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Highly charged ions with E1, M1, and E2 transitions within laser range
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Level crossings in the ground state of ions occur when the nuclear charge Z and ion charge Zion are varied along
an isoelectronic sequence until the two outermost shells are nearly degenerate. We examine all available level
crossings in the periodic table for both near-neutral ions and highly charged ions (HCIs). Normal E1 transitions
in HCIs are in x-ray range; however, level crossings allow for optical electromagnetic transitions that could form
the reference transition for high-accuracy atomic clocks. Optical E1 (due to configuration mixing), M1, and
E2 transitions are available in HCIs near level crossings. We present scaling laws for energies and amplitudes
that allow us to make simple estimates of systematic effects of relevance to atomic clocks. HCI clocks could
have some advantages over existing optical clocks because certain systematic effects are reduced; for example,
they can have much smaller thermal shifts. Other effects such as fine-structure and hyperfine splitting are much
larger in HCIs, which can allow for richer spectra. HCIs are excellent candidates for probing variations in the
fine-structure constant α in atomic systems as there are transitions with the highest sensitivity to α variation.
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I. INTRODUCTION

Current technological plans hint at the mainstream adoption
of highly charged ions (HCIs) for many uses in the near future
(see, e.g., the review [1]). The production of any ion stage
of practically any naturally occurring element is possible at
ion accelerators and/or electron-beam ion traps. Furthermore,
great progress has been made recently in trapping, cooling,
and spectroscopy of HCIs (see, e.g., [2–5] and the review [6]).
In this paper, we consider candidate transitions for an optical
clock made using a HCI that has a configuration crossing in
the ground state: a “level crossing.”

Level crossings in ions occur when the energy ordering
of orbitals changes with increasing ion charge. The ion charge
may be increased by considering ionization along an isonuclear
sequence or by considering an isoelectronic sequence with
variable nuclear charge. The latter is somewhat simpler to
deal with theoretically since the electronic structure does not
usually change very much between adjacent ions. In this
paper, we discuss isoelectronic sequences at points where the
electronic structure does change—the level crossings—and
interesting properties can emerge. Near level crossings, the
frequencies of transitions involving the crossing orbitals can
be much smaller than the ionization energy. This means that
they can be within the optical range and have the potential
to be excited by lasers, opening the possibility of performing
high-precision spectroscopy and building optical clocks using
HCI reference transitions.

This work is also motivated by astronomical observations
of quasar absorption spectra that suggest that there is a spatial
gradient in the value of the fine-structure constant, α = e2/h̄c

[7,8]. Data samples from the Very Large Telescope and Keck
Telescope [9,10] independently agree on the direction and
the magnitude of this gradient, which is significant at a
4.2σ level. A consequence of the astronomical result is that
since the solar system is moving along this spatial gradient,
there may exist a corresponding temporal shift in α in the
Earth’s frame at the level α̇/α ∼ 10−19 yr−1 [11]. Finding this
variation using atomic clocks could independently corroborate
the astronomical result in the laboratory.

The best current terrestrial limit on the time variation
of α was obtained by comparing the ratio of frequencies
of the Al+ clock and the Hg+ clock over the course of
a year [12]. The ratio is sensitive to α variation because
the reference transitions in the two clocks have different
sensitivity coefficients q defined as

q = dω

dx

∣∣∣∣
x=0

, (1)

where x = α2/α2
0 − 1 is a normalized change in α2 from

the current value α2
0, and q and ω are measured in atomic

units of energy. In this experiment, the Al+ clock is relatively
insensitive to α variation (low q coefficient), thus serving
as an “anchor” line. On the other hand, the Hg+ clock is
sensitive to α variation (high q coefficient). Therefore, the
ratio of these transition frequencies will change if α changes.
The limit on the rate of change of α was measured as
α̇/α = (−1.6 ± 2.3) × 10−17 yr−1.

To compete with astrophysical measurements of the spatial
gradient, the atomic-clock limits must be improved by around
two orders of magnitude. Several proposals have been made for
atomic clocks that, if measured at the same level of accuracy
as the Al+/Hg+ ratio, would give much stronger limits on α

variation. These include proposals to construct clocks using
heavier elements with similar properties (e.g., the Tl+ clock
proposed by [13]), systems with large relative sensitivities to
α variation exploiting the accidentally degenerate levels in
Dy [14,15] or fine-structure anomalies in Te, Po, and Ce [16],
a variety of transitions in heavy elements with large q values
(e.g., [17–20]), and nuclear clocks based on the 7.6 eV isomeric
transition in the 229Th nucleus that would have extraordinary
sensitivity to the variation of fundamental constants [21–24].
For a more complete review, see [25,26].

Transitions near level crossings in HCIs can provide higher
sensitivity to α variation than any other optical transitions seen
in atomic systems [27,28]. Consider the following analytical
formula for the relativistic shift of an energy level in the single-
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particle approximation [14]:

qn ≈ −In

(Zα)2

ν(j + 1/2)
, (2)

where In is the ionization energy of the orbital (atomic units
h̄ = e = me = 1) and ν is the effective principal quantum
number. A transition in a HCI can have a large sensitivity
because the difference in qn between the levels involved can be
large. The enhancement comes from the coherent contributions
of three factors: high nuclear charge Z, high ionization degree
Zion (leading to large In), and significant differences in the
configuration composition of the states involved (large changes
in j and ν). For nearly-filled shells, an additional enhancement
in the α sensitivity occurs due to each electron spending
approximately half of its time nearer to the nucleus than other
electrons in the same shell. In these cases, qn ∼ I

3/2
n [28].

In this paper, we perform a systematic search for level
crossings in HCIs throughout the periodic table. We identify
several ranges of Z and Zion where level crossings can be
found, and perform configuration-interaction calculations for
some of the most promising systems. In Sec. VII, we discuss
how systematic effects that affect optical clocks are modified
in the case of HCIs, and find that HCIs confer some benefits
over near-neutral ions. Current experimental techniques might
be applied to build a similar clock retaining high precision, but
with much higher sensitivity to α variation.

