = 1.5, and (c), (f) ν/B ≈ 2 for the prototype molecules.
The (a)–(c) cases are for molecules in the | ˜(000)〉 state; the (d)–(f) cases are for molecules in the | ˜(1 − 1 − 1)〉 state.

Fig. 1(a)]; inelastic cross sections can be quite large as well
but with less of a resonance structure [Figs. 5(d)–5(f)] because
of the shielding described above. At large field strengths
(x > 1), it may be difficult to obtain a small inelastic cross
section [Fig. 5(c)] for molecules with a large dipole moment.
To clarify this, we show the dependence of the cross section
on the microwave electric-field strength (Fig. 6). One can see
that all cross sections are saturated when getting closer to
x = 1, which reflects the long-range physics of the interacting
dipoles. But such behavior is interrupted for molecules in the
| ˜(1 − 1 − 1)〉 state at quite a large value of the MW field,
which may denote the existence of some diabatic crossings
(Fig. 1). But, regardless, cases with larger fields, x � 1, have
to be verified by taking into account more rotational levels (in

our case, we only have N = 0,1,2 levels) and will be studied
elsewhere. Again, a rich resonance structure is associated with
these cross sections and is abundant for molecules initially in
the | ˜(000)〉 state. Saturation occurs at μE ∼ 2hB for out-of-
resonance frequencies [Figs. 6(a) and 6(c)] and at μE ∼ 
 for
near-resonance frequencies [Fig. 6(b)]. In general, inelastic
cross sections are comparable to elastic ones at field strengths
larger than the saturation field. Thus, it is more practical
to choose the field strength considerably smaller than the
strength at saturation either for out-of-resonance frequencies
or for near-resonance ones. But it should not be very small,
such as x ≈ 0.01, for out-of-resonance frequencies, as the
dipole-dipole interaction is not engaged enough and collisional
dynamics is mostly defined by short-range interactions.
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IV. SUMMARY

In this paper, we describe a theoretical investigation
of ultracold collisions among ground-state polar diatomic
molecules in a circularly polarized microwave field. Our results
show that the collisions are highly sensitive to the external
field and can be explained qualitatively and, up to some
extent, quantitatively by only knowing the dipole moment
and the rotational constant of polar diatomic molecules.
The full quantitative description can only be possible if a
full short-range potential surface is known. We have found
that strong long-range dipole-dipole interactions provide a
resonant exchange of internal energy by transitioning between
the |J = 0,M = 0〉 and |J = 1,M = −1〉 states, between the
|J = 1,M = −1〉 and |J = 2,M = −2〉 states, and so on, so
that this process determines dipolar elastic collisions. Such
dipolar elastic collisions dominate the other collisions at

almost any parametrization of the microwave field, and these
collisions may facilitate the successful evaporative cooling
of polar molecules. However, a rich resonance structure can
spoil it for ground-state molecules loaded at red-detuned
frequencies. We have found that for molecules loaded at
blue-detuned frequencies, shielding may be effective only for
near-resonance frequencies and when the field strength is not
large compared with a rotational constant. We conclude that
it is impractical to use a field strength at which μE > 2hB

or μE < 
 because the inelastic cross section is not small
enough to provide a successful evaporative cooling.
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