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Temperature dependence of the Casimir force between a superconductor and a magnetodielectric
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We investigate the dependence of the Casimir force between a superconducting plate (niobium) and a
magnetodielectric plate (yttrium iron garnet) on the temperature near the transition point within a two-fluid
model. For large separations between the plates, the direction of the Casimir force changes from attractive to
repulsive as the temperature decreases below the transition temperature, because of an increase in superconducting
current density. We show that this increase in the repulsive contribution to the Casimir force, which depends on
the magnetic permeability of the magnetodielectric plate, can be experimentally verified by measuring the force
acting on the magnetodielectric plate inserted midway between a superconducting plate and a normal conducting
plate.
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I. INTRODUCTION

Casimir’s theoretical discovery [1] of an attractive force
between perfectly conducting plates, resulting from the zero-
point fluctuations, has triggered interest in diverse fields
ranging from nanotechnology to cosmology [2–4]. In the last
few years, the Casimir force acting on magnetic materials
has attracted particular attention in connection with the
possibility of a repulsive Casimir force [5–12]. As is well
known, Boyer has shown that the Casimir force between a
perfectly conducting plate and a perfectly magnetic plate can
be repulsive for any separation distance [13]. Here, a perfectly
magnetic plate is an ideal material having infinite magnetic
permeability. A superconductor at absolute zero is probably
the most suitable candidate for the perfectly conductive plate.
However, it is impossible to find practical materials suitable
for the perfectly magnetic plate because the magnetic perme-
ability becomes very small for high-frequency electromagnetic
fields.

When seeking materials between which repulsive Casimir
force is generated according to the Boyer’s guiding principle,
it should be considered that a magnetic plate must possess
an inherently high magnetic permeability and a low dielectric
permittivity. A possible candidate is a magnetodielectric such
as yttrium iron garnet (YIG,Y3Fe5O12) [7], which is a well-
known garnet with a high magnetic permeability. Although the
magnetic permeability of the YIG decreases with frequency,
it has been recognized by recent theoretical studies that
the contribution of the TE mode at zero frequency to the
Casimir force is of considerable importance in determining
the direction [14].

If the dielectric permittivity diverges near zero frequency
in proportion to the inverse of the second power of frequency,
as in the function used in the plasma model, the term at zero
frequency of TE mode in the Lifshitz formula [15], which
is referred to as the dc component of the TE mode in this
study, can contribute to the Casimir force. On the contrary,
if the dielectric permittivity diverges more moderately than
the second-order divergence, as in the function used in the
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Drude model, the dc component of the TE mode does not
contribute to the Casimir force. Current experiments using
normal conducting metals support either the plasma [16–19]
or the Drude model [20]. It should be noted that the results
of the very recent experiment investigating the Casimir force
between a ferromagnetic metal (Ni) and a nonmagnetic metal
(Au) are in agreement with the results of the plasma model
approach for investigating magnetic properties [12].

Bimonte et al. showed that the dc component of the
TE mode contributes to the Casimir energy between su-
perconducting plates [21,22]. Thus, the combination of the
superconductor and the magnetodielectric may enable us to
provide an answer to the question of the possibility of the
repulsive Casimir force, because the dielectric permittivity
near zero frequency changes significantly near the transition
point. In the two-fluid model, the superfluid density increases
as the temperature decreases below the transition temperature,
and this causes the second-order divergence in the dielectric
permittivity near zero frequency. Accordingly, the dc com-
ponent of the TE mode, which contributes to the repulsive
Casimir force, appears only below the transition temperature.
Thus, we expect that the dc component of the TE mode can be
detected using this phase transition.