II. METHOD

Our first task in this work is to identify HCIs with level
crossings in the ground state. We start with neutral ions and
then increase Z, working along the isoelectronic sequence
from the neutral-atom filling order towards the Coulomb filling
order. The Madelung rule (also known as the Klechkowski
rule) can be taken as a first approximation for determining
the filling order of electron shells in neutral atoms. We show
in the Appendix that this is a good approximation because
deviations from this filling order in neutral atoms disappear
with a small increase in the ion charge Zion. Also, we know
that in very highly charged ions, the energy levels of the
electrons must approach the hydrogenlike (Coulomb) limit,
where all orbitals with the same principal quantum number n

are nearly degenerate. Figure 1 presents the order of electron
orbitals under both ordering schemes. Since any difference in
the ordering as computed from the Madelung rule and that
of the hydrogenlike limit must be resolved with increasing
Zion, the “out-of-order” levels must cross at some Zion. From
the transition between these limits, it is seen that the only
types of crossings available in HCIs are between orbitals with
angular momenta s–d, s–f , and p–f .

Neutral atoms sometimes have ground-state electronic
configurations that deviate from the Madelung rule. In isoelec-
tronic sequences starting with such atoms, other types of level
crossings can occur (namely, 5d–4f and 6d–5f ). However,
we find that the new crossings occur with the addition of
just a few extra protons; no additional crossings are found in
highly charged (Zion � 5) ions. Full details are presented in
the Appendix.

To find the ions along the isoelectronic sequence where
level crossings lead to small transition frequencies, we per-
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FIG. 1. A comparison of the ordering of electron orbitals: The first
column is the order of filling as derived by applying the Madelung
rule, while the second column is derived for a hydrogenlike atom
(excluding g-wave and h-wave orbitals that cannot be occupied in
the ground state of any real ion). The ordering of orbitals changes
with increasing ion charge, Zion.

form Dirac-Fock (relativistic Hartree-Fock) calculations. An
example is presented in Fig. 2, which shows the 4f and 5p

valence orbitals of the indium isoelectronic sequence (N = 49)
calculated using Dirac-Fock in the V N−1 approximation. It is
seen that for low values of Zion, the 4f orbitals lie above the
5p orbitals, but at Z = 59 the 4f levels drop below the 5p3/2

orbital, and between Z = 59 and 60 they cross the 5p1/2 orbital
energy. In general, this method produces acceptable estimates
for the position of the crossings, as we will see by comparison
with configuration-interaction calculations in Secs. V and VI.

Many-body perturbation theory (MBPT) corrections can be
included, but our calculations show that this does not change
the position of the crossing point (see Fig. 3, which shows a
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FIG. 2. Dirac-Fock energies of the 4f5/2 (solid line), 5p1/2

(dashed line), and 5p3/2 (dotted line) levels of the In (N = 49)
isoelectronic sequence.
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FIG. 3. Energies of the 4f5/2 (solid line), 5p1/2 (dashed line),
and 5p3/2 (dotted line) levels of the In (N = 49) isoelectronic
sequence. Upper panel: detail of the level crossing in the Dirac-Fock
approximation of Fig. 2. Lower panel: the same level crossing
calculated with many-body perturbation-theory corrections included.
The qualitative nature of the crossing point is not significantly affected
by the MBPT corrections.

detailed view of the crossing point in Fig. 2 with and without
the inclusion of MBPT corrections).

The indium sequence described above has one valence
electron above closed shells (a cadmium core that we may con-
sider frozen). In general, however, we can perform Dirac-Fock
calculations even for several-valence-electron ions provided
we scale the contribution of each subshell by its filling fraction.
Again, this gives reasonable accuracy for the ionization energy
(order of a few percent), which is good enough to identify level
crossings. As we progress along an isoelectronic sequence, we
increase Z until the first crossing point is reached. After this
point, the electronic configuration will be altered, and to find
other crossing points that occur later in the sequence, further
calculations must be performed with the modified electron con-
figuration which assumes that the first crossing has occurred.

In principle, it is possible to use the weighted Dirac-Fock
(DF) method outlined above for an arbitrary number of
electrons, but for partially-filled shells and electron-hole calcu-
lations there usually will be more than one possible DF electron
configuration to use. One such example is Cr II [29], where the
d-shell electrons must be accounted for in the DF approxima-
tion, but it is not clear if a V N scheme where 3d5 is included in
the DF potential or a V N−1 scheme where 3d4 is included will

give better agreement with experiment [of course, in the limit
of a complete basis set, both approximations will give the same
configuration-interaction (CI) result]. Furthermore, using a
poor approximation for the DF potential may result in the
Dirac-Fock calculation showing no available level crossings.
In order to resolve this issue, we must perform at least minimal
configuration-interaction calculations to locate the crossing
point and calculate approximate transition frequencies.

HCIs with many valence electrons have some benefits
for potential clock applications because of the availability
of different angular momentum states and configurations.
This is useful both for finding reference transitions with
desirable properties and also for increasing the sensitivity of
the transition to α variation, as the q values for a k-electron
transition is approximately k times the q value for the single-
electron transition. This is illustrated, e.g., by the examples
presented in [27,28]. Furthermore, using configuration mixing,
it is also possible to generate E1 transitions using multiple
electrons in an s–f crossing. In the following sections, we
will list all of the available level crossings in elements from
the considerations discussed above.

The calculations presented in this paper use the atomic
structure code AMBiT [30], which includes Dirac-Fock (DF)
and configuration-interaction (CI) algorithms. While core-
valence calculations can be included in a CI calculation via
many-body perturbation theory using the CI + MBPT method
[31], for our current purposes this is not required, as discussed
below. All CI calculations for two- and three-valence-electron
ions are performed using a fairly small B-spline basis of the
type developed in [32,33], including valence orbitals only up
to 7 spdf . MBPT corrections are much more important for the
calculation of transition frequencies ω. More precise studies
of those HCIs that are of interest to experimentalists will need
to be performed using the full CI + MBPT theory.

