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Theoretical estimate of fivefold differential cross sections and spin asymmetry for K -shell (e,3e)
processes with transversely-spin-polarized relativistic electrons
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Ab initio first-order Born calculations of the fivefold differential cross section (FDCS) and transverse spin
asymmetry in FDCS for the K-shell double ionization of atoms by transversely polarized incident electron
are reported. The FDCS and transverse spin asymmetry in FDCS are found to be sensitive to atomic number
Z, ejection angle, and energy-sharing ratio of the ejected electrons. FDCS is decomposed into longitudinal
and transverse contributions and their effects on the angular profile of FDCS such as shifting in the binary
peak are reported. Hitherto, all (e,3e) experiments have been performed in the nonrelativistic energy regime
without consideration of spin polarization. We hope that the present calculation of FDCS and spin asymmetry in
FDCS may induce quantum mechanically complete (e,3e) experiments in the relativistic energy regime wherein
spin-dependent interaction becomes prominent.
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I. INTRODUCTION

The transition of two electrons from the bound state to the
continuum state by the impact of an incident electron on an
atom [i.e., the (e,3e) process] is a very important process for
understanding the reaction mechanism, collision dynamics,
and electron-electron correlation among the participating
electrons in the process. In an (e,3e) process, we detect all
the outgoing electrons (scattered and ejected electrons) in
coincidence after angular and energy analysis, and thus the
coincidence cross section [here a fivefold differential cross
section (FDCS)] contains the most detailed information about
the electron impact double-ionization process of an atom.
The first (e,3e) measurement on an Ar atom was reported in
1989 [1] which stimulated more experimental and theoretical
activities in the (e,3e) field. The progress in the field was
further accelerated after the first measurement on a He atom
[2], particularly in the theory, because He is the simplest target
for theoretical calculation of FDCS [2–5].

Hitherto, almost all theoretical and experimental activities
in the (e,3e) process have concentrated on the nonrelativistic
energy regime wherein spin-dependent interaction plays no
major role. We can understand the (e,3e) process through a
quantum mechanically complete experiment if we can include
the spin of the participating electrons in our description.
Various aspects related to spin-dependent interaction have
been very well probed for the (e,2e) field by studying triple
differential cross section (TDCS) and spin asymmetry in
various geometrical modes [6]. However, the (e,3e) field is still
unexplored in these aspects at relativistic energy. There is not
even any theoretical estimation of FDCS and spin asymmetry
in FDCS in the literature. The purpose of this paper is to look
into this unexplored field by giving a theoretical estimation
of FDCS and transverse spin asymmetry in FDCS in the
relativistic energy regime for the K-shell double ionization of
atoms and to explore the possibility of quantum mechanically
complete (e,3e) experiments in the relativistic energy regime,
wherein spin-dependent interaction becomes prominent.
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It is worth mentioning that Becher and Joulakian have
described the Dirac plane wave for incident and scattered
electrons for the (e,3e) process [7]. They neglected spinors
for bound and ejected electrons in the calculation of FDCS
because they performed their calculation for a small Be
atom with equal ejected-electron energies of 10 eV in their
calculation. For these two cases, the relativistic effects are
supposed to be smaller. Furthermore, they calculated the
charge density term in their calculation of FDCS neglecting
the current density term. In the present calculation, we
calculate both charge and current density terms related to
the incident-to-scattered electron transition. Furthermore, we
also include relativistic effects for the bound K-shell electrons
as well as those for the correlated ejected electrons in the
continuum state because of their dominance in the present cal-
culation. In addition, we report the transverse spin asymmetry
in FDCS due to spin-polarized incident electrons.

II. THEORY

We develop our formalism with following assumptions:
(1) The incident electron emits a virtual photon at (x,t)

along the direction of momentum transfer which is absorbed
by the atom at (x ′,t ′) (see Fig. 1). The incident electron-atom
interaction is of first order. Due to this interaction the incident
electron is scattered by an angle θs from the incident electron
direction.

(2) We also assume that the electromagnetic interaction, via
a virtual photon interaction, emits the K-shell bound electrons
into the continuum state. The fast and slow ejected electrons
are ejected in the θ1 and θ2 direction, respectively, from the
direction of the incident electron. All the electrons are in same
plane (scattering plane).