The main aim of this study is to investigate the increase
in the repulsive contributions of the Casimir force by the
superconducting phase transition. Furthermore, we show that it
may be measured for the combination of a niobium (Nb) plate
and a YIG plate. This paper is structured as follows. In Sec. II,
we calculate the dielectric permittivity of niobium along the
imaginary frequency on the basis of the BCS theory. Further,
in Sec. II, we briefly explain the ordinary Lifshitz formula
at finite temperature and show the Casimir force between
niobium in a normal-state and YIG. In Sec. III, we show the
temperature dependence of the Casimir force between niobium
in the superconducting state and YIG. In Sec. IV, we consider
the Casimir force acting on the YIG located midway between
a superconducting niobium plate and a normal conducting
niobium plate and discuss the possibility of the detection of
the repulsive contribution for the dc component of the TE
mode. In Sec. V, we report our conclusions and remark that
the several problems of the Casimir force can be solved by
unique properties of superconductors.
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FIG. 1. Configuration of a superconducting plate (niobium) and
a magnetodielectric plate (YIG).

II. DIELECTRIC PERMITTIVITY OF NIOBIUM AND YIG

We consider the Casimir force between a niobium plate
of thickness d1 and a YIG plate of thickness d2 through
the vacuum gap. These plates are arranged parallel to each
other as depicted in Fig. 1. According to the Lifshitz theory
[15], the Casimir force per unit area of the plate at finite
temperature T depends on the separation distance between
the plates, the temperature, and the dielectric permittivity and
magnetic permeability along the imaginary frequency. Thus,
the first point that we should consider is the temperature
dependence of the dielectric permittivity of superconductor
along the imaginary frequency. The dielectric permittivity of
superconductor along the imaginary frequency εs(iξ,T ) is
expressed by using the real part of the conductivity of the
superconductor σ ′

s(ω,T ) for ω > 0 at temperature T as

εs(iξ,T ) = 1 + 8
∫ ∞

0
dω

σ ′
s(ω,T )

ξ 2 + ω2
. (1)

Here, the dependence of the dielectric permittivity on the wave
number vector is neglected. We calculate the conductivity
of niobium on the basis of BCS theory (see Refs. [21,23]
in detail). The electrical properties of niobium used in the
calculation, which are measured and evaluated by Pronin
et al. [24], are summarized in Table I. Figure 2 shows the
conductivity of niobium as a function of frequency at 4 K,
7 K, and 9 K near 2�/h̄ = 4.5 × 1012 rad/s. The real part of
the conductivity has a δ function at zero frequency for T < Tc.

The conductivity in the normal state obeys the Drude model
and it is expressed by

σ ′
D(ω) = 1

4πε0

ω2
p

1 + ω2τ 2
, (2)

where ωp is the plasma frequency and τ is the scattering time.
The value of τ in Table I is evaluated at 9 K. Substituting Eq. (2)

TABLE I. Electric properties of niobium

Transition temperature 8.31 K
Energy gap 2� 2.93 meV
Plasma frequency h̄ωp 5.8 eV
Scattering time τ 0.03 ps
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FIG. 2. (Color online) Frequency dependence of the real part of
the conductivity at 4 K, 7 K, and 9 K in niobium. The transition
temperature of niobium is 8.31 K.

into Eq. (1), the dielectric permittivity along the imaginary
frequency in the normal state is given by

εD(iξ ) = 1 + ω2
p

ξ (ξ + 1/τ )
. (3)

We employed the following formula given by Bimonte et al.
[21] to calculate the permittivity in the superconducting state:

εs(iξ,T ) = εD(iξ ) + ω2
s (ξ,T )

ξ 2
, (4)

where ω2
s (ξ,T ) is defined by

ω2
s (ξ,T ) = −8

∫ ∞

0
dω

ω2[σ̂ ′
s(ω,T ) − σ ′

D(ω)]

ξ 2 + ω2
. (5)

The dielectric permittivity along the imaginary frequency near
zero frequency is expressed as a combination of the Drude
model and the plasma model:

εs(iξ,T ) ≈ εD(iξ ) + ω2
s (0,T )

ξ 2
, (6)

where ω2
s (0,T ) converge to zero as T → Tc. Figure 3 shows the

dielectric permittivity along the imaginary frequency at 4 K,
7 K, and 9 K. Since the energy gap 2�(0) at zero temperature
corresponds to 4.5 × 1012 rad/s, the dielectric permittivity
along the imaginary frequency changes significantly below
1012 rad/s. The slope of the dielectric permittivity near zero
frequency on a log-log scale changes from −1 (Drude model)
to −2 (plasma model).