The Breit interaction can be omitted for the same reason. We
have previously studied the effect of the Breit interaction on
some ion transitions which are sensitive to the variation of the
fine-structure constant [36], and found it to have a negligible
effect on the sensitivities. However, near the level crossing,
this effect is important for the relative position of close levels.
Test calculations for the s–f transitions for Pm14+ and similar
ions show that the Breit contribution to the energy interval
is about 2000 cm−1. Given that the total energy interval is
just a few-thousand inverse centimeters, this contribution may
very well change the ordering of the levels. Even in this case,
however, the effect of Breit interaction is smaller than the
effect of some omitted correlations. Therefore, its inclusion
is not necessary for the calculation of the position of level
crossings as a function of Z, Zion. It should only be included
in the full-scale CI + MBPT calculations.

In Table I, we compare experimental ionization energies
with those calculated in the DF approximation for several
levels of neutral lithium. For this simple case, we see that the
ionization energies and intervals are accurate to ∼1% or better.
Table II compares the ground-state ionization energies for
selected ions along the tungsten (Z = 74) isonuclear sequence
with available data. In HCIs, we see that we maintain roughly
the same degree of accuracy; therefore, we can surmise that
the position of level crossings is fairly accurately determined
from the DF calculations alone.
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TABLE I. Dirac-Fock calculation of ionization energy and energy
intervals for neutral lithium, compared with available experimental
data from [34].

Ionization energy (cm−1)

Level J DF calc. Expt. % Deviation

2s 1/2 −43087 −43487 −0.919
2p 1/2 −28232 −28583 −1.226

3/2 −28232 −28583 −1.227
3s 1/2 −16197 −16281 −0.513
3p 1/2 −12460 −12561 −0.808

3/2 −12459 −12561 −0.809
3d 3/2 −12194 −12204 −0.079

5/2 −12194 −12204 −0.079
4s 1/2 −8444 −8475 −0.367
4p 1/2 −6975 −7017 −0.604

3/2 −6974 −7017 −0.604
4d 3/2 −6859 −6863 −0.065

5/2 −6859 −6863 −0.065

On the other hand, we note that the energy of transitions
between the levels participating in the optical level crossing
may not be as easily determined for HCIs (indeed, even the
ordering may be difficult to determine). This is because we are
selecting HCIs where the difference between the ionization
energies of these levels is strongly suppressed. For the typical
scale of ionization energies in HCIs, ∼107 cm−1, an interval of
∼104 cm−1 is the result of a cancellation at the level 99.9%. To
determine the ground state conclusively, an accuracy of better
than 0.1% in the ionization energy is required. As a result,
in HCIs near level crossings, the electronic structure is not as
well determined as in near-neutral ions, and the ground state
is typically not identified to a high degree of confidence. For
experimental purposes, however, the two (or more) possible
ground states in HCIs with optical level crossings can all be
considered metastable, as they have typical lifetimes ranging
from seconds to the lifetime of the universe.

III. GROUND-STATE LEVEL CROSSINGS

In this section, we list all possible level crossings that occur
because of the transition from the Madelung filling scheme
to the Coulomb degenerate scheme. All crossings in Fig. 1

TABLE II. Dirac-Fock calculation of energy levels for selected
ions belonging to the ionization sequence of tungsten, compared with
available data.

Ionization energy (103 cm−1)

Ion DF calc. Expt. [35] % Deviation

W5+ −509 −522 2.49
W11+ −1846 −1868 1.17
W13+ −2440 −2345 4.05
W27+ −7075 −7109 0.47
W37+ −13049 −13080 0.23
W45+ −19487 −19471 0.08
W55+ −43101 −43133 0.07
W73+ −652346 −651338 0.15

are represented; however, most occur at a relatively low ion
stage or outside the range of relatively stable nuclei (Z �
100). The most interesting cases are those that occur in HCIs
with Zion � 5: crossings c (4f –5s), d (4f –5p), and h (5f –
6p), which are studied in further detail in Secs. IV, V, and
VI, respectively. Once an ion is found with orbitals near a
particular level crossing, nearby ions with the same crossing
can generally be found by increasing the nuclear charge while
simultaneously increasing the number of electrons by the same
amount, provided that the orbital shells involved in the crossing
are not completely filled.

(a) 3d–4s. The earliest crossing possible in the periodic
table occurs in the K isoelectronic sequence (N = 19). The
ground-state configuration is [Kr]4s, but the ground state of
Sc2+ (Z = 21) is [Kr]3d. This crossing can be seen in the early
transition metals, where it is well known that the 3d and 4s

orbitals are nearly degenerate in neutral and near-neutral ions
of these elements. All isoelectronic sequences beginning from
neutral atoms with 19 � N � 28 have this crossing. The N =
29 isoelectronic sequence starts with Cu, where the ground
state is 3d104s; this sequence has no crossing since in the
neutral atom the electron shells already fill in the Coulomb-
limit order.

(b) 4d–5s. For the Rb isoelectronic sequence, this crossing
point occurs near Z = 39, which is Y2+. Again, this level
crossing happens in near-neutral systems; it is available in
isoelectronic sequences with 37 � N � 46. For N = 47, the
ground state already has Coulomb degenerate ordering. One
ion with this crossing, the two-valence-electron ion Zr2+, was
discussed in [36].

(c) 4f –5s. The 5s and 4f level crossing occurs at a
higher degree of ionization than the previous two crossings.
The lightest ions with this crossing occur in the N = 47
isoelectronic sequence, which has a single electron above
closed shells. The ions Nd13+, Pm14+, and Sm15+ have optical
transitions between these orbitals; they were studied in [27].
The heaviest ions with this crossing occur when the 4f and
5s shells are nearly filled, i.e., in the isoelectronic sequences
of Pm or Nd. These were studied in [28] where the ions Ir16+
and Ir17+ (ground-state configurations 4f 135s2 and 4f 135s,
respectively) were found to have optical transitions from
the ground state with the extremely large q values. The
total number of ions with this crossing is around 50. This
level crossing is available in isoelectronic sequences with
47 � N � 61. We discuss other examples with this crossing
in Sec. IV.

