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Wigner lattice between two dielectric slabs: Image potential and Casimir effect
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We analyze a model of electron lattice between two metallic or polar dielectric slabs. Typically, the electrons
are confined on a thin helium layer above a metallic slab and form, under given circumstances, the Wigner lattice.
We assume that another slab is placed above the electron layer at a distance away to have negligible influence on
basic properties of the Wigner lattice. Here we want to analyze the total force acting on the lattice electrons as
well as the total force acting between the metallic (or dielectric) slabs. From the classical electrodynamics one can
determine the image potential and calculate corresponding forces. In the quantum electrodynamics, fluctuations
of the electromagnetic field will add in attraction between the slabs due to the Casimir effect. We calculate and
compare those two forces on the slabs within the same model, since they are an explicit manifestation of the
same field. We found out that the resulting forces can be of comparable strengths in the appropriate setup.
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I. INTRODUCTION

In the last few years there has been growing interest
in the Casimir effect [1], often in connection with various
micro- and nanotechnologies. The needs for miniaturization
of electromechanical systems have prompted the advances
in experimental tools that have made it possible to measure
forces at submicron separation with a high accuracy [2]. In
such examples the Casimir forces, that are normally neglected
in macro systems, have to be taken into account. At separations
below 100 nm, they are rather strong and comparable to
electrostatic forces corresponding to voltages up to 1 V
[3]. In the nanotechnology of carbon nanotubes (CNTs) the
knowledge of the forces between CNT and substrate material
are of great importance for the design of new materials.
New phase-change materials and shape of the boundaries can
modify the strength [4] and even the sign [5,6] of the Casimir
forces, which opens a way for a force transmission without
mechanical contacts.

A deeper knowledge of the Casimir forces could provide
new insights and design alternatives that might lead to a
breakthrough in future micro- and nanoelectromechanical
machines [4,5]. Even if no electric currents are involved,
there are often electric charges present and for the proper
functioning of the machines, the electrostatic properties should
be accounted for. Dielectric or metallic plates are typically
involved in such devices and forces because the image potential
should be considered besides the Casimir forces. In order to
investigate a cumulative effect of the image and the Casimir
force, we consider in this paper an idealized model consisting
of an electron lattice between dielectric slabs. It is not a
priori clear how an electron density (i.e., a lattice parameter)
or a lattice position between the slabs will influence, e.g., a
stability of the lattice or a force on the dielectric slabs. We shall
take into account the influence of these “image” parameters
together with a slab separation (which essentially determines
the Casimir force) when evaluating the total force between the

slabs. The precise knowledge of the total force is of particular
importance in order to account for it properly in the design of
novel devices.

Our system consists of two parallel, semi-infinite, polar
dielectric or metallic slabs. We fill in to some height the liquid
He in between the slabs and put the layer of electrons on top
of the He surface [7]. The thickness of the He layer should
be above 3 nm in order to prevent electrons from penetrating
into the dielectric substrate [8]. We assume that the electron
concentration ne is not very high (ne < 1013 cm−2) [9], so that
the electrons will form a quasi two-dimensional (2D) Wigner
lattice [10,11]. We also assume the temperature close to zero
to avoid any excitation [12] or phase transition [13] of lattice
electrons. Such a system is well known and much discussed
regarding the properties of the Wigner lattice (eigenfrequen-
cies, ground-state energy, excitations, phase transition), but
here we want to analyze in detail the image force on electrons
configured in between two dielectric or metallic slabs as well
as the interaction between the slabs.

In the classical approach we start with a point charge e at a
distance z above a semi-infinite perfect conductor. In order to
provide perfect screening, the charge e will induce an image
charge −e at a distance z below the conductor surface, thus
leading to the charge-conductor interaction (image potential)
W im(z) = −e2/4z. If we put more point charges above the
conductor slab, besides the direct interaction between the
charges, each charge will interact with its own image and with
all images induced by other charges. Let us add another perfect
conductor above the charges, so that each charge will induce
its “own” images at both conductor slabs. In order to ensure
complete screening, the images in one slab will also induce
images in the other slab, etc. It follows that the total interaction
in the system of charges settled in between conductor slabs can
be divided into three terms: the direct charge-charge interaction
as if there are no slabs, the charge-image interaction as if only
one slab is present, and the image-image interaction involved
by the presence of both slabs.
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FIG. 1. Geometry of the system.

From the quantum-mechanical point of view, it follows that,
even if we remove the Wigner lattice, neutral slabs will interact
due to the fluctuation of the electromagnetic field (the Casimir
effect [1]). With the presence of the Wigner lattice, the field is
obviously changed and one wants to know how the interaction
between the slabs looks in the new configuration.

To answer this question, we start from the quantum electro-
dynamics approach, i.e., we describe the dielectric properties
of involved media by the appropriate dielectric functions
and calculate their interaction with the electromagnetic field
(including the lattice electrons) through the coupled collective
modes. We shall make some approximations that will make
our calculation easier and much more transparent so that
we can clearly understand the role of each term in the total
Hamiltonian of the system. We expect that our model can
handle simultaneously the Casimir and the image potential
contribution to the force between the dielectric or metallic
slabs since they come from the same electromagnetic field.
Finally, we want to determine which contribution is dominant
with respect to various parameters that characterize the system.

The article is organized as follows. In Sec. II we analyze the
Hamiltonian of our system and quantize it in terms of Wigner
phonons and polariton field operators in the coherent state. In
Sec. III we calculate all relevant terms needed to define the
interaction between the electron lattice and the external slabs
(image potential). The total force on the lattice electrons as
well as the total force on the external slabs (i.e., the image and
the Casimir force) are calculated and discussed in Sec. IV. The
conclusion is given in Sec. V.

II. MODEL HAMILTONIAN

We discuss the system consisting of an electron (Wigner)
lattice configured on zH thick liquid He layer settled in between
two semi-infinite dielectric slabs at a distance d (Fig. 1).