(3) We describe incident and scattered electrons by a Dirac
plane wave. We choose a Darwin-type wave function for the
K-shell bound electrons [8].

(4) We describe the spatial part of the ejected electrons
by approximated Brauner-Briggs-Klar (BBK) type wave
functions [9] [the two Coulomb wave with Gamow factor
(2CG) approach] with the Sommerfeld-Maue relativistic factor
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FIG. 1. Schematic diagram for (e,3e) process on atom (A) by an
incident electron (ei). The electromagnetic interaction is mediated
through a virtual photon along the momentum transfer direction q

(θq , from the incident electron direction). The incident electron is
scattered by θs from the direction of the incident electron (dash line),
while fast and slow ejected electrons are ejected in θ1 and θ2 directions,
respectively, from the direction of the incident electron. The spin of
the incident electron is polarized perpendicular to the scattering plane.

[10,11]. For the singlet state of the ejected electrons, we keep
the spatial part of the wave function symmetric and the spin
part with asymmetric Dirac spinors. While for the triplet state,
we keep the spatial part of the wave function asymmetric and
the spinor part with the symmetric Dirac spinors.

Five-fold differential cross section for the (e,3e) process
can be evaluated by computing the following term:

d5σ

d�sd�1d�2dE1dE2

= (2π )4 ksk1k2

ki

EiEsE1E2

c8

∑̄
εi ,εb1 ,εb2

∑
εs ,ε1,ε2

|〈f |Ŝ|i〉|2, (1)

where Ŝ is the S-matrix operator; i,s, 1, 2 and b1,b2 refer to the
incoming, scattered, and fast and slow ejected electrons in the
continuum state and those (i.e., 1 and 2) for the bound states,
respectively. Here Ei , Es , E1, E2 and ki , ks , k1, k2 are the
on-shell total energies and momenta of the unbound particles,
and ε are the spin projections with respect to the quantization
axis, which we take along the momentum transfer direction.

FDCS here is insensitive to spin polarization because it is
calculated as an average over initial-state spins and a sum over
final-state spins. The main task here is to calculate the S-matrix
element of the following form:

〈f |Ŝ|i〉 = −1

c

∫
Aμ(r1,r2)Jμ(r1,r2)d3r1d

3r2, (2)

where Aμ(r1,r2) is a four-potential and can be expressed as

Aμ = 4π

(2π )3

[u†(ks,εs)γ ◦γ μu(ki,εi)][
q2 − (

�E
c

)2] {−Z + eiq·r1 + eiq·r2}.

(3)

Here q = ki − ks is the momentum transfer, �E = Ei − Es ,
γ μ are Dirac matrices, Z is the atomic number of the atom,
and u(ki,εi) and u(ks,εs) are Dirac spinors of following form:

u(k, ↑) =
√

E + c2

2 E

⎛
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1

0
ckz

E+c2

c(kx+iky )
E+c2

⎞
⎟⎟⎟⎟⎠, (4a)

u(k, ↓) =
√

E + c2

2E

⎛
⎜⎜⎜⎝

0
1

c(kx−iky )
E+c2

ckz

E+c2

⎞
⎟⎟⎟⎠. (4b)

Here (↑) and (↓) attached to the spinors represent spin-up
and spin-down polarization of the electrons. We describe
the atomic transition four-current density for the electron
transition from the K shell to the continuum state by Jμ(r1,r2)
in the following form:

Jμ(r1,r2) = cψ
†
f (r1,r2)γ ◦γ μψi(r1,r2). (5)

For the singlet state, ψf (r1,r2) is the approximated symmetric
BBK-type wave function [9] (2CG approach), multiplied by
the asymmetric Dirac spinors for the ejected electrons. The
wave function ψf (r1,r2) has following form:

ψf (r1,r2) = C√
2

[
φk1 (z1,r1)φk2 (z2,r2) + φk2 (z2,r1)φk1 (z1,r2)

]
× [u(k1, ↑)u(k2, ↓) − u(k2, ↓)u(k1, ↑)], (6)

where φkj
(zj ,rj) is the Coulomb wave function of the ejected

electron j whose momentum is kj . The repulsive Gamow
factor C is given by

C = exp
−π

k12
�

(
1 − 1

k12

)
, (7)

where k12 = |k1−k2|
2 .