(d) 4f –5p. The 5p1/2 and 5p3/2 orbitals are separated by a
large fine-structure interval, which causes this level crossing to
occur over a wider range of Z (see Fig. 2). For a single electron
above a closed shell, this crossing occurs at around Z = 59.
Figure 3 illustrates the effect of including MBPT corrections
on the position of the level crossing. This level crossing is
available in isoelectronic sequences with 49 � N � 67. The
ions W7+ and W8+ (N = 67 and 66, respectively), which have
hole transitions between the nearly-filled shells, were studied
in detail in [28]. We discuss other examples in Sec. V.

(e) 4f –6s. This crossing point occurs much earlier in the
ionization sequence than other s–f crossings presented here
since the difference in principal quantum number between
the orbitals is �n = 2. In the Cs isoelectronic sequence, this
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crossing occurs in Ce3+; however, the 5d orbital also plays
a role here and the 4f –6s level crossing is not seen in the
ground state of this sequence. This level crossing is available
in isoelectronic sequences with 55 � N � 69.

(f) 5d–6s. Just as in the 4d–5s case, the 5d and 6s

orbitals cross at a low ionization stage; for the Cs isoelectronic
sequence (N = 55), it occurs in doubly-ionized lanthanum
(Z = 57). On the other hand, s2–d2 transitions can have
reasonably large q values even in ions with a relatively
small ion stage, especially where the hole transitions are
used. Several interesting examples, including Hf2+, Hg2+, and
Hg3+, were studied in [36]. This level crossing is available in
isoelectronic sequences with 55 � N � 78.

(g) 5f –6s. This crossing is similar to the 4f –5s crossing
previously discussed, and it was hoped that ions which showed
this crossing would have very high q values due to the large
Z2 enhancement factor. However, the 6s orbital is much more
tightly bound than the 5f orbitals and, as a result, the level
crossing occurs at Z = 105 for the Au isoelectronic sequence
and well beyond 105 for the Tl isoelectronic sequence. While
this level crossing occurs in isoelectronic sequences with 79 �
N � 101, it is unavailable in any stable nuclei.

(h) 5f –6p. The 6p1/2 and 6p3/2 orbitals are very far apart
in HCIs due to large fine-structure splitting (the 5f5/2 and 5f7/2

orbitals are much closer). This causes a bifurcation of this level
crossing, with 5f crossing the 6p3/2 orbitals (in the excited
state) near Z = 93 and crossing the 6p1/2 near Z = 98 for the
Tl isoelectronic sequence. This level crossing is available in
isoelectronic sequences with 81 � N � 101. It was originally
exploited in [37], where it was shown that optical transitions
in Cf16+ (N = 82 with two valence electrons) have the largest
sensitivity to variation of the fine-structure constant seen in
any atomic system. We discuss more examples in Sec. VI.

(i) 5f –7s. As in the case of the 4f –6s crossing, the
difference in principal quantum number is �n = 2. Since
states with larger n tend to have lower orbital energy, this
causes the 7s orbital to be comparable in energy to 5f , thus
creating a crossing point early in the ionization sequence.
Ac2+, which is near this level crossing, was examined in [36].
This level crossing is available in isoelectronic sequences with
87 � N � 101.

(j) 6d–7s and 6f –7s. The 6d–7s level crossing occurs in
low ionization stages of isoelectronic sequences with N � 87.
For example, in the Fr isoelectronic sequence, it is seen in
Ac2+ [36], which has 7p, 6d, and 5f orbitals all within optical
range of the 7s ground state. This level crossing is available
in isoelectronic sequences with N � 87. The 6f –7s crossing
should exist in all sequences with N � 87 since the 6f shell
is never occupied. However, the 6f orbital is at such high
energy that the crossing occurs in very highly charged ions,
with Z > 100. Therefore, the crossing is not shown in Fig. 1
since it will not occur in stable isotopes.

IV. 4 f –5s CROSSING

In this section, we examine the 4f –5s crossing in greater
detail. As mentioned previously, this level crossing occurs
in ions with a relatively high degree of ionization. Table III
presents CI calculations of some ions near this crossing with
up to three valence electrons. As can be seen from the tables,

TABLE III. Configuration-interaction calculations for the level
structure of highly charged ions with one, two, or three valence
electrons and 4f –5s intervals below 100 000 cm−1. In general, the
ellipses indicate that there are more fine-structure states available,
which we omit for brevity.

N Ion Config. J P Energy (cm−1)

47 60Nd13+ 5s 0.5+ 0
4f 2.5− 64084
4f 3.5− 68480

47 61Pm14+ 5s 0.5+ 0
4f 2.5− 8902
4f 3.5− 14290

47 62Sm15+ 4f 2.5− 0
4f 3.5− 6485
5s 0.5+ 51314

48 60Nd12+ 5s2 0+ 0
4f 5s 2− 86136
4f 5s 3− 87464
4f 5s 4− 90435
4f 5s 3− 96929

48 61Pm13+ 5s2 0+ 0
4f 5s 2− 32742
4f 5s 3− 34261
4f 5s 4− 38030
4f 5s 3− 44299
4f 2 4+ 98912

48 62Sm14+ 4f 5s 2− 0
4f 5s 3− 1697
4f 5s 4− 6381
4f 2 4+ 11223

4f 5s 3− 12460
4f 2 5+ 16095
···

5s2 0+ 25338
4f 2 4+ 31069
···

48 63Eu15+ 4f 2 4+ 0
4f 2 5+ 5886
···

4f 5s 2− 48780
4f 5s 3− 50643
···

49 62Sm13+ 4f 5s2 2.5− 0
4f 5s2 3.5− 6189
4f 25s 3.5+ 40211
4f 25s 4.5+ 42454

···
49 63Eu14+ 4f 25s 3.5+ 0

4f 25s 4.5+ 2601
4f 25s 5.5+ 6663
4f 25s 1.5+ 10711

···
4f 5s2 2.5− 17478
4f 25s 3.5+ 20722

···
4f 5s2 3.5− 24854
4f 3 4.5− 28828
···

49 64Gd15+ 4f 3 4.5− 0
4f 3 5.5− 4768
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TABLE III. (Continued.)