To calculate the dielectric permittivity along the imaginary
axis of the YIG, we used the experimental results for dielectric
permittivity obtained by Kahn et al. for 2.4 eV < E � 5.8 eV
[25] and by Kučera et al. for 5.8 eV < E � 30 eV [26]. We
use the following approximations. First, the imaginary part of
the dielectric permittivity for E less than 2.4 eV is zero [27].
Next, the imaginary part for large frequencies is expressed by
(11.6/E)4 for E > 30 eV [26,28].

III. CASIMIR FORCE BETWEEN NIOBIUM
IN A NORMAL-STATE AND YIG

We begin by considering the Casimir force between normal
conducting niobium and YIG. As shown in Fig. 1, let
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FIG. 3. (Color online) Plot of the dielectric permittivity of
niobium along the imaginary frequency ω = iξ at 4 K, 7 K, and
9 K. The slope of the permittivity on the log-log scale changes from
−1 to −2 near zero frequency as the temperature decreases below the
transition temperature.

the dielectric permittivity and magnetic permeability of the
medium labeled by an integer j be ε(j ) and μ(j ), respectively.
The vacuum gap between a niobium plate with j = 1 and a
YIG plate with j = 2 is labeled by j = 3, and the upper and
bottom vacuums are labeled by j = 4 and j = 5, respectively.
According to the Lifshitz theory [15], the Casimir force
between plates per unit area at temperature T can be expressed
by a summation of the following four components:

P (a,T ) =
∑

p∈{TM,TE}
P

p

0 (a,T ) +
∑

p∈{TM,TE}
P

p

l>0(a,T ). (7)

Here, P TM
0 and P TE

0 are contributions of vacuum fluctuation
in the transverse magnetic (TM) and transverse electric (TE)
modes, respectively, at zero frequency; similarly, P TM

l>0 and
P TE

l>0 are contributions of vacuum fluctuations in the TM and
TE modes, respectively, at positive frequencies. We note that
the representation of the Casimir force in Eq. (7) is not unique,
and the physical meanings are discussed later.

The contribution to the Casimir force of a vacuum fluctua-
tion with mode p at positive frequencies is given by

P
p

l>0(a,T ) = −kBT

π

∞∑
l=1

∫ ∞

0
k

(3)
l k⊥dk⊥

×
[

e2ak
(3)
l

R
(1)
p (iξl,k⊥)R(2)

p (iξl,k⊥)
− 1

]−1

, (8)

where ξl = 2πkBT l/h̄ with positive integer l represents the
Matsubara frequencies and

k
(n)
l ≡ kn

l (k⊥) =
√

k2
⊥ + ε(n)(iξl)μ(n)(iξl)

ξ 2
l

c2
. (9)

Here kB is the Boltzmann constant and k⊥ is the modulus of the
wave-vector projection on the plate. The reflection coefficients
R

(j )
p for positive frequencies are given by

R(1)
p (iξl,k⊥) = r (3,1)

p + r (1,5)
p e−2k(1)d1

1 + r
(3,1)
p r

(1,5)
p e−2k(1)d1

, (10)

R(2)
p (iξl,k⊥) = r (3,2)

p + r (2,4)
p e−2k(2)d2

1 + r
(3,2)
p r

(2,4)
p e−2k(2)d2

, (11)

where

r
(n,m)
TM (iξl,k⊥) = ε(m)(ξl)kn

l − ε(n)(ξl)k
(m)
l

ε(m)(ξl)kn
l + ε(n)(ξl)k

(m)
l

, (12)

r
(n,m)
TE (iξl,k⊥) = μ(m)(ξl)kn

l − μ(n)(ξl)k
(m)
l

μ(m)(ξl)kn
l + μ(n)(ξl)k

(m)
l

. (13)