Alternately, there are three different forms of ψf (r1,r2) for
the triplet state of the ejected electrons (the spatial part is
antisymmetric and the spinor part is symmetric):

ψf (r1,r2) = C√
2

[
φk1 (z1,r1)φk2 (z2,r2) − φk2 (z2,r1)φk1 (z1,r2)

]
× [u(k1, ↑)u(k2, ↓) + u(k2, ↓)u(k1, ↑)], (8)

ψf (r1,r2) = C
[
φk1 (z1,r1)φk2 (z2,r2) − φk2 (z2,r1)φk1 (z1,r2)

]
×[u(k1, ↑)u(k2, ↑)], (9)

ψf (r1,r2) = C
[
φk1 (z1,r1)φk2 (z2,r2) − φk2 (z2,r1)φk1 (z1,r2)

]
× [u(k1, ↓)u(k2, ↓)], (10)

While ψi(r1,r2) is an asymmetric Darwin wave function for
K-shell electrons [12] with following form:

ψi(r1,r2) = Z′3[asb1
(↑)asb2

(↓) − asb2
(↓)asb1

(↑)
]
e−Z′(r1+r2),

(11)

where Z′ = Z − 0.3 is the effective nuclear charge and asb
is

Darwin matrix of the following form (in atomic units):

asb
(↑) =

⎛
⎜⎜⎜⎝

1
0

1
2ic

δ
δz

1
2ic
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δ
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+ i δ
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)

⎞
⎟⎟⎟⎠, (12a)
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In the calculation of matrix element 〈f |Ŝ|i〉, we encounter
the following types of spatial integrals:

I1 =
∫

φ∗
k (r)eiq·re−Z′rd3r, (13a)

I2 =
∫

φ∗
k (r)eiq·r δ

δx
e−Z′rd3r, (13b)

I3 =
∫

φ∗
k (r)eiq·r δ

δy
e−Z′rd3r. (13c)

I4 =
∫

φ∗
k (r)eiq·r δ

δz
e−Z′rd3r. (13d)

In the calculation of FDCS, we consider all 64 possible
combinations of spins of participating electrons. We separately
calculate FDCS with spin-up [FDCS(↑)] and spin-down
[FDCS(↓)] arrangements of incident electron. The unpolarized
FDCS can be calculated as

(FDCS)unpolarized = 1
2 [FDCS(↑) + FDCS(↓)]. (14)

We also calculate transverse spin-up and spin-down asymme-
try AT in FDCS as

AT = FDCS(↑) − FDCS(↓)

FDCS(↑) + FDCS(↓)
. (15)

The spin asymmetry in K-shell ionization is caused by the
spin-dependent forces, i.e., by Mott scattering (due to the
spin orbit interaction of the continuum electrons moving
with relativistic energies in the Coulomb field of the atomic
nucleus). In the theory described here, the definition of Dirac
spinor u(ki,si) for the incident electron, presumes that the
mean spin direction of the electron is along q. Taking the spin
direction perpendicular to the collision plane, one has to rotate
amplitude 〈f |Ŝ|i〉 as suggested in Ref. [13]. For brevity, we are
not discussing this derivation in detail and interested readers
can follow Ref. [13] for further details.

III. RESULTS AND DISCUSSION

We have calculated FDCS and transverse spin asymmetry
in FDCS for Ca, Zn, and Ag atoms. These targets were chosen
to find the relativistic effects on FDCS and spin asymmetry
with Z. Here we present FDCS (left panel) and transverse spin
asymmetry in FDCS (right panel) in Fig. 2 as a function of
the slow ejected electron angle θ2, keeping θ1 (the fast ejected
electron angle) fixed along the momentum transfer direction.
We keep the incident electron energy 340 and 88.2 keV for
the ejected electrons. The energy of the scattered electron is
chosen using energy conservation of the (e,3e) process. We
keep the angle of the scattered electron at a fixed angle −7◦
from the incident direction, and we change the energy-sharing
ratio (R = E1

E2
) between the two ejected electrons from 1 to

3.44. We have chosen a large energy for the ejected electrons
to scale down multiple scattering of ejected electrons from the
other bound electrons of the atom. Since we are considering
atoms which have many electrons, particularly for the Ag atom,
the chances of multiple scattering of ejected electrons with the
bound electrons may increase at lower ejected electron energy.