N Ion Config. J P Energy (cm−1)

4f 3 6.5− 9711
4f 3 1.5− 24137
···

4f 25s 3.5+ 30172
4f 3 4.5− 31911
···

49 65Tb16+ 4f 3 4.5− 0
4f 3 5.5− 5702
4f 3 6.5− 11527
4f 3 1.5− 25637
···

4f 25s 3.5+ 94034
4f 25s 4.5+ 97331

the range of values for the charge on the ion, Zion, for which the
level crossing occurs remains relatively stable. This reinforces
the general rule of thumb that given an ion near a level crossing,
simultaneously increasing or decreasing both the charge Z and
the number of electrons N by the same amount will result in
another ion near the same level crossing.

The 4f –5s level crossing is particularly unique in that it is
the only available level crossing between levels of different
parity in HCIs. This hints at the possibility of optical E1
transitions in these ions, which could be useful for the cooling
and trapping of HCIs. Two points are worth noting, however:
first, in HCIs the strength of E1 transitions is suppressed
compared to near-neutral atoms (Sec. VII B), and second,
with �l = 3 for an s–f transition, it will tend to proceed
via configuration mixing, which greatly reduces its strength.
Examples include 63Eu14+ which has E1 transitions between
the ground state, 4f 25s (JP = 3.5+), and excited states,
4f 5s2 (J = 2.5−) and 4f 3 (J = 4.5−), with energy intervals
17 478 cm−1 and 28 828 cm−1, respectively.

Perhaps the most interesting examples presented in Table III
are the two-valence-electron ion Sm14+, which was studied
in [27], and the three-valence-electron ion Eu14+. Both of these
ions have ground states with half-open 5s shell, which means
that both have optical s–f and f –s ground-state transitions.
The two E1 transitions in Eu14+ mentioned previously are
of this type, and it means that they will have q values that
are of opposite sign. On the other hand, they may be too
broad for high-precision clocks. Better reference transitions
for clocks are strongly suppressed E1 transitions, suppressed
M1 transitions, and E2 transitions.

It is also possible to have level crossings in hole states,
where one or two electrons are removed from otherwise
closed shells and effectively give rise to a similar structure
as one- or two-valence-electron systems. The specific cases
of Ir16+ and Ir17+ were studied in [28] for the hole case,
which leaves all intermediate cases. In general, intermediate
ions with more than one electron result in large configuration
spreading, significantly complicating the level structure of the
ion. This is not true for hole cases, which allow for simpler
level structures, yet provide the benefit of increased Z and
therefore high sensitivity to α variation.

V. 4 f –5 p CROSSING

The 4f –5p crossing differs from the 4f –5s crossing in that
the orbitals are of the same parity and the 5p orbital has strong
fine-structure splitting. HCIs near this crossing can have M1
transitions even without configuration mixing since the single-
electron 5p3/2– 4f5/2 transition is M1 allowed (although not in
the nonrelativistic limit since �l = 2). Since the ratio of M1/E1
transition strengths is larger in HCIs relative to near-neutral
ions (due to the suppression of E1 transitions), these ions can
have rich physics to exploit in clocks. Additionally E2-allowed
transitions are plentiful, and these can have linewidths which
are more appropriate for reference transitions.

With the possibility of up to 14 electrons in the f shell
and six electrons in the p shell, there are many ions that
have this crossing, from single-valence-electron examples like
59Pr 10+ to the 19th-valence-electron (single hole) 74W 7+.
Table IV presents Dirac-Fock calculations of energy levels
in the V N−1 approximation, with a 5px shell included
above the closed Cd (N = 48) core. The 5px shell (x =
N − 1 − 48) is included by weighting the potential of the

TABLE IV. Weighted Dirac-Fock energy intervals calculated
in the V N−1 potential for highly charged ions near the 4f –5p

level crossing. The Dirac-Fock procedure includes a Cd core and
a weighted 5p shell: [Kr] 5s24d105px , with x = N − 49.

Energy relative to 4f5/2 orbital (cm−1)

N x Ion 5p1/2 5p3/2 4f7/2

49 0 57La8+ −114738 −86257 1698
58Ce9+ −70791 −37066 2406
59Pr10+ −20261 19230 3200
60Nd11+ 36280 82094 4085
61Pm12+ 98419 151157 5066

50 1 60Nd10+ −130828 −82538 4013
61Pm11+ −77060 −21675 4988
62Sm12+ −17868 45257 6065
63Eu13+ 46466 118020 7249

51 2 61Pm10+ −100727 −47479 4916
62Sm11+ −43378 17463 5987
63Eu12+ 19191 88305 7164
64Gd13+ 86736 164841 8456

52 3 61Pm9+ −123164 −72027 4849
62Sm10+ −67686 −9103 5915
63Eu11+ −6903 59797 7086
64Gd12+ 58917 134449 8370

53 4 61Pm8+ −144342 −95288 4787
62Sm9+ −90768 −34415 5849
63Eu10+ −31796 32520 7014
64Gd11+ 32282 105269 8290

54 5 62Sm8+ −112596 −58445 5788
63Eu9+ −55462 6497 6948

64Gd10+ 6852 77323 8218
65Tb11+ 74101 153821 9606

55 6 62Sm7+ −133139 −81160 5734
63Eu8+ −77874 −18239 6889
64Gd9+ −17346 50637 8153
65Tb10+ 48176 125243 9533
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TABLE V. Configuration-interaction calculations for the level
structure of HCIs with two or three valence electrons and 4f –5p

intervals below 100 000 cm−1. The ellipses indicate that there are
more fine-structure states available, which we omit for brevity.