The total Hamiltonian of the system is given as

H = HP + HW + HI , (1)

where HP represents the Hamiltonian of the electromagnetic
field in the system without the Wigner lattice, HW is the

Hamiltonian of the electron lattice, and HI is the interaction
between them.

HP can be written in terms of the photon-polarization
eigenmodes. Assuming a periodic solution in time with a
frequency ω, we define the constitutive equation between an
electric field E and an ionic polarization P in the dielectric
slabs as

P(r,ω) = χ (r,ω)E(r,ω). (2)

In the standard approach, the electromagnetic field interacts
with plasma oscillations in the slabs, giving

χ (ω) = ω2
P

4π

1[
ω2

T − ω2
] , (3)

where ωT and ωP are transverse and plasma frequencies of ions
in polar dielectric, respectively. The total dielectric constant
ε in the slabs includes an electronic contribution εe

∞ at high
frequencies (ω � ωP ):

ε(ω) = εe
∞ + 4πχ (ω). (4)

In the case of a metallic slab we put ωT = 0, εe
∞ = 1, and ωP

describes the free-electron plasma frequency.
The media in between the slabs are inert dielectrics: liquid

He with εH = 1.057, and a vacuum layer with ε0 = 1. With
these assumptions we can quantize the field Hamiltonian HP in
a straightforward way [14]. Let us outline some steps important
for the present article. In agreement with Eqs. (2), (3), and (4),
HP takes the form

HP =
∫

dr
{

1

8π
(ε∞E2 + B2) + 2π

ω2
P

(
Ṗ2 + ω2

T P2
)}

, (5)

where ε∞ ≡ ε∞(r) stands for the high-frequency dielectric
constant of each particular medium in the system. In our model
we have four different regions, depicted in Fig. 1: vacuum
layer (� = 0) at zH < z < d, with ε∞ = ε0, liquid He (� = 1)
at 0 < z < zH , with ε∞ = εH , and dielectric slab at z < 0
(� = 2) and at z > d (� = 3), with ε∞ = εe

∞.
We solve the Maxwell equations by describing the electric

E and magnetic B fields in a system via the vector potential
A0 only:

E = −1

c

∂A0

∂t
, B = ∇ × A0, (6)

and expand A0 in terms of coupled photon-polarization
eigenmodes (polaritons) AK (r):

A0(r,t) = 1√
V

∑
K

ζK [aKe−iωK tAK (r) + a
†
KeiωK tA∗

K (r)],

(7)
which satisfy the eigenequation

∇ × ∇ × AK (r) − 1

c2
εK (r)ω2

KAK (r) = 0 (8)

and the gauge requirement [14,15]

∇ · [εK (r)AK (r)] = 0. (9)

Here index K enumerates all the eigenmodes in the system
with the eigenfrequencies ωK . The expansion parameter

ζK =
√

hc2/ωKNK (10)
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depends on the orthonormality relation through the parameter
NK , which we shall determine later.

Let us expand the polarization P(r,t) in terms of polariza-
tion eigenmodes PK in the same way as the vector potential
A0 [Eq. (7)]:

P(r,t) = 1√
V

∑
K

ζK [aKe−iωK tPK (r) + a
†
KeiωK tP∗

K (r)] .

(11)
Assuming that a

†
K,aK are the standard creation and annihila-

tion operators of the polariton field, we obtain the quantized
form of the Hamiltonian HP [Eq. (5)], which describes the
retarded electromagnetic field interacting with the dielectric
media:

HP =
∑
K

h̄ωK

(
a
†
KaK + 1

2

)
. (12)

The second term HW in Eq. (1) stands for the Hamiltonian
of the electron layer placed on top of the liquid He surface:

HW = 1

2

∑
j

[
1

me

(
pj − e

c
A0j

)2
+ eφ(rj )

]
. (13)

Here rj denotes the position of electron j in the layer, with the
momentum pj . The potential φ(r) is determined by the electron
charge density ρ(r) = e

∑
j δ(r − rj ) and the high-frequency

dielectric constants ε∞(r) [14]:

∇ · [ε∞(r)∇φ(r)] = −4πρ(r). (14)

We shall assume that the concentration of electrons ne on the
He layer is sufficiently low, so that they form the quasi-2D
Wigner lattice. Typically it requires ne < 1013 cm−2 [9] or
r0 � 4 nm, where r0 is the parameter of the 2D hexagonal
lattice, and 1/ne = (

√
3/2) r2

0 . In the model of a quasi-2D
Wigner lattice, one takes into account the perpendicular
delocalization of lattice electron wave function [16] that leads
to the average position ze of the Wigner lattice above the He
surface (Fig. 1) and to small changes in phonon frequencies.

The vector potential A0j in Eq. (13) is responsible for
the retarded interaction of lattice electrons with the electro-
magnetic field. It turns out [17] that this interaction will not
change phonon frequencies in the presence of a metallic slab,
since typical frequencies in metals (ωP ) are much higher than
Wigner frequencies [18]. Only a small change in the dispersion
relation is expected in the presence of an ionic crystal, if
the frequency spectrums of the Wigner and crystal phonons
coincide (ωL � ω � ωT ). Therefore we can write HW in a
standard second-quantized form

HW =
∑
μκ

h̄ωμκ

(
c†μκcμκ + 1

2

)
, (15)

where ωμk are phonon eigenfrequencies of lattice electrons,
determined by the wave vector κ from the first Brillouin
zone and by the longitudinal or transverse polarization μ. In
this article we are not interested in specific properties of the
Wigner lattice, such as the phase transition. Moreover, with
the approximations for φ(r) described in detail in Sec. III A,
it turns out that properties of Wigner phonons will not be
important for our further discussion.

The last term in Eq. (1) represents the interaction between
the Wigner lattice and the polarization field [14]:

HI =
∫

dr P · ∇φ. (16)

Having in mind that the characteristic frequencies in polar
dielectric and particularly in metallic slabs are typically much
higher than the lattice frequencies, we shall calculate HI

assuming that the lattice electrons are in their equilibrium
positions. In this approximation, the potential φ describes the
interaction between electrons in their lattice sites ρj , placed
z0 = (ze + zH ) above the dielectric slab (Fig. 1).