We observed that the angular profile of FDCS is not sym-
metric about the momentum transfer direction even through the

FIG. 2. FDCS (left panel) and spin asymmetry in FDCS (right
panel) vs the angle of the slow ejected electron (θ2) for (a), (d) Ca,
(b), (e) Zn, and (c), (f) Ag targets. The kinematics used here is
Ei = 340 keV, θs = −7◦, θ1 = θq (momentum transfer direction).
For solid curve: E1 = E2 = 44.1 keV; dashed curve: E1 = 52.1 keV,
E2 = 36.1 keV; dotted curve: E1 = 60.1 keV, E2 = 28.1 keV; dash-
dotted curve: E1 = 68.1 keV, E2 = 28.1 keV. The energy of the
scattered electron for different targets can be found from the energy
conservation. The arrows at θ2 = θq , θ2 = θ−q , θq + 90◦, and θq − 90◦

refer to, respectively, the momentum transfer direction, opposite to the
momentum transfer direction, and perpendicular to the momentum
transfer direction.

present calculation is in the first order for the incident electron-
projectile interaction. For most cases, we observed a two-peak
structure located almost in the perpendicular direction to the
momentum transfer axis [i.e., along θq + 90◦ and θq − 90◦
directions, see Figs. 2(a)–2(c)] and the distribution of FDCS
for these two regions are not symmetric. Apart from these two
peaks, we also observed a peak in the binary region (θ = θq)
for lighter targets, like Ca and Zn targets [see Figs. 2(a) and
2(b)], for R > 1 (i.e., E1 > E2). It is well known that the
symmetry in differential cross sections about the momentum
transfer direction is found in the first-order Born calculations
in the nonrelativistic (e,2e) and (e,3e) processes, and any
deviation in the symmetry of differential cross sections, if
observed, is due to second- or higher-order projectile-target
interactions. However, symmetry breaking in TDCS (triple
differential cross section) has also been observed for the
(e,2e) process in the relativistic energy regime, even for the
first-order theory. Using the relativistic distorted-wave Born
approximation (rDWBA) calculation, Ast et al. [14] attributed
such type of shift to the effect of magnetic and retardation
contributions of the electron-electron interaction and distortion
effects in the incoming and outgoing channels of the (e,2e)
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process. Bhullar and Sud [12] used the one-photon exchange
approximation to demonstrate that the shift in the binary peak
and formation of recoil peak in the (e,2e) process occurs due
to interference between the atomic transition charge density
and current density contributions. Our first Born calculation
also confirms such type of symmetry breaking in FDCS about
the momentum transfer direction for the (e,3e) process. It will
be an interesting task to figure out the causes of such type of
symmetry breaking in FDCS for the (e,3e) processes.

The absolute cross section for these targets are found to
be varied in range from μb/sr3 keV2 to 10−3 μb/sr3 keV2.
The absolute TDCS reported for (e,2e) process are found to
be 2–200 mb/sr2 keV for various atoms, which were mostly
reported for 300 and 500 keV impact energies. If we compare
the present results with the absolute data of TDCS reported in
Ref. [6], it seems quite disappointing in terms of the feasibility
of (e,3e) experiments in the immediate future for the present
kinematics. However, we will also find here another kinematics
wherein the absolute FDCS can be increased significantly.

If we correlate angular profiles of FDCS with Z, we observe
that the angular profile is not changing considerably for Ag
atom with different R [see Fig. 2(c)]. However, for lower Z