N Ion Config. J Energy (cm−1)

50 58Ce8+ 5p2 0 0
5p2 1 23362
5p2 2 31033

4f 5p 3 92661
4f 5p 4 98806

50 59Pr9+ 5p2 0 0
5p2 1 28273
5p2 2 34999

4f 5p 3 44738
4f 5p 4 51669
4f 5p 5 86593

50 60Nd10+ 4f 5p 3 0
4f 5p 2 3640
4f 5p 4 7701
5p2 0 9060
4f 2 5 33730
4f 2 6 36668
5p2 1 42578

51 59Pr8+ 5p3 1.5 0
5p3 1.5 26953
5p3 2.5 34494

4f 5p2 2.5 47413
4f 5p2 3.5 50927

5p3 0.5 51929
4f 5p2 3.5 68470

···
51 60Nd9+ 4f 5p2 2.5 0

4f 5p2 3.5 6429
5p3 1.5 10613

4f 5p2 2.5 25124
4f 5p2 3.5 27641

···
4f 25p 4.5 58361

···
51 61Pm10+ 4f 5p2 2.5 0

4f 25p 4.5 3937
4f 5p2 3.5 6992
4f 25p 3.5 9483
4f 25p 5.5 10844
4f 25p 2.5 13732
4f 25p 3.5 16000

···
4f 5p2 2.5 31646

···

filled 5p6 shell by the factor x/6. The position of the crossing
from the Dirac-Fock estimate does not always agree with the
configuration-interaction calculation, but at least provides for
a reasonable starting point.

In Table V, we present CI calculations for two- and three-
valence-electron ions near the 4f – 5p crossing. Interesting
examples here include the 60Nd 10+ ion, which has a mixed
4f 5p ground state from which narrow transitions are available

to 4f 2 and 5p2 configurations. These would have q values of
opposite sign, and so a clock using these transitions would be
a good probe of α variation. On the other hand, configuration
mixing ensures that the three-valence-electron ions 60Nd9+
and 61Pm 10+ have good E2 and M1 transitions well within
the range of usual optical and near-ir lasers. At the heavier
end of the spectrum of ions that have this crossing are W7+
and W8+, with one and two holes in otherwise filled orbitals,
respectively. These were studied in [28].

VI. 5 f –6 p CROSSING

The 5f –6p level crossing is similar in many ways to the
4f –5p crossing, with some important differences. Since this
crossing occurs in ions with very high Z, the fine-structure
splitting of the 6p levels is very large, and near the level
crossing it is usually much larger than the 5f –6p interval.
This provides advantages over the 4f –5p crossing in that
there are a larger number of ions available where one of
these orbitals cross and also the large fine-structure splitting
causes a simplification of the level structure. In cases where
the 6p1/2 and 5f levels cross, such as near Cf17+, there is
an enhancement of sensitivity to α variation [37]. The lower
component of the p1/2 Dirac spinor has an s1/2 structure and
is not small because of the high Z. This means that the p1/2

orbital has a q value comparable to an s-wave orbital.
In Table VI, we present weighted Dirac-Fock orbital

energies for ions near the 5f –6p crossing in the V N−1

approximation. For the single-valence-electron case (N = 81),
two crossings are seen. The first occurs between U11+ and
Np12+ and corresponds to the 5f –6p3/2 crossing, while the
5f –6p1/2 crossing occurs near Cf17+. This second crossing is
only shown in Table VI for N = 81 because it is soon pushed
to ions with Z > 100 (although clearly it will still occur for
two- or three-valence-electron ions).

Configuration-interaction calculations for some interesting
HCIs with the 5f –6p crossing are shown in Table VII (two-
valence-electron ions) and Table VIII (three-valence-electron
ions). As with the ions near the 4f –5p level crossing, many
M1 and E2 transitions are available within the optical range
corresponding to single-electron p–f transitions. Clearly the
difficulty with exploiting this crossing is that many of the
elements with transitions near it are not stable and do not occur
naturally. In [37], we studied Cf16+ in some detail since it is
relatively stable (with isotopes that live up to several hundred
years) and has the 6p1/2–5f crossing mentioned previously.
The use of hole transitions is not possible with this crossing
since there would need to be around 14 or 15 valence electrons
(corresponding to the crossing of filled 6p2

1/2 and 5f 14 shells,
minus one or two electrons), and this would require Z > 100,
which is well past the somewhat stable elements.

An interesting example that makes use of the 5f –6p3/2

crossing is the three valence electron U9+. Because of the
large fine-structure splitting, the first two valence electrons fill
the 6p2

1/2 subshell. The third valence electron is in the 6p3/2

subshell (ground state), but may be excited to the 5f5/2 and
5f7/2 orbitals. These transitions are shown in Table VIII. The
transitions (M1 at 70 210 cm−1 and E2 at 82 945 cm−1) will not
be particularly sensitive to α variation, but 235U is interesting
also because it has a 76 eV nuclear transition, which may soon
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TABLE VI. Weighted Dirac-Fock energy intervals calculated in
the V N−1 potential for highly charged ions near the 5f –6p level
crossing. The Dirac-Fock procedure includes a Hg core (N = 80)
and a weighted 6p shell: [Xe] 6s25d104f 146px , with x = N − 81.