We need to carefully consider the reflection coefficients
at zero frequency. Since the dielectric permittivity of the
superconductor diverges in the limit of ξ → 0, we require
the following limit defined by

C(n) = lim
ξ→0

ε(n)(iξ )μ(n)(iξ )
ξ 2

c2
. (14)

If the dielectric permittivity of the plate diverges near zero
frequency in the form described by the plasma model of
ε

(n)
pl (iξ ) = 1 + ω2

p/ξ 2, the limit C
(n)
pl is given by

C
(n)
pl = μ(n)(0)

ω2
p

c2
. (15)

On the other hand, if the dielectric permittivity of the plate
obeys the Drude model, then C is zero, and the TE mode
does not contribute to the Casimir force for the combination
of nonmagnetic metal and magnetodielectric.

We present the Casimir force between niobium in the
normal-state and YIG with static magnetic permeability in
the form of a ratio,

η(a,T ) ≡ P (a,T )

P∞(a)
, (16)

where the denominator is the Casimir force between perfectly
conductive plates at zero temperature,

P∞(a) = − π2h̄c

240a4
. (17)

Figure 4 shows the ratio at 9 K for a fixed thickness of
niobium d1 = 100 μm and different thicknesses of YIG
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FIG. 4. (Color online) Dependence of the ratios of the Casimir
force between a normal conducting niobium plate with a thickness of
100 μm and a YIG plate with a thickness of d2 at 9 K to the Casimir
force between perfectly conducting plates on the separation distance
a. The positive sign of η means that the Casimir force is attractive.
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d2 = 10 nm, 100 nm, and 1 μm. In this computation,
the dielectric permittivity of the superconductor is given
by Drude’s formula in Eq. (3), and the static magnetic
permeability of YIG is μ(0) = 160. Although the dielectric
permittivity of YIG depends on the temperature, it changes
near the transition temperature of niobium more smoothly than
the change in the dielectric permittivity of niobium. Thus, the
temperature dependence is mainly governed by the increase in
the superfulid component of niobium.

The Casimir force between a normal conducting niobium
plate and a YIG plate is always attractive, and its strength
decreases as the thickness of the YIG decreases. Similarly,
when the thickness of the YIG is fixed and the thickness
of niobium is decreased, the strength of the Casimir force
decreases. However, the change is not significant compared
with the former case.

IV. CHANGE IN THE CASIMIR FORCE BELOW
THE TRANSITION TEMPERATURE

In a two-fluid model for superconductors, the superfluid ap-
pears by cooling a conductor below the transition temperature,
and it results in the addition of the divergent term obeying the
inverse square law for frequency to the dielectric permittivity.
Thus, the value of C in Eq. (15) is changed from zero to
positive by decreasing the temperature. Assuming that the
relative magnetic permittivity of niobium is μ(1)(iξ ) = 1, the
reflection coefficients for the TE mode at ξ = 0 are explicitly
given by

R
(1)
TE(0,k⊥) =

k⊥−
√

k2
⊥+Cpl

k⊥+
√

k2
⊥+Cpl

(
1 − e−2k(1)d1

)
1 −

(
k⊥−

√
k2
⊥+Cpl

k⊥+
√

k2
⊥+Cpl

)2
e−2k(1)d1

, (18)

R
(2)
TE(0,k⊥) =

μ(2)(0)−1
μ(2)(0)+1

(
1 − e−2k(2)d2

)
1 −

(
μ(2)(0)−1
μ(2)(0)+1

)2
e−2k(2)d2

. (19)

The contribution of the TE mode at zero frequency P TE
0 (a,T )

is given by

P TE
0 (a,T ) = −kBT

2π

∫ ∞

0
k2
⊥dk⊥

[
e2k⊥a

R
(1)
TE(0,k⊥)R(2)

TE(0,k⊥)
− 1

]−1

.