targets (i.e., for Ca and Zn targets), the angular profile of FDCS
changes more rapidly with R [see Figs. 2(a) and 2(b)]. For the
Ag atom though the peaks for different R are directed roughly
in the same direction, their intensities (magnitude) do not vary
sharply with R. We also observed that the two-peak structure
for the Ag atom has one larger peak around θ2 = −80◦ and a
relatively smaller peak around θ2 = 105◦ [see Fig. 2(c)]. These
two peaks are roughly directed perpendicular to the momentum
transfer direction (larger peak is in the θq − 90◦ region; smaller
peak, θq + 90◦ region). For other targets, we have different
features in the angular profile with R. For the Ca atom, the
peak at θq ± 90◦ is found to be much smaller for larger R
[dotted and dash-dotted curves in Fig. 2(a)]. However, we
observed a dominant peak at θ = θq for these R. The angular
profile of Zn atom shows intermediate results of Ca and Ag
atoms. Hence we observed that the perpendicular emission to
momentum transfer direction for the slow ejected electron is
more prominent for the Ag atom (heavy target); however, for
the other lighter targets the slow electron prefers to get ejected
in the momentum transfer direction. If we see the kinematics,
we find that the perpendicular component of the momentum
transfer along θq + 90◦ and θq − 90◦ direction is zero [i.e.,
(ki − ks)perp = 0]. As the fast ejected electron is fixed along
the momentum transfer direction in the present calculation,
the overall perpendicular component of ki − ks − k1 is zero,
which results in k2 + qr = 0 for the perpendicular direction
(here k2 and qr are the momenta of the slow ejected electron
and nucleus, respectively). So the perpendicular emission
of the ejected electron from the momentum transfer axis is
through electron-nucleus scattering. Thus the angular profile
at θq + 90◦ and θq − 90◦ should reflect the effect of the size
of the nucleus. This is evident from the dominant peaks found
at θq ± 90◦ for various R for the Ag atom, which has the
heaviest nucleus in the present calculation. The dominance
of peaks at θq + 90◦ and θq − 90◦ for the other two targets
decreases systematically with decrement of Z, thus showing
the signature of the effect of nucleus size on FDCS. For lighter
atoms like Ca and Zn, we have a large variation in FDCS in

two peaks with different R [see Figs. 2(a) and 2(b)]. However
for the heaviest target, Ag, we do not observe considerable
changes in FDCS with R. The heavier target makes the angular
distribution of FDCS with R less sensitive; however, for light
targets, the angular distribution of FDCS is more sensitive to R.

As far as the behavior of FDCS in the binary region is
concerned (around the θ = θq region), we have a node at
θ = θq for all the targets for R = 1 [see solid curves of
Figs. 2(a)–2(c)] which is due to Coulomb repulsion between
the ejected electrons which prevents them from ejecting in
the same direction for R = 1 (E1 = E2). However, when R

is increased from 1 (E1 > E2 case), the node at θ = θq is
filled. For the largest R (R = 3.44), the node around θ = θq

for R = 1 converts into a dominant peak for Ca and Zn atoms
[see the dash-dot curve in Figs. 2(a) and 2(b)]. As R increases,
the energy difference between the ejected electrons increases,
which makes the Coulomb repulsion at θ = θq weaker. This
results in a larger possibility of the slower ejected electron to
be ejected along θ = θq . For the Ca atom, the relative intensity
of peaks at θ = θq vary maximally with R [see Fig. 2(a)].
Formation of a peak at θq for higher R for Ca and Zn atoms
can be inferred in terms of electron-electron correlation and the
lesser role of nucleus played in the (e,3e) process. The faster
ejected electron detected at the momentum transfer direction
carries a larger energy. The slower ejected electron will most
probably be ejected along the momentum transfer after the
shake-off process for lighter atoms. When both electrons are
ejected along the momentum transfer, the recoil momentum
carried by the ion will be minimum (|qr| = |q − k1 − k2|)
and hence it will play the role of a spectator. This situation is
naturally conducive for a lighter atom, which is evident from
the angular profile of FDCS at θ = θq for the Ca atom for
larger R. For the heaviest atom in the present paper (i.e., Ag
atom), the situation is not so conducive therefore we do not
observe a peak at θ = θq [see Fig. 2(c)].

For the similar kinematics and targets, we plot transverse
spin asymmetry with angle θ2 in the right panel of Fig. 2. If
we correlate FDCS with spin asymmetry, we find significant
spin asymmetry for smaller FDCS and lesser spin asymmetry
for larger FDCS (see peaks in FDCS and corresponding
asymmetry in Fig. 2). Our observation of finding large spin
asymmetries in regions where the spin-inclusive FDCS is
small is in agreement with the well-known effect from
elastic electron atom scattering, where the correlation of large
asymmetries with the minima of the differential cross section
is interpreted as an indication of weak spin orbit coupling. It is
worth mentioning that a similar type of observation was also
found in the (e,2e) process on atoms [6]. It seems that this
feature is common to elastic scattering as well as ionization
processes such as (e,2e) and (e,3e) reactions, even though all
these processes are different in their nature.