Energy relative to 5f5/2 orbital (cm−1)

N Ion 6p1/2 6p3/2 5f7/2

81 90Th9+ −182828 −94604 4964
81 91Pa10+ −167192 −65878 6440
81 92U11+ −148656 −33232 8044
81 93Np12+ −127546 3067 9775
81 94Pu13+ −104132 42813 11636
81 95Am14+ −78639 85844 13630
81 96Cm15+ −51267 132033 15760
81 97Bk16+ −22195 181274 18030
81 98Cf17+ 8415 233481 20446
81 99Es18+ 40410 288583 23012
81 100Fm19+ 73643 346516 25732
82 95Am13+ −258013 −86547 14560
82 96Cm14+ −237735 −47179 16727
82 97Bk15+ −215633 −4627 19033
82 98Cf16+ −191886 41006 21484
82 99Es17+ −166663 89635 24085
83 96Cm13+ −248665 −63867 16320
83 97Bk14+ −227341 −22372 18614
83 98Cf15+ −204330 22234 21052
83 99Es16+ −179808 69859 23638
84 96Cm12+ −259040 −79947 15920
84 97Bk13+ −238508 −39525 18205
84 98Cf14+ −216246 4043 20630
84 99Es15+ −192434 50657 23202
85 96Cm11+ −262798 −89202 15076
85 97Bk12+ −242718 −49486 17332
85 98Cf13+ −220875 −6600 19728
85 99Es14+ −197458 39345 22269
85 100Fm15+ −172644 88261 24960
86 97Bk11+ −259178 −71990 17413
86 98Cf12+ −238450 −30538 19816
86 99Es13+ −216091 14017 22363
86 100Fm14+ −192285 61579 25059
87 97Bk10+ −268654 −87268 17032
87 98Cf11+ −248716 −46899 19426
87 99Es12+ −227101 −3390 21960
87 100Fm13+ −204002 43149 24643
87 101Md14+ −179597 92630 27480

come within XUV laser range [38]. The nuclear transition
would have high sensitivity to the variation of fundamental
constants, and the electronic transition could then form an
“anchor” (relatively insensitive) transition.

VII. APPROXIMATE SCALING LAWS

It is useful to have simple estimates of various properties of
HCIs given the existing knowledge of an appropriate neutral
or near-neutral ion. In the following sections, we derive
approximate scaling laws for highly charged ions that state
how a particular property will change along an isoelectronic
sequence with increasing Z. Our approach is similar to that
of [1]; however, we use the formalism of effective charges,

TABLE VII. Configuration-interaction estimates for the level
structure of highly charged ions with two valence electrons and
5f –6p intervals below 100 000 cm−1. Ellipses indicate that there
are more fine-structure states that have been omitted. All levels have
even parity.

N Ion Config. J Energy (cm−1)

82 95Am13+ 6p2 0 0
5f 6p 3 89786
5f 6p 2 97898

82 96Cm14+ 6p2 0 0
5f 6p 3 63664
5f 6p 2 72221
5f 6p 3 83564
5f 6p 4 85846

82 97Bk15+ 6p2 0 0
5f 6p 3 36004
5f 6p 2 44444
5f 6p 3 58033
5f 6p 4 59702
5f 2 4 90788

82 98Cf16+ 6p2 0 0
5f 6p 3 7452
5f 6p 2 14775
5f 2 4 28824

5f 6p 3 31436
5f 2 4 36157
···

82 99Es17+ 5f 2 4 0
5f 2 2 4536

5f 6p 3 5323
5f 2 5 20460
5f 2 4 21371

5f 6p 2 22436
6p2 0 22871
5f 2 3 24795

5f 6p 3 35959
5f 2 6 42232
···

82 100Fm18+ 5f 2 4 0
5f 2 2 9828
5f 2 5 22772
5f 2 4 27627
5f 2 3 28876

5f 6p 3 37642
5f 2 6 39897
···

5f 6p 3 67819
5f 6p 4 73676

···

which we believe will be more useful to experimentalists. A
summary of our results is presented in Table XI.

A. Coefficients of linear fitting for effective charge

Recall the approximate formula for the nonrelativistic
energy of an electron in a screened Coulomb potential,
V (r) ∼ −Za/r ,

En = − (Zion + 1)2

2ν2
= − Z2

a

2n2
, (3)
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TABLE VIII. Configuration-interaction calculations for the level
structure of HCIs with three valence electrons and 5f –6p intervals
below 100 000 cm−1. Ellipses indicate that there are more fine-
structure states that have been omitted. All levels have odd parity.

N Ion Config. J Energy (cm−1)

83 92U9+ 6p3 1.5 0
5f 6p2 2.5 70210
5f 6p2 3.5 82945

83 96Cm13+ 5f 6p2 2.5 0
5f 6p2 3.5 18815
5f 26p 4.5 83815
5f 26p 2.5 97251
5f 26p 3.5 97765

83 97Bk14+ 5f 6p2 2.5 0
5f 6p2 3.5 20858
5f 26p 4.5 58127
5f 26p 2.5 72447
5f 26p 3.5 73189
5f 26p 1.5 76551
5f 26p 5.5 79687

···
83 98Cf15+ 5f 6p2 2.5 0

5f 6p2 3.5 22742
5f 26p 4.5 31188
5f 26p 2.5 46699
5f 26p 3.5 47136
5f 26p 1.5 49751
5f 26p 5.5 54895

···
83 99Es16+ 5f 6p2 2.5 0

5f 26p 4.5 4928
5f 26p 3.5 19106
5f 26p 1.5 22246
5f 26p 2.5 23262
5f 6p2 3.5 26967
5f 26p 5.5 30767

···
5f 3 5.5 55606
···

5f 3 6.5 64091
5f 3 1.5 65019
···

83 100Fm17+ 5f 26p 4.5 0
5f 3 4.5 8162

5f 26p 2.5 11213
5f 26p 1.5 12028
5f 26p 3.5 18134

5f 3 5.5 22763
5f 26p 2.5 28805

···
5f 3 1.5 33451
···

where n is the integer principal quantum number and ν is
the effective principal quantum number, which is introduced
to keep agreement with experimentally observed energies.
For the purposes of this work on highly charged ions, it
is more convenient to introduce an effective charge Za as

TABLE IX. Coefficients A and B for the effective charge Za =
AZion + B. For the regime column, L means that the coefficients
are more suitable for ions with 1 � Zion � 4 and H means that the
coefficients are tailored for high ion charge 5 � Zion � 20, while N is
the special case of neutral atoms where Zion = 0. These values were
tabulated using the Dirac-Fock energies of singly-occupied electron
orbitals above closed shells.