Let us define new operators,

bK = aK + αKeiωK t , (17)

which satisfy boson commutation relations

[bK,b
†
K ′ ] = [aK,a

†
K ′ ] = δK,K ′ ,

and replace aK with bK in expressions for P(r,t) and HP

[Eqs. (11) and (12), respectively]. With the definition

αK = ζK

h̄ωK

1√
V

∫
dr P∗

K (r) · ∇φ(r) (18)

we can write the field Hamiltonian together with its interaction
with the electron lattice in the diagonal form as

HP + HI = HC
P + Wim .

The renormalized Hamiltonian

HC
P =

∑
K

h̄ωK

(
b
†
KbK + 1

2

)
(19)

represents the polariton field with the same eigenfrequencies
ωK as derived in the undisturbed Hamiltonian HP [Eq. (12)].
We say that the polaritons are, due to the interaction with
Wigner electrons, in the coherent states with energy which
differs from the energy of noninteracting states by the image
potential

Wim = −
∑
K

h̄ωK |αK |2 . (20)

Obviously, HC
P and HP have the same ground-state energy and

therefore they describe the same Casimir effect, i.e., give the
same attractive force between the two dielectric or metallic
slabs. The additional force between the slabs follows from the
image potential Wim, given by Eq. (20).

III. IMAGE POTENTIAL

In order to determine the image potential Wim, we have to
calculate the parameter αK , i.e., the polarization eigenmodes
PK (r) with the eigenfrequencies ωK , and the scalar potential
φ(r).

A. Scalar potential

Following Eq. (14), the scalar potential φ(r) is deter-
mined by the charge density ρ(r) of Wigner electrons that
are formally surrounded with media described by dielectric
constant ε∞(r). After transforming the scalar potential into
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the two-dimensional k space,

φ(ρ,z) = A

∫
dk eikρ φ(k,z),

where A is the normalization area (surface of the slab), we
can easily find solutions for φ(k,z). In the medium � without
charges we have a homogeneous solution:

φ(k,z) = a�e
−kz + b�e

+kz , � = (1,2,3),

while in the � = 0 medium with the electron charge density
ρ(r) = e

∑
j δ(ρ − ρj )δ(z − z0) we have to add the nonho-

mogeneous part:

φ(k,z) = a0e
−kz + b0e

+kz +
∑

j

Cje
−k|z−z0| .

The summation
∑

j is performed over all Wigner electrons
j = 1,2, . . . ,N , and

Cj = e

2ε0πk

1

A
exp(−ik · ρj ).

The coefficients (a�,b�) can be determined in a standard way
from the continuity of φ(z) and ε∞(z)∂φ/∂z. To simplify our
calculations we shall make two assumptions: (i) The influence
of the He layer enters through the factor (εH − 1)/(εH + 1) =
0.027 [16], which is very small, so we shall put εH = ε0 = 1,
and (ii) for the semi-infinite slabs we shall put εe

∞ = 1. This is
correct for metallic slabs, which are of our main interest, but
for polar dielectrics one typically finds εe

∞ > 1. Neglecting
this influence, we can put ε∞(z) = ε0 in the whole space,
which leads to the simple expressions for the scalar potential
of Wigner electrons z0 above the dielectric surface:

φ(k,z) = e−k|z−z0|
∑

j

Cj . (21)

In this approximation the potential in the lattice plane takes a
standard form

φ(ρ,z0) = e

ε0

∑
j

1

|ρ − ρj |
and it does not depend upon z0 or d.

B. Polarization

In Sec. II we introduced the retarded polarization P(r)
[Eq. (11)], with eigenmodes PK related to AK through Eqs. (2)
and (6):

PK (r) = i
ωK

c
χK (r)AK (r). (22)

The mode spectrum follows from Eqs. (4), (8), and (9). The
trivial solution εK (r) = 0 leads to (nonretarded) volume modes
in each dielectric slab, with a longitudinal plasma frequency
ωL = [ω2

T + ω2
P /ε0]1/2. Since those modes do not produce

the field outside the slabs we shall neglect them in further
discussion. The polariton modes that give field outside the
dielectric slabs are surface modes with exponentially decaying
fields in the dielectrics and in the gap, guided modes which
decay in the dielectrics but oscillate in the gap, and propagating
modes which oscillate in the dielectrics (and in the z → ±∞
limit). Using the planar symmetry, we can characterize each

one by the wave vector k parallel to the dielectric surfaces,
the perpendicular wave vector β� in a medium �, β�(ω,k) =
[ε�ω

2/c2 − k2]1/2, and the polarization index q denoting T M

or T E polarization. To simplify notation, we shall denote by
s = (q,β�) all polarization eigenmodes with the same wave
vector k, so we put K = (k,s) and write

PK (r) = Pks(z)eik·ρ . (23)

All modes, surface, guided, and propagating ones, interact with
point charges in the Wigner lattice, giving the image potential
Wim [Eq. (20)], equal to the one derived in the nonretarded
limit [19]. In the nonretarded limit, however, only surface
modes interact with the Wigner lattice, making the calculation
of Wim much simpler.

The nonretarded polarization P(r,t) is formally expanded
in the same way as the retarded one given by Eq. (11) [14].
Choosing the parameter NK = (4πc)2 gives for the expan-
sion parameter ζK = (1/4π )

√
h/ωK , and the orthonormality

relation for the eigenmodes PK becomes

1

V

∫
dr

1

ω2
P (r)

P∗
K (r) · PK ′ (r) = δK,K ′ . (24)

The nonretarded polarization eigenmodes (plasmons) can be
put in the form

PK (r) = −χK (r)∇�K (r), (25)

where the “polarization” potential �K (r) satisfies

∇[εK (r)∇�K (r)] = 0.