We also observed that the spin asymmetry in the recoil
region is largest for the Ag atom and smallest for the Ca atom
[see Figs. 2(d) and 2(f) along the θ = θ−q direction]. The
explanation of larger spin asymmetry for a heavier target in
the (e,2e) processes on atoms was given by Ast et al. [15].
The transverse spin asymmetry in the relativistic energy is
caused by the spin orbital coupling of the continuum electrons
with the Coulomb field of nucleus (Mott scattering). From
the rest frame of the electron, the electron experiences the
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magnetic field of the nucleus, and the magnetic moment
of electron spin is coupled with the magnetic field of the
nucleus. This coupling will produce asymmetry in FDCS for
the spin-up and spin-down polarization of incident electrons.
Prinz et al. [15] argued that the spin-orbital interaction should
dominate for the recoil region because the nucleus takes a
considerable part in the recoil region leading to a dominant
contribution to asymmetry. Though the (e,3e) process deals
with the correlated motion of three outgoing electrons and
hence substantively differs from (e,2e) process, we have some
common findings in these two processes. This is also evident
from the spin asymmetry behavior in the region θq ± 90◦
where we found maximum asymmetry in Ag and minimum
for the Ca atom. As discussed earlier, the dominant peak in
this region is entirely from electron-nucleus scattering. Since
the nucleus of Ag is heaviest, the spin asymmetry is largest
here.

In the previous case, we facilitated very high energy for the
ejected electrons (E1 + E2 = 88.2 keV) to reduce the chances
of multiple scattering of ejected electrons with the other bound
electrons of atom. However, this makes the magnitude of
FDCS very small, which makes the feasibility of the (e,3e)
experiment difficult. As per our other calculation, we hope
that the experiment can be made feasible if we reduce the
energy available to the pair of ejected electrons (i.e., E1 + E2

small). Keeping this fact in mind, we further investigate
FDCS with the scattering angle. We have already observed
that the perpendicular emission to the momentum transfer
is more probable for a Ag atom, so we keep θ1 = θq and
θ2 = θq − 90◦ and vary θs from 1◦ to 25◦ (here φs = 180◦) for
R = 1 (E1 = E2 = 16.1 keV). The angular profile of FDCS
with θs is plotted in Fig. 3 for the Ag atom. The angular
profile is found to be peaked around θs = 12◦. The FDCS is
increased significantly for this kinematics. It is found to be
4 mb/sr3 keV2 around θs = 12◦, clearly a huge increment in
FDCS from the previous kinematics. Keeping note of this, we
further investigate FDCS as a function of θ2 for Ca, Zn, and
Ag atoms, θs = 12◦ in Fig. 4.

We have chosen E1 = E2 = 16.1 keV so that FDCS can be
inflated, meanwhile these energies should also fall within the
relativistic energy regime, albeit sufficiently smaller than the
earlier case we discussed. The chances of multiple scattering
with other bound electrons as well as lesser dominance of
the relativistic effect due to relatively smaller ejected electron

s

FIG. 3. FDCS vs the scattering angle θs (φs = 180◦) for the
Ag atom. The kinematics used here is Ei = 340 keV, E1 = E2 =
16.1 keV, and θ1 = θq and θ2 = θq − 90◦.

FIG. 4. FDCS vs angle θ2 for θs = −12◦ for (a) Ca, (b) Zn, and (c)
Ag atoms with θ1 = θq (fixed angle). Solid and dotted curves represent
FDCS for R = 1 and R = 1.66. The other kinematical variables are
the same as Fig. 3.

energy may be debatable issues. However, our major concern
here is the estimation of FDCS which is more practically
feasible for the (e,3e) experiment, therefore those issues can
be neglected here.