(20)

Since R
(1)
TE(0,k⊥)R(2)

TE(0,k⊥) � 0 for any k⊥, the contribution of
P TE

0 (a,T ) to the Casimir force is repulsive.
Figure 5 shows the ratios of the Casimir force between a

superconducting niobium plate and a YIG plate at 7 K to that
between a normal conducting niobium plate and a YIG plate
at 9 K. Since the Casimir force at 9 K is attractive for any
separation distance, the negative sign of the ratio means that
the Casimir force at 7 K is repulsive. In Fig. 5, we see that the
Casimir force between a superconducting niobium plate and a
YIG plate can be repulsive for large separations. The separation
distance at which the Casimir force vanishes depends on the
thickness of the YIG, and the strength of the repulsive Casimir
force at a fixed separation distance increases as the thickness
of the YIG decreases [11]. To consider the dependence of four
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FIG. 5. (Color online) Ratios of the Casimir force between a
superconducting niobium plate and a YIG plate with a thickness of
d2 at 7 K to that between a normal conducting niobium plate and a
YIG plate at 9 K.

contributions P TE
l>0, P TM

l>0 , P TE
0 , and P TM

0 on the separation, we
introduce ratios defined by

η
(p)
0 (a,T ) ≡ P

(p)
0 (a,T )

P∞(a)
, (21)

η
(p)
l>0(a,T ) ≡ P

(p)
l>0(a,T )

P∞(a)
. (22)

Figure 6 shows these ratios at T = 7 K for a YIG of 10 nm
thickness. We clearly find that only the dc component of the
TE mode contributes to the repulsive force. The increase in the
contribution of P TE

0 to the Casimir force results in a reversal
in the direction of the Casimir force.

We now focus on the change in the repulsive Casimir
force for large separations by decreasing the temperature.
Figure 7 shows the change in the ratios of the Casimir
force between a superconducting niobium plate and a YIG
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FIG. 6. (Color online) Plot of four contributions of ηTE
0 , ηTM

0 , ηTE
l>0,

ηTM
l>0 and their summation at 7 K. Only the dc component of the TE

mode ηTE
0 contributes to the repulsive Casimir force, and it becomes

dominant for large separations.
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FIG. 7. (Color online) Temperature dependencies of the ratios of
the Casimir force between a superconducting niobium plate with a
thickness of 100 μm and a YIG plate with a thickness of 10 nm to the
Casimir force between perfectly conducting plates for the separation
distances 6, 7, and 8 μm. The inset is the plot of η for a = 8 μm
between 6 K and 7.6 K.

plate of thickness of 10 nm to the Casimir force between
perfectly conducting plates at three separation distances a = 6,
7, and 8 μm. As the temperature decreases from the transition
temperature Tc = 8.31 K, the Casimir force rapidly decreases.
In particular, the Casimir force changes from attractive to
repulsive for the separation distance a = 8 μm within a 0.1 K
decrease. The inset of Fig. 7 shows the change in the Casimir
force at a = 8 μm for small T . The Casimir force changes
from repulsive to attractive by decreasing the temperature.
This is due to the decrease in the contribution of the dc
component to the Casimir force. Let us recall the term in
the Lifshitz formula at zero frequency given by Eq. (20).
Since |R(1)

TE(0,k⊥)R(2)
TE(0,k⊥)| � 1, the contribution of P

p

0 (a,T )
is bounded by the following inequality:

−ζ (3)kBT

8πa3
� P

p

0 (a,T ) � 3ζ (3)kBT

32πa3
. (23)

Thus, this contribution vanishes in the limit of T → 0.

V. REPULSIVE COMPONENT OF THE CASIMIR FORCE

To consider the temperature dependence of the Casimir
force, it is useful to assume that the Casimir force consists of
the attractive component and the repulsive component. In the
Lifshitz formula, the Casimir force is expressed by the infinite
contributions depending on the frequency, and we cannot
separately measure each term. However, for the combination
of the superconductive niobium and YIG, only the repulsive
component, that is, P TE

0 , couples with nonzero magnetic
permeability. If we use this property, we may measure the
dc component of the TE mode.