Since we are not interested in volume modes, determined by
εK (r) = 0, we are left with the surface plasmons satisfying in
each medium � the relation

��K (r) = 0, � = (0,1,2,3). (26)

Using the planar symmetry we can put K = (k,σ ) in Eq. (23),
where σ enumerates all (nonretarded) surface modes. From
Eq. (25) we find the polarization in each medium �:

Pkσ (z) = −χkσ (z)k

(
ik̂ + ẑ

1

k

∂

∂z

)
�kσ (z), (27)

where the potential �kσ (z) follows from Eq. (26):

�kσ (z) = f�e
−kz + g�e

+kz, � = (0,1,2,3). (28)

The coefficients (f�,g�) follow in a standard way from the
continuity of �kσ (z) and εkσ (z) ∂

∂z
�kσ (z). The requirement

for the nontrivial solutions of the coefficients leads to the
dispersion relation of two surface plasmon modes (σ = +,−)
that exist in the semi-infinite dielectric plates with the gap
in between. With our assumption ε∞(z) = ε0 we can write
the dispersion relation of the plasmon eigenfrequencies in the
explicit form

ω2
±(k) = ω2

a ± 1
2

(
ω2

L − ω2
T

)
e−kd . (29)

The asymptotic (k → ∞) frequency

ω2
a ≡ ω2

±(k → ∞) = 1
2

(
ω2

L + ω2
T

)
represents also the frequency of the (nondispersive) plasmon
mode in the case where the plates are completely separated
(d → ∞) or only one plate is present (d = ∞).
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Inside the dielectrics we find “polarization” potential
[Eq. (28)], corresponding to ω±(k) modes:

�k±(z) = γ±(k)

{
ekz : z < 0

±e−k(z−d) : z > d.
(30)

Since Pkσ (z) = 0 outside the dielectric slabs, Eqs. (27) and
(30) determine the polarization in our system. With the
help of the orthonormality relation [Eq. (24)], we find the
normalization factor

γ 2
±(k) = L

1

2k

ω2
P

χ2(ω±(k))
,

where L is the normalization length, i.e., the thickness of
dielectric slabs.

C. Image potential

The image potential Wim [Eq. (20)] is determined by the
”shift parameter” αkσ , given by Eq. (18). The integration
in Eq. (18) extends only over the dielectric slabs, and from
Eqs. (2) and (9) we find ∇P = 0 inside the slabs. Therefore
the integrand in Eq. (18) can be transformed into ∇(Pφ), and
the integration over the slabs replaced with the values of the
integrand at the surfaces of the slabs z = 0 and z = d:

αkσ = ζkσ

h̄ωσ (k)

A√
V

(2π )2 [ẑ · P∗
kσ (z)φ(k,z)]z=d

z=0 .

Inserting the corresponding boundary values in Pkσ (z)
[Eq. (27)] and φ(k,z) [Eq. (21)], the image potential takes
form

Wim = − e2

16πε0

(
ω2

L − ω2
T

) ∑
σ=+,−

∫ ∞

0

dk

ω2
σ (k)

∫ 2π

0
dφ|Sσ (k)|2

with

S±(k) = [e−kz0 ± e−k(d−z0)]
∑

j

e−ikρj .

If there is only one electron at ρj = 0 interacting with metallic
plates, we can easily recover results for the image potential
derived in Ref. [20]. In the case of Wigner lattice we have to
sum up over N lattice electrons, which leads to

Wim = −N
e2

2ε0
�

∑
j

Fj , (31)

Fj =
∫ ∞

0
dkJ0(kρj )

e−2kz0 + e−2k(d−z0) − 2�e−2kd

1 − �2e−2kd
, (32)

where J0 is the Bessel function. With the explicit form of the
dispersion relation [Eq. (29)], it turns out that the dielectric
properties of the slabs are described only by the factor

� = (
ω2

L − ω2
T

)/(
ω2

L + ω2
T

)
. (33)

The expansion of the denominator in Eq. (32) gives the
interaction of an electron with the dielectric plates in terms
of a series of images. The expansion converges for � < 1,
but in the limit � = 1 at the k = 0 convergence problems

may appear. Therefore we shall retain � in all our expansions
and for the metallic plates (with ωT = 0) we shall simply put
� = 1 in the final result.

After expanding the denominator and integrating over k we
find

Fj = 1√
ρ2

j + 4z2
0

+
∞∑

n=1

�2(n−1) Sn
j ,

where

Sn
j = �2√

ρ2
j + 4(nd + z0)2

+ 1√
ρ2

j + 4(nd − z0)2

− 2�√
ρ2

j + 4(nd)2
.

The infinite number of images (n = 1,2,3...) of each electron
has to be summed up for all electrons (j = 1,2,3...) in the lat-
tice. In order to perform summations efficiently, we shall first
take the x transformation [1/

√
a = (2/

√
π )

∫ ∞
0 exp(−ax2)]

and rewrite Fj as

Fj = 2√
π

∫ ∞

0
dxe−ρ2

j x2
fd (x). (34)

Now we shall divide the contribution to the image potential,
described by fd (x), into two parts

fd (x) = f ∞
d (x) + �fd (x), (35)

f ∞
d (x) = e−4z2

0x
2 + e−4(d−z0)2x2

, (36)

�fd (x) =
∞∑

n=1

�2n

[
e−4(nd+z0)2x2 + e−4((n+1)d−z0)2x2

− 2

�
e−4(nd)2x2

]
. (37)

The first part f ∞
d (x) in Eq. (35) describes the “direct images” of

Wigner electrons that exist in each dielectric slab regardless of
the other slab. Therefore, if we completely separate the plates
(d → ∞) and take a distance between the lattice electrons
and one plate [z0 or (d − z0)] as fixed, f ∞

d (x) will describe
completely the interaction of this plate with the Wigner lattice.
In that sense the second part �fd (x) represents the interaction
between the plates (image-image interaction) and it vanishes
in the d → ∞ limit.