We plot FDCS with θ2, keeping θ1 along the momentum
transfer direction for the scattering angle θs = −12◦ in Fig. 4
for Zn, Ca, and Ag atoms. The magnitude of FDCS has
increased significantly. If we compare the angular profile
of FDCS with Fig. 2 which pertains to different kinematics
(E1 + E2 = 88.2 keV, θs = −7◦), we found in the present
kinematics that the perpendicular emission along θq ± 90◦
becomes more probable, even for the Ca atom, the lightest
target in the present calculation. It is worth mentioning that
in the earlier kinematics (refer to Fig. 2), the perpendicular
emission along θq ± 90◦ was almost absent for the Ca atom
[see Fig. 2(a)]. Furthermore, the degree of symmetry breaking
of FDCS about q varies with Z. With the increment in Z,
we observe that the angular profile becomes more asymmetric
[see Fig. 4(c)]. In addition to this, the angular profiles of FDCS
for different Z are found to be similar for R = 1 and R = 1.66
with the only difference found in their magnitude [see solid
curve (R = 1) and dashed curve (R = 1.66) in Fig. 4].

Now, we calculate FDCS by calculating matrix elements
separately for charge density and charge and current density
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in a constant θ12 mode. We have twofold advantages here:
(i) separation of FDCS in the aforesaid way will lead us to
investigate the effect of magnetic interaction on FDCS and (ii)
in the constant θ12 mode, the correlated motion of the ejected
electrons can be modeled in terms of center of mass motion
which may be useful to compare the (e,3e) process with the
(e,2e) process [16,17]. The interaction between the incident
electron and atom is mediated through a virtual photon which
carries both longitudinal and transverse interactions [18].
The longitudinal interaction is along the momentum transfer
direction and can be written as

SL
fi = −1

c

∫
(Joao − Jqaq)(−Z + eiq·r1 + eiq·r2 )d3r1d

3r2,

(16)

where Jo and ao are charge density and related Möller
potential, respectively, while Jq and aq are the components
of current density and Möller potential along the momentum
transfer direction, respectively. The transverse component can
be written as

ST
fi = −1

c

∫
(JT aT )(−Z + eiq·r1 + eiq·r2 )d3r1d

3r2, (17)

where JT and aT are transverse components of four-current and
Möller potential, respectively. We plot FDCS with θ = θ1+θ2

2
in Fig. 5 for the Ag target (with R = 1). We keep other
kinematical conditions the same as in Fig. 4. In the constant
θ12 mode, we keep the mutual angle between the ejected
electrons constant (here θ12 = 30◦) and vary their angles (θ1

and θ2). We plot FDCS with the bisecting angle of mutual angle
(θ = θ1+θ2

2 ). For R = 1 (symmetrically ejected electrons), θ

represents the direction of center of mass of the ejected electron
(kc = k1 + k2). If we consider the analogy between (e,2e) and
(e,3e) processes, we can describe the (e,3e) process in terms
of a quasibinary collision between the incident electron and
center of mass. The origin of binary and recoil peaks can
be understood if we consider the center of mass momentum
kc = k1 + k2 which is in the direction of θ for case |k1| = |k2|.
So the variation of FDCS with θ is equivalent to the variation
of FDCS with the direction of the center of mass of the ejected
electrons kc.

FIG. 5. FDCS in terms of longitudinal (L) |SL
fi |2 and transverse

(T ) |ST
fi |2, |SL

fi |2 + |ST
fi |2, and |SL

fi + ST
fi |2 with θ for the Ag atom

with equal energy-sharing ratio (R = 1) for constant mutual angle
θ12 = 30◦ for E1 = E2 = 16.1 keV, θs = 12◦. Dash, dot, dash-dot,
and solid curves represent FDCS due to |SL

fi |2, |ST
fi |2, |SL

fi |2 + |ST
fi |2,

and |SL
fi + ST

fi |2, respectively.

(i) When kc is in the direction of q (here q = k1 +
k2 + qr = kc + qr), the recoil momentum (qr = q − kc) is
minimum and the momentum carried by the center of mass of
the ejected electrons is maximum. This results in the formation
of a binary peak in the direction of momentum transfer.

(ii) When kc is in the direction opposite to the momentum
transfer, the recoil momentum (qr = q + kc) is maximum. The
ion plays an active role here, resulting in a recoil peak at θ−q .