If the repulsive Casimir force is measured between a
niobium plate and a YIG plate, the existence of the repulsive
component is very clear. However, the strength of the repulsive
Casimir force is too small to be measured by current measuring
devices. A possible indirect proof of the existence of the

Niobium normal state

Vacuum

YIG

Vacuum

Niobium superconductor
L 2

L 2

d

z

0

FIG. 8. Illustration of the three-layer system, which consists of a
superconducting plate, a normal conducting plate, and a YIG plate.
The YIG plate is located midway between two superconducting
plates.

repulsive component can be obtained by measuring the change
in the Casimir force by the phase transition of niobium. As
shown in Fig. 7, the Casimir force decreases considerably when
niobium changes from a normal conductor to a superconductor.
Thus, the difference between the measured Casimir force
and the theoretical value, which is obtained assuming the
Drude model, can be considered as the repulsive component.
However, this method is not persuasive, because we need
to take into account decrease in the attractive component
due to the decrease in the number of real photons, which
obey Bose-Einstein statistics. Thus, let us consider a more
direct measurement of the repulsive component by using a
multilayered system [29,30]. We examine the Casimir force
acting on the YIG plate located at the middle between niobium
in a normal state, whose dielectric permittivity is given by the
Drude model in Eq. (3) and niobium in a superconducting state
(see Fig. 8). Here, the direction of the z axis is upwards. We
expect that all terms except for P TE

0 almost cancel by locating
the YIG plate midway between the niobium plates. If all plates
are the same temperature, the Casimir force acting on a YIG
plate can be calculated by generalizing the Lifshitz theory (see
the Appendix) in a straightforward manner. Previously, the
adhesion of a dielectric membrane in a similar configuration
was experimentally studied by Bucks and Roukes [31].

We assume that all plates are in equilibrium with the
environment at temperature T . Although the coexistence of
a superconducting state and a normal conducting state at the
same temperature is difficult to realize, doping the niobium
with hydrogen may enable the transition temperature to be
decreased by several degrees Kelvin due to the increase
in the lattice constant without considerable change in the
plasma frequency and scattering time, which mainly depend
on electron density [32]. If this assumption is correct, the
primary difference between a superconductor and a normal
conductor near the transition temperature is that only the
dielectric permittivity of the superconductor includes a term
proportional to ξ−2. Figure 9 shows the relation between the
Casimir force acting on the YIG plate P3(T ), which is given in
Eq. (A13), for a niobium plate separation distance L = 3 μm
and a YIG plate thickness d2 = 1 μm, and the dc component
of the TE mode P TE

0 (1 μm,T ). The good agreement between
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FIG. 9. (Color online) Comparison of the temperature depen-
dence of the Casimir force acting on a YIG plate midway between
a superconducting niobium plate and a normal conducting niobium
plate (solid circles) with the contribution for the dc component of the
TE mode to the Casimir force between a superconducting niobium
plate and a YIG plate (solid line). The vacuum gap is 1 μm, and the
thickness of the YIG plate is 1 μm.

them in Fig. 9 suggests that all components of the Casimir
force acting on YIG plate are almost canceled except for
P TE

0 (a,T ). Accordingly, the Casimir force acting YIG plate
at the midpoint becomes positive for any distance. If the
contribution of P TE

0 (a,T ) does not affect the Casimir force, the
Casimir force acting on the YIG plate at the midpoint becomes
negative. As a result, our numerical results suggest that the
repulsive Casimir force is too weak to be measured, but the
existence of the repulsive contribution P TE

0 may be measured.