The form of fd (x) enables us to perform the summation
over all lattice electrons using the Ewald transformation,

∑
j

e−ρ2
j x2 = 1

S0

π

x2

∑
G

e−G2/4x2
,

where the summation over direct lattice sites ρj is replaced
by the summation over reciprocal lattice sites G. S0 =
A/N = 1/ne is the average area per electron. In applying
the Ewald transformation one introduces a critical parameter
η so that the slow-converging terms with x < η in the
direct space are replaced by the fast-converging terms in the
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reciprocal space:

∑
j

Fj = 2√
π

[
π

S0

∑
G

∫ η

0

dx

x2
e−G2/4x2

fd (x)

+
∑

j

∫ ∞

η

dxe−ρ2
j x2

fd (x)

]
. (38)

In Eq. (38) there are two specific terms of particular interest:
j = 0, i.e., ρ = 0, and G = 0, which we shall calculate
separately. Introducing the extended Misra functions [16]

�R
n (y) =

∫ ∞

1
dt tn e−ytfd (η

√
t),

�G
n (y) =

∫ ∞

1
dt tn e−ytfd (η/

√
t),

we find∑
j

Fj = Fd (ρ = 0) + Fd (G = 0)

+ aη

[ ∑
G 
=0

�G
−1/2

(
G2

4η2

)
− �R

−3/2(0)

]

+ bη

[ ∑
j 
=0

�R
−1/2

(
η2ρ2

j

) − �G
−3/2(0)

]
, (39)

with the expansion coefficients equal to aη =
(1/η)(g0/2

√
πr0), bη = η/

√
π , and g0 being the reciprocal

lattice parameter that satisfies S0 = 2πr0/g0.
To obtain the ρ = 0 term of Eq. (38), i.e., the interaction

Fd (ρ = 0) of a single electron with the dielectric slabs, we
shall divide it according to Eq. (35) in two terms:

Fd (ρ = 0) = 2

π

∫ ∞

0
dxfd (x)

= F∞
d (ρ = 0) + �Fd (ρ = 0).

The first term involves f ∞
d and it gives a direct interaction of

a single electron with both dielectric plates:

F∞
d (ρ = 0) = 1

2

[
1

z0
+ 1

d − z0

]
.

The second term involves �fd and it represents a slow-
converging (∼ 1

n
) image-image interaction. However, one can

calculate explicitly the contribution at z0 = d/2 and expand
the rest of the sum in terms of zc = 1 − 2z0/d that converges
much faster (∼ 1

n3 ):

�Fd (ρ = 0) = − 2

d

[
1 − ln(1 + �)

�

− z2
c

∞∑
n=1

�2n 1

(2n + 1)
[
(2n + 1)2 − z2

c

]
]
.

Note that in the middle of the gap (zc = 0) we find Fd (ρ =
0) = (2/d) ln(1 + �)/�, in agreement with Ref. [20].

The G = 0 term is connected with the image potential
[Eq. (31)], averaged over all lattice sites:

1

N
〈Wim〉≡ 1

A

∫
dρWim(ρ)=−�

2

e2

ε0
Fd (G=0). (40)

Following again Eq. (35), the Fd (G = 0) term can be divided
as

Fd (G = 0) = 2
√

π

S0

∫ ∞

0

dx

x2
fd (x)

= F∞
d (G = 0) + �Fd (G = 0). (41)

Both terms of Fd (G = 0) diverge, and we shall discuss its
divergence in more detail in the next section. Since 〈Wim〉
diverges, one can eventually subtract 〈Wim〉 (i.e., the k = 0
component) when calculating the image potential via Eqs. (31)
and (39).

All the extended Misra functions in Eq. (39) are finite,
so by choosing η = (g0/2r0)1/2 [16], the summation over the
reciprocal (G 
= 0) and direct (j 
= 0) lattice sites converges
equally fast.

IV. RESULTS AND DISCUSSION

Let us briefly summarize our results. The total ground-state
energy of the Hamiltonian of the system, given by Eq. (1), can
be written as

Etot = EP + EW + EI , (42)

where EP is the ground-state energy of the polariton field, EW

the energy of the Wigner lattice, and EI energy due to the
interaction of the Wigner lattice with the dielectric slabs.

According to the Hamiltonian of the polariton field HC
P

[Eq. (19)] or equivalently, HP [Eq. (12)], EP takes the form

EP = 1

2

∑
ks

h̄ωks ,

which diverges at large k values. Therefore one calculates the
Casimir energy EC instead, i.e., the difference between the
ground-state energy of the electromagnetic field in the system
with the dielectric slabs and in the free space [21]. In our model,
with the appropriate regulation, we take a simple expression
for the Casimir energy [22–24],

EC = h̄A

4π2c2

∫ ∞

1
dpp

∫ ∞

0
dξξ 2

∑
q

ln[1 − Qq(iξ,p)], (43)

where the summation over the polariton modes with polar-
ization q is replaced by the integration over the imaginary
frequency ξ = −iω of the nonpropagating modes, and over the
parameter p defined with k2 = (ξ 2/c2)(p2 − 1). The eigenfre-
quencies of nonpropagating modes (surface and guided modes,
with disappearing field in the z → ±∞ limit) are determined
by the dispersion relation [24]

Qq(ω,k) ≡ [rq(ω,k)]2 e−2α0d = 1,

where rq(ω,k) are Fresnel reflection coefficients at
the vacuum-dielectric interface, and α0 ≡ −iβ0(ω,k) =
(ξ/c)

√
p2 − 1 + ε0.

The interaction HI [Eq. (16)] between the Wigner lattice
and the dielectric plates leads to the image potential with the
energy EI = Wim [Eq. (31)].

The Hamiltonian of the Wigner lattice HW [Eq. (13)] is
calculated in our model with the electrons in their average
perpendicular positions z0 to obtain Eq. (15). In this approxi-
mation, the direct interaction between the Wigner electrons is
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independent of z0 and d, so here we assume that EW depends
only upon the charge density of lattice electrons.

Knowing all the energy terms in Eq. (42), we shall now
calculate corresponding forces that will not depend upon the
renormalization constants eventually involved in some energy
terms.