When we consider FDCS due to the longitudinal contribu-
tion (|Sfi|2), we get a binary peak at θq (see dashed curve).
Further, when we consider FDCS due to the transverse term
(dotted curve), we observe a profound shift in the binary peak
(around 30◦ shift from the θ = θq direction) and small peaks
at the θq ± 90◦ direction. Both contributions (|SL

fi |2 + |ST
fi |2),

when added together, follow almost the same pattern as that
for the transverse term. When we add the interference term of
longitudinal and transverse interaction in |SL

fi |2 + |ST
fi |2 (i.e.,

FDCS ∼= |SL
fi + ST

fi |2), we observed that the interference term
shifts the binary peak toward the forward direction (see solid
curve) and also increases FDCS of the binary peak. In addition
to this, the interference term reduces FDCS in the other
regime.

Here, we have used two Coulomb waves for the ejected
electrons with the Gamow factor in our calculation of FDCS.
We calculated FDCS with and without the Gamow factor to
investigate its effect on angular profile. We kept the same
kinematics and geometry as we used in Fig. 4 and present
the results for the Ag target. The results are plotted in Fig. 6.
We observed that the Gamow factor makes an angular profile
that is different only in a smaller angular range between the
ejected electrons (i.e., the region in proximity to the other
ejected electron direction, see the θ1 = θq arrow). However,
for larger angles, we observed that the Gamow factor does
not make any prominent differences in the angular profile.
Further, the Gamow factor reduces the absolute cross section
marginally (see solid and dotted curves in Fig. 6). It is worth
mentioning that the nonrelativistic calculation reported with
the Gamow factor usually destroys the normalization of TDCS
for the (e,2e) process (see, e.g., Whelan et al. [19] and
Kheifets et al. [20]). The present relativistic calculation also
destroys the normalization of FDCS for the (e,3e) process,
albeit marginally.

FIG. 6. FDCS with the Gamow factor (solid curve) and without
the Gamow factor (dotted curve) as a function of θ2 keeping θ1 fixed
along θq (see arrow at θ1 = θq ). The other kinematical variables are
Ei = 340 keV, E1 = E2 = 16.1 keV, θs = −12◦.
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IV. CONCLUSION

In conclusion, we have reported FDCS and spin asymmetry
in FDCS for Ca, Zn, and Ag atoms in a relativistic regime
using the first-order Born approximation. We observed that
FDCS is sensitive to atomic number Z, ejection angle, and
energy-sharing ratio E1

E2
between the ejected electrons. We have

found a shift in the binary peak in the constant θ12 mode. The
effects of longitudinal and transverse interactions as well as
their interference terms have been investigated in the constant
θ12 mode. The incident electron spin polarization effects are
investigated through transverse spin asymmetry and are found
to be larger where FDCS is smaller. Such correlations between
spin asymmetry and FDCS are also found to be common in
well-established elastic scattering (Mott scattering) and single
ionization [i.e., (e,2e)] processes.

Hitherto, all (e,3e) experiments had been performed in
nonrelativistic energy regime without consideration of spin
polarization. Here, we have suggested a different type of
(e,3e) experiment in which we can include the spin of
the participating electrons. We have also investigated the
kinematical condition wherein the FDCS is larger. This may
induce (e,3e) experiments in near future for the suggested
kinematics. This will definitely make our understanding of
the (e,3e) process much better in terms of the role of spin
correlation of the participating electron in the complicated
(e,3e) process on atoms.

Here, we would like to stress that the present formulation
has described Dirac spinors for the ejected electrons which

totally depend upon the kinematical parameters and hence
veiling the dynamical features of the (e,3e) process. A
better approximation would be choosing space-dependent
Darwin matrices for the ejected electrons. This may explore
hidden dynamical effects of spin interplay of the ejected
electrons. In additional to this, it is worth mentioning that
due to computational complexities of the problem, we did not
include the exchange effect between the incident electron and
scattered electron and their exchange effects with the other
participating electrons in the (e,3e) process. Perhaps a more
complete picture will emerge about the reported FDCS and
spin asymmetry after these incorporations. Since the (e,3e)
results in the relativistic energy regime have not been reported
earlier, the reported results are naturally not conclusive and
have to be confirmed with the other theoretical results. The
reported data will be a step towards better understanding of
the complicated (e,3e) process on atoms in the relativistic
energy regime.
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