VI. CONCLUSIONS

As already emphasized by Bimonte et al., the unique
properties of superconductors provide opportunities for the
study of the Casimir effect [21,22]. In this paper, we have added
that the superconductor is a suitable material for examining the
possibility of a repulsive Casimir force. The possibility of a
repulsive Casimir force has been studied, and many methods
of generating it have already been proposed [8,33–36]. For
instance, a repulsive Casimir force between metals in the
vacuum gap can be realized by making the shapes of the
objects complicated [37,38]. However, the repulsive force
generated by this method is not stable, and the two metallic
objects are considered to be getting closer if one of the objects
shifts from the stable position. In contrast, the Casimir force
between a superconductive plate and a magnetodielectric plate
that is perpendicular to the surface is always repulsive for
large separation gaps. This property is desirable for quantum
levitation [39,40]. When considering a method for generating
the repulsive Casimir force between parallel plates, the use of
the dc component of the TE mode seems to be practical.

An essential condition of the repulsive Casimir force
between the metallic plate and the magnetodielectric plate
is that the dielectric permittivity diverges in proportion to the
inverse-square of the frequency as the frequency approaches
zero. Thus, if the dielectric permittivity of a normal conductive
metal such as gold obeys the plasma model, the Casimir force

between the ordinary metal and the magnetodielectric can
be repulsive at room temperature [12]. However, we have
not yet established theoretical bases of the model for the
dielectric permittivity of metal used in the Lifshitz theorem.
By comparison, the conductivity of the superconductor is well
understood on the basis of BCS theory and an inverse square
divergence of the dielectric permittivity near zero is a natural
consequence of the BCS theory. Accordingly, the combination
of the superconductor and magnetodielectric is a promising
candidate for a test of the possibility of the repulsive Casimir
force in the vacuum gap. The disadvantage of this system is that
the repulsive contribution becomes small when the temperature
is decreased, as mentioned in Sec. IV.

To calculate the Casimir force, we used the Lifshitz
formula, which is expressed as an infinite summation over the
Matsubara frequency. In this summation, the dc component
of the TE mode plays an important role in the generation of
the repulsive Casimir force. However, this does not mean that
only the static electromagnetic field contributes to the repulsive
Casimir force. If we use the representations of the Lifshitz
formula using the real frequency of the Lifshitz formula [3],
different explanations for the decrease in the Casimir force
below the transition temperature are possible. The advantage
of the Lifshitz formula using the imaginary frequency at finite
temperature is that the pressure which depends only on static
electromagnetic properties can be easily calculated, and it can
be measured. We here emphasize that the repulsive component
can be measured for any separation distance in principle.
Although the Casimir force between a niobium plate and a
YIG plate becomes repulsive only for large separations, the
repulsive component exists for any separation distance. The
strength of the repulsive component for small separations
is much larger than the repulsive Casimir force. Thus, the
measurement of the repulsive component is more practical
than that of the repulsive Casimir force.
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APPENDIX: THE LIFSHITZ FORMULA
FOR THREE PLATES

We consider the Casimir force acting on a plate of thickness
d sandwiched by two parallel plates, as shown in Fig. 10. The
dispersion relation of the electromagnetic field in this system
can be expressed for p ∈ {TM,TE} by

�(p)(ω,k⊥) =
∑

i∈{−1,1}

∑
j∈{−1,1}

∑
k∈{−1,1}

C
(p)
i,j,ke

iK1a1+jK2a2+kK3d,

(A1)

where

Kn(ω,k⊥) ≡
√

k2
⊥ − εn(ω)μn(ω)

ω2

c2
. (A2)

If the thicknesses of the plates labeled by 4 and 5 are infinite,
C

(p)
i,j,k is compactly given by

C
(p)
i,j,k ≡ C

(p)
i,j,k(ω,k⊥) = f

(p)
4,1,if

(p)
1,3,ikf

(p)
3,2,jkf

(p)
2,5,j , (A3)

where

f
(TM)
i,j,s ≡ f

(TM)
i,j,s (ω,k⊥) = sεjKi(ω,k⊥) + εiKj (ω,k⊥), (A4)

f
(TE)
i,j,s ≡ f

(TE)
i,j,s (ω,k⊥) = sμjKi(ω,k⊥) + μiKj (ω,k⊥). (A5)