A. Image force on Wigner lattice

Let us first analyze the total (perpendicular) forceF z0
tot acting

on an electron in the Wigner lattice. Since only Wim depends
on z0, we find

F z0
tot ≡ − 1

N

∂

∂z0
Etot = − e2

2ε0
�

∂

∂z0

∑
j

Fj . (44)

The calculation of ∂
∂z0

∑
j Fj requires the evaluation of terms

of Eq. (39). The first term determines the image force on a
single charge located at (ρ = 0,z0) in between the slabs,

F z0
1 = − e2

2ε0
�

∂

∂z0
Fd (ρ = 0). (45)

The term Fd (ρ = 0) is discussed in detail in the previous
section, and we can easily calculate F z0

1 .
The second, Fd (G = 0) term, describes the average image

potential 〈Wim〉, which is divergent. However, for finite values
of d we find that ∂

∂z0
Fd (G = 0) = 0. This is the consequence

of perfect screening on both slabs, so there is no force on the
average charge distribution in between the slabs. In the case
when only one (lower) slab is present, the images in that slab
are not screened and it follows that

∂

∂z0
Fd (G = 0) = −4π

S0
, d = ∞, (46)

which gives a constant attractive contribution to the force
between the Wigner electrons and the dielectric slab.

The rest of the terms in Eq. (39) contain extended Misra
functions, and their derivatives with respect to z0 can be easily
derived and calculated.

In Fig. 2 we compare the force F z0
tot [Eq. (44)] acting on

the lattice electron, with the force F z0
1 [Eq. (45)] acting on

the single electron (with no lattice). The forces are normalized
to Fe = e2/2a2

0 , where a0 is the Bohr radius. The curves are
shown for two z0 values, satisfying z0 < r0. The forces F z0

tot
and F z0

1 tend to zero when d → 2z0, and become strongly
repulsive for d < 2z0. In the latter case the electrons are
attracted by the upper plate, which would eventually destroy
the lattice. In order for the image force to stabilize the electron
lattice on the liquid He layer, we should take z0 < d/2. In
that case the force F z0

1 is always attractive, while the force
describing the charge interaction with all other but its own
images F z0

ind = F z0
tot − F z0

1 [determined by the Misra functions
� in Eq. (39)] is repulsive. This “indirect” screening is not
significant for z0 � r0, but when z0 becomes comparable with
the average distance among the lattice electrons, the “indirect”
screening efficiently cancels the “direct” one. At z0 � r0 this
cancellation is complete and the lattice behaves as a continuous
charge distribution, satisfying F z0

tot ≈ 0. Note that all metallic
slabs are described with � = 1, regardless of the specific
electron plasma frequency ωP , i.e., they are all represented
by the same curves.

FIG. 2. The forces on the Wigner lattice as a function of the slab
separation d: F z0

tot (full), F z0
1 (dash-dotted), and F z0

ind (dashed) line.
At z0 = 3 nm, F z0

1 dominates over F z0
ind, but at z0 = 20 nm, we find

F z0
ind ≈ −F z0

1 ; so the curves are enlarged in order to be presented on
the same scale. The lattice parameter is r0 = 30 nm.

The comparison between the forcesF z0
tot andF z0

1 in the limit
z0 � r0 is shown in Fig. 3 for different slab separations d. For
all values of d when r0 > 10z0 we can neglect the influence
of electron density and simply put F z0

tot ≈ F z0
1 . As seen in

Fig. 3, after approximately d > 10z0, the forces become almost
independent of d, and for all electron densities approaching
to their d → ∞ limit. Evidently, for the lattice located in the
middle of the gap (z0 = d/2) there is no force on the lattice
electrons, while the total force F z0

tot at low electron densities
(r0 � z0) becomes attractive (repulsive) at z0 < d/2 (z0 >

d/2), respectively. As pointed out, at high electron densities
(r0 � z0), the “indirect” screening F z0

ind becomes important,
and it even overcompensates the “direct” screening F z0

1 , so
that the total force F z0

tot changes its sign.
The difference between the image forces in the case of

metallic and dielectric slabs is shown in Fig. 4.

FIG. 3. The forcesF z0
tot andF z0

1 on the Wigner lattice as a function
of lattice parameter r0. Results are shown for several values of d . The
position of the lattice is z0 = 20 nm. F z0

1 is independent of r0 and
appears as a straight line for any value of d , while F z0

tot reduces to F z0
1

at low electron densities (r0 � z0).
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FIG. 4. The forces F z0
tot (full line) and F z0

1 (dashed line) on the
Wigner lattice surrounded by the well-separated metallic or dielectric
slabs (d → ∞). The G = 0 component (dotted line) contributes only
if there is no upper plate (d = ∞). The lattice position is z0 = 20
nm. For a dielectric slab we took ωT = 0.02 eV, ωL = 0.03 eV, i.e.,
� = 0.38, appropriate for NaCl.

The results are given for d → ∞ [i.e., d � (r0,z0)] and
for d = ∞ (when there is no upper slab). As seen in the
figure, the metallic slabs are more efficient in screening than
the dielectric slabs, typically by a factor � [Eq. (33)]. As
expected, at low electron densities (r0 � z0), the total force
F z0

tot is in all cases mainly determined by the force on a single
electron F z0

1 , and at higher electron densities, if both slabs
are present, the total force is well screened. However, if we
remove the upper slab, the G = 0 component becomes active
and particularly important at higher electron densities, so F z0

tot
strongly attracts the electron lattice for r0 � z0. In that case the
d → ∞ limit (two slabs are separated at very long distance)
and the d = ∞ case (there is only one slab in the system)
represent two significantly different physical situations.

B. Total force between slabs

In this article we are particularly interested in the total force
(per unit area) Fd

tot acting between dielectric or metallic slabs.
According to our discussion, it contains two contributions:

Fd
tot ≡ − 1

A

∂

∂d
Etot = FC + Fd

im . (47)

a. Casimir force FC . The Casimir force (per unit area) that
attracts two neutral dielectric slabs at distance d due to
fluctuation of the electromagnetic field can be derived directly
from Eq. (43):

FC = − h̄

2π2c2

∫ ∞

1
dpp

∫ ∞

0
dξξ 2α0

∑
q

Qq(iξ,p)

1 − Qq(iξ,p)
.

(48)
In the case of perfect screening [ε(ω) = −∞] we find the
well-known result

F0
C = −h̄cπ2

240

1

d4
. (49)

In real metals the Casimir force [Eq. (48)] behaves also as
∼ 1/d4 at large d values, but for thin slab separations it changes
its behavior to ∼ 1/d3 [25].

b. Image force Fd
im. Assuming a fixed distance z0 between

the Wigner lattice and the lower dielectric slab, and using
Eq. (31), we can write the image force (per unit area) acting
between the dielectric slabs as

Fd
im = − e2

2ε0

�

S0

∂

∂d

∑
j

Fj = F∞
im + �Fd

im, (50)

where, following Eqs. (34) and (35), we have divided it into
the “direct-image” F∞

im and “image-image” �Fd
im part. Again,

we can easily take derivatives with respect to d of each term
in Eq. (50), except of the G = 0 term. Fortunately, in that case
the summation over all images can be performed analytically,
and from Eq. (41) we find for a finite distance d between the
slabs,

∂

∂d
F∞

d (G = 0) = −4π

S0
, (51)

∂

∂d
�Fd (G = 0) = 4π

S0

[
1 − 1

(1 + �)2

]
. (52)

As expected, in the averaged interaction the “direct-image”
term, Eq. (51), attracts the dielectric slabs, while the “image-
image” term, Eq. (52), repels them. When summed together,
we find that the attractive interaction prevails. The image force
(per unit area) averaged over all lattice sites follows from
Eq. (40):

〈
Fd

im

〉 = − 1

A

∂

∂d
〈Wim〉 = −�

2

e2

ε0

4π

S2
0

1

(1 + �)2
. (53)

If we assume that only one slab is present (d = ∞), we
would obtain the average image force to be zero: < Fd

im >∼
∂
∂d

Fd (G = 0) = 0. Note that this case is quite the opposite to
the case in Sec. A, when we take the derivative with respect to
z0 [Eq. (46)].

The comparison between the Casimir and the image force
acting between the metallic slabs is shown in Fig. 5. The forces
are given with the negative sign in order to show them on a log
scale.

At large separations between the slabs (d > r0) the image
force Fd

im is mainly determined by the G = 0 term and
is therefore well approximated by the average image force
[Eq. (53)], which is independent of d. The influence of the
lattice geometry becomes important at lower slab separations
(d < r0) and it depends significantly on the position of the
lattice z0. We have shown data only for d > 2z0, where the
lattice should be stable.

According to results derived forFd
im, in the system with d <

r0 one could get more insight into the effect of lattice geometry
by measuring the force acting in between the slabs. But that
is the situation when one has to take into account the Casimir
force FC too, as it starts to dominate in that region. Note that
although the Casimir force FC [Eq. (48)] depends explicitly
on ωP , this dependence is not crucial for our discussion. It
can be seen from Fig. 5, where we presented the result for FC

with ωP = 10 eV, a typical value for real metal, and compared
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FIG. 5. Image force Fd
im (in units N/m2) as a function of metallic

slab separation d . The force is shown for three different lattice
parameters r0, together with various lattice positions z0: 1 nm (full),
3 nm (dashed), 20 nm (dash-dotted), and 100 nm (dotted) line. The
Casimir forces for real (FC) and ideal (F0

C) metal are shown for
comparison.

this force with the force F0
C for ideal metal [Eq. (49)] (with

ωP → ∞).
The total force Fd

tot = Fd
im + FC is shown in Fig. 6 for all

formally possible slab separations d allowed by the lattice
position z0 = 20 nm. Notice that (i) in the d → z0 limit, the
lattice electrons approach the upper slab and the contribution
from the image force Fd

im diverges; (ii) at very high electron
densities (r0 � 10 nm) the contribution from the G = 0 term
does not cross theF0

C curve because the crossing point requires
d < z0.

Let us notice that in the case of dielectric slabs, the situation
is similar to that shown in Figs. 5 and in 6, except that
all relevant forces are approximately an order of magnitude
weaker.

FIG. 6. Total force Fd
tot (full line) on metallic slabs for different

lattice parameters r0. The contributions Fd
im (dash-dotted line) and

FC (dashed line) to Fd
tot are also shown, as well as F0

C (dotted line).

FIG. 7. Image force Fd
im on metallic slabs as a function of lattice

parameter r0. Full line: (d = 20 nm, z0 = 6 nm) and (d = 100 nm,
z0 = 20 nm). Dotted line describes the same d values, with z0 = 3
nm. The averaged image potential 〈Fd

im〉 (dashed line) depends only
on r0. The Casimir forces for real (FC , full line) and for ideal (F0

C ,
dashed line) metallic slabs are shown for comparison.

Since in the whole region where the lattice could be stable
(d > 2z0) dominates either the G = 0 term or the Casimir
force, the position of the lattice z0 has negligible influence on
Fd

tot. In the case of metallic slabs we can roughly approximate
the Casimir force by F0

C [Eq. (49)], and assuming d � r0 the
image force by 〈Fd

im〉 [Eq. (53)]. That enables us to easily
determine the critical values dc (for given r0) or rc

0 (for given
d) at which those two forces are equal:

dc ≈ 4

√
π

160

h̄c

e2
r0 = 1.28 r0, rc

0 ≈ 0.78 d. (54)

The critical values [Eq. (54)] that follow from 〈Fd
im〉 = F0

C are
compared in Fig. 7 with the critical values that follow from
Fd

im = FC . It comes out that rc
0 values determined in such a way

are somewhat greater compared to the values from Eq. (54), but
they still do not depend on z0, providing that the requirement
d > 2z0 is satisfied. Notice that the curve (d = 100 nm,
z0 = 3 nm) almost coincides with the 〈Fd

im〉 curve, since
〈Fd

im〉, at z0 � 3 nm, represents the dominant contribution to
the total image force for all higher-density electron lattices
(r0 � 1000 nm).