In particular, since Kn(iξ,k⊥) � 0, the dispersion relation
�(p)(iξ,k⊥) along the imaginary frequency for large a1 and
a2, which corresponds to the infinite gaps between plates 4
and 5, is given by

�(p)
∞ (iξ,k⊥) = (C1,1,1 + C1,1,−1e

−2K3d )eK1a1+K2a2+K3d . (A6)

We now obtain the free energy,

F(a1,a2,d) = kBT

2π

∞∑
l=0

′ ∫ ∞

0
k⊥dk⊥

{
ln

�(TM)(iξl,k⊥)

�
(TM)
∞ (iξl,k⊥)

+ ln
�(TE)(iξl,k⊥)

�
(TE)
∞ (iξl,k⊥)

}
, (A7)

where the prime on the summation symbol implies that a factor 1/2 should be inserted if l = 0 (see Ref. [3]). The ratio �p/�
p
∞

is explicitly expressed as

�p(iξl,k⊥)

�
p
∞(iξl,k⊥)

= 1 + C
(p)
−1,1,1 + C

(p)
−1,1,−1e

−2K3d

C
(p)
1,1,1 + C

(p)
1,1,−1e

−2K3d
e−2K1a1 + C

(p)
1,−1,1 + C

(p)
1,−1,−1e

−2K3d

C
(p)
1,1,1 + C

(p)
1,1,−1e

−2K3d
e−2K2a2

+ C
(p)
−1,−1,1 + C

(p)
−1,−1,−1e

−2K3d

C
(p)
1,1,1 + C

(p)
1,1,−1e

−2K3d
e−2K1a1−2K2a2 . (A8)

In the absence of the middle plate, by setting εn and μn to 1 for n = 1,2,3, we have the Casimir energy between two plates
separated by a vacuum with a gap (a1 + a2 + d):

F(a1,a2,d) = kBT

2π

∞∑
l=0

′ ∫ ∞

0
k⊥dk⊥

{
ln

[
1 − rTM

4 rTM
5 e−2K1(a1+a2+d)

] + ln
[
1 − rTE

4 rTE
5 e−2K1(a1+a2+d)

]}
, (A9)

where

rTM
n = εn(iξ )K3(iξ,k⊥) − Kn(iξ,k⊥)

εn(iξ )K3(iξ,k⊥) + Kn(iξ,k⊥)
, (A10)

rTE
n = μn(iξ )K3(iξ,k⊥) − Kn(iξ,k⊥)

μn(iξ )K3(iξ,k⊥) + Kn(iξ,k⊥)
. (A11)

On the other hand, if the thickness of the middle plate is infinite, the free energy is given by

F(a1,a2,d) = kBT

2π

∞∑
l=0

′ ∫ ∞

0
k⊥dk⊥

{
ln

[(
1 − rTM

4 rTM
3 e−2K2a2)

)(
1 − rTM

5 rTM
3 e−2K1a1)

)]
+ ln

[(
1 − rTE

4 rTE
3 e−2K2a2))(1 − rTE

5 rTE
3 e−2K1a1))]}. (A12)

This is equal to a summation of the free energy between plate 4 and plate 3 and that between plate 5 and plate 3; both these
free energies can be calculated by the Lifshitz formula for a two-layer system. Accordingly, if the thickness of the middle plate
is large, the Casimir force is approximately given by a resultant force of the Casimir force between plate 4 and plate 3 in the
vacuum gap and that between plate 5 and plate 3 in the vacuum gap.

We fix the distance between plate 1 and plate 2 to L = a1 + a2 + d. If the separation distance between plate 1 and plate 3 is
a, the Casimir force acting on plate 3 per unit area is given by

P3(a,T ) = − ∂

∂a
F(a,L − a − d,d). (A13)

This calculation is straightforward, but the explicit expression is lengthy and it is omitted.
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