In order to stabilize the Wigner lattice, one can apply
an external electrostatic potential giving a constant electric
field in the gap Eex = E0ẑ. This field will press each lattice
electron on the He layer with an additional force F e

ex = eE0,
but its effect on the average position ze of lattice electrons
(Fig. 1) can be neglected [16]. Obviously, such a field also
pulls together the dielectric plates with a force (per unit area)
Fd

ex = −ε0E
2
0/8π . The competition between such a force and

some other external forces, like mechanical elastic forces
pertinent to the real material, with the Casimir force has been
already considered [26].

022524-9
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V. CONCLUSION

In this article we have analyzed a system consisting of
an electron lattice in between two metallic or polar dielectric
slabs. The main motivation was to take into account two very
different manifestations of the electromagnetic field—image
potential and Casimir effect—within the same model. As
a model which could also serve as an experimental setup
we chose a well-known system of quasi-2D Wigner lattice
formed above the liquid He layer. We assumed that the lattice
is formed as a stable hexagonal configuration, although the
specific lattice shape is not important for our discussion, i.e.,
only a significant lattice parameter is an electron density.
The theoretical model is based on the quantum-mechanical
description of the electromagnetic field interacting with the
electron lattice, as well as with the collective excitations
in the slabs. We made some standard approximations that
enabled us to present results in a closed form, giving the
Casimir effect through the fluctuation of the electromagnetic
field in the coherent state, and the electron lattice–metallic
(dielectric) slab interaction as the image potential, while the
basic properties of the Wigner lattice (the eigenfrequencies)
remained essentially unchanged.

It appeared that the Casimir effect could be treated as if the
electron lattice is not present in the system. The main effort was
to calculate the image potential which was derived in the closed
form. For the calculational and interpretational purposes, it
was then transformed into the “classical picture” in which
each electron in the lattice induces infinite number of images
in each slab. We differentiated the “direct images” describing
the (attractive) electron interaction with only one slab, and
the “induced images” describing the (repulsive) image-image
interaction that exists only if both slabs are present. The
contribution from the direct images is simple to calculate,
while the contribution of induced images was expanded in
powers of �, where � = (ω2

L − ω2
T )/(ω2

L + ω2
T ) appears to be

the only parameter which describes the dielectric properties
of the slabs. Such simple description was enabled by neglecting
the electronic polarizability of involved media. If needed, the
electronic polarizabilities could be introduced in a standard
way, but in that case the relevant equations would be much
more cumbersome, while the final results, particularly in the
case of metallic slabs, would remain almost the same. One
can argue that we could take only metallic slabs from the
beginning, but besides giving good insight into the dielectric
properties of slabs, the parameter � was successfully used
as expansion parameter and in analytical summations that
formally require � < 1. However, we can still put � = 1 for
metallic slabs at the end of our calculations.

The summation over all lattice electrons is performed
with the help of Ewald transformation. Since the averaged
interaction (the G = 0 term) and therefore the whole image
potential diverge, one has to make some regulations to obtain
the nondivergent result. For the same reason one has to regulate
the Casimir energy. The regulation mechanisms are quite
different and there is no point to compare those two energies
directly. Therefore, we have discussed the image force instead
and compared it with the Casimir force, which did not require
any regulation.

There are two types of image forces arising from the image
potential—the force acting on the electron lattice and the force
acting between the slabs—and we have analyzed both of them.
The force on the electron lattice was compared with the force
on a single electron, which enabled us to track how the induced
image interaction screens the single electron interaction when
the (averaged) lattice position z0 becomes comparable to the
lattice parameter r0. In the r0 � z0 case we are approaching
the limit of continuous charge density with zero image force
on lattice electrons. That holds only if both slabs are present,
regardless of how far they are separated. Consequently, if there
is only one slab in the system, it will always attract the electron
lattice.

We were particularly interested in the total force acting
between the slabs, and the comparison between its image
potential and the Casimir part. We have shown that at large
slab separations [d � (r0,z0)] the Casimir force (∼1/d4) has
negligible contribution to the total force, and the dominant
contribution comes from the averaged image interaction,
i.e., from the k = 0 component of the image force. This
component can be analytically calculated, and it turns out
that it does not depend on d, but strongly depends upon
electron density (∼ 1/r4

0 ). Obviously, the parameter r0 plays a
similar role in the averaged image potential as the param-
eter d does in the Casimir effect; so with the appropriate
choice of those parameters one can make the two effects
comparable. The third parameter z0 (position of the lattice)
has considerable impact on the image force between the
slabs at smaller slab separations (d < r0), but in that case
(providing d > 2z0, which is a prerequisite for the lattice
formation) the Casimir contribution dominates over the image
potential.

We conclude that the total force among the slabs is
determined mainly by the Casimir and the averaged image
force and therefore can be well estimated without taking into
account the specific position z0 of lattice electrons or the
shape of the lattice. We have also estimated critical parameters
(rc

0 ,d
c) which roughly separate regions with the dominant

influence of the image potential (d � dc or r0 � rc
0 ) from

that of the Casimir force. In that sense those parameters
determine “the meeting point” of the classical and the quantum
appearance of the electromagnetic field, and the fine structure
constant α = e2/h̄c is naturally involved into their definition.
Interestingly, the critical parameters are roughly achieved
when the distance d between the slabs coincides with the
parameter r0 of the Wigner lattice.

The Wigner lattice of electrons is an interesting system
per se, but it could be also considered as a model for various
molecular layers functionalized with various metallic atoms
or radicals with a periodic order that could be used in real
functional electromechanical devices and similar nanosized
hybrid structures. In those systems the temperature close to
zero is not a needed constraint, as in our model with liquid
He layer. The characteristic lengths (rc

0 ,d
c) of the system

we have considered are about the sizes of new emerging
electromechanical devices, and the control of the interplay
of the two forces, Casimir and image forces, might be of
an importance for the proper functioning of the devices.
A possible example might be the newly proposed type of
low-power, contactless nanoswitches [4], where the change
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of the Casimir force with the phase change of the material
from amorphous to crystalline form is used. The control of
the accompanied buildup of electrostatic charges is of crucial
importance in their possible implementation.
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