Orbital N Regime A B

4s 19 L 1.233280 2.4530
H 1.060127 3.3022
N 2.1725

5s 37 L 1.402867 3.0221
H 1.130601 4.4015
N 2.6390

6s 55 L 1.542243 3.4892
H 1.198431 5.2507
N 3.0283

7s 87 L 1.750825 4.1439
H 1.325290 6.3323
N 3.5841

4p 31 L 1.362347 2.8994
H 1.107311 4.1724
N 2.5049

5p 49 L 1.525760 3.5762
H 1.179904 5.3294
N 3.0751

6p 81 L 1.774450 4.4369
H 1.318796 6.7611
N 3.7917

3d 21 L 1.188580 4.0655
H 1.049841 4.7758
N 3.9083

4d 39 L 1.447306 2.8779
H 1.119397 4.5226
N 2.3191

5d 71 L 1.724165 3.4661
H 1.227029 5.9896
N 2.6498

4f 57 L 1.801169 2.6428
H 1.194715 5.6147
N 1.0082

5f 89 L 2.028852 2.4084
H 1.276494 6.1027
N 1.2579

an alternative to ν that represents the (noninteger) effective
screened charge of the potential that the external electron
“sees.” In this formulation, n is kept as the usual inte-
ger principal quantum number. Za scales nearly linearly
along an isoelectronic sequence as Z (or, equivalently, Zion)
increases.

Za can easily be calculated using Dirac-Fock energies for
any ion. We also present fitting laws for Za as a function
of Zion for several valence orbitals in Table IX that may be
used to quickly obtain Za . The data were obtained from one-
valence-electron Dirac-Fock calculations, and we fit for the
linear coefficients A and B according to

Za = AZion + B . (4)
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FIG. 4. Calculated effective charge Za =
√

|2n2E| (circles) vs
ion charge Zion for a valence 4f electron above a closed shell
[Xe] 6s2 (N = 56) core. The lines represent linear fits using the
values tabulated in Table IX for the appropriate regions of Zion.

Values for A and B are presented in Table IX. For large
Zion (5 � Zion � 20, labeled H in Table IX), our calculations
show that the linear approximation used above is in very
good agreement with the calculated trend (see Fig. 4). Often
experimental data is available for neutral or near-neutral ions
and the extrapolation from these ions to HCIs requires a
reasonable estimate of Za for these ions. Therefore, we also
present fits across the domain 1 � Zion � 4 (labeled L in
Table IX) and values for the neutral atoms Zion = 0 (labeled
N in Table IX).

Our approach is similar to that of Slater [39] for calculating
the effective charge of electrons with shielding and the work
that followed it. We see that the effective charge Za is always
bigger than Zi + 1 (this correspondingly leads to ν < n for the
other convention). This is because electrons spend a nonzero
amount of time closer to the nucleus, and during that time they
experience a larger ion charge. It is worth noting that these
two schemes are equivalent for the 4f electron in neutral La,
which experiences an effective charge very close to Zi + 1 = 1
because it is much further from the nucleus than the s, p,
and d electrons below it. Therefore, the use of Zi + 1 gives
similar results to Za for electrons that are far removed from
the potential of other electrons.

B. Scaling of EJ and MJ matrix elements

In this section, we present analytical estimates for the
scaling of the EJ and MJ transition matrix elements. We use
the following formulas to calculate both the nonrelativistic
electric and magnetic multipole reduced matrix elements (a
relativistic treatment gives the same results). In the equations
below, we seek to retain only the dependence of Za in
the relevant formulas whenever possible. The E1 matrix
element is

〈nl|r|n′l′〉 =
∫

PnlrPn′l′dr, (5)

where the radial wave function Pnl far away from the core
electrons is

Pnl = Nnl

(
2Zar

n

)l+1

e− Zar
n F

(
−n + l + 1,2l + 2,

2Zar

n

)
,

Nnl = 1

n(2l + 1)!

√
Za(n + l)!

(n − l − 1)!
.

This allows the Za dependence of the E1 integral to be
calculated as (∫ ∞

0
rPiPjdr

)
∼ (Za)−1. (6)

The nonrelativistic M1 matrix element does not scale with
charge as it is a function of the angular momenta. Therefore,
while the E1 matrix element decreases for a decrease in Za ,
the M1 matrix element remains constant. In comparing highly
charged ions (large Za) and near-neutral ions (small Za), we
see that M1 transitions can be as strong as E1 transitions, as
the latter decreases with increasing Za . A similar treatment
was adopted in [40], with effective principal quantum number
ν (labeled n∗ in their equations) instead of effective charge
Za . For higher multipoles, one obtains higher powers of the
Coulomb radius,

〈rn〉 ∼
(

aB

Za

)n

, (7)

where aB is the Bohr radius, so that the general scaling law for
EJ and MJ matrix elements is

〈κi |
∣∣q(E)

J

∣∣|κj 〉 ∼ (Za)−J (8)

and

〈κi |
∣∣q(M)

J

∣∣|κj 〉 ∼ (Za)1−J . (9)

In general, E(J + 1) matrix elements have the same Za scaling
as MJ matrix elements.

C. Scaling of polarizability and blackbody radiation shift

The blackbody radiation shift (BBR) for an adiabatic
system can be calculated using the formula

δE = −1

2
(831.9 V/m)2

[
T(K)

300

]4

α0(1 + η), (10)

where α0 is the static dipole polarizability and η is a small
dynamic correction due to the frequency distribution, which
for the purposes of this estimate we will disregard. The valence
scalar polarizability of an atom in a state v can be expressed
as a sum over all excited intermediate states n allowed by E1
selection rules,

α0 = 2

3(2jv + 1)

∑
n

〈v||r||n〉〈n||r||v〉
En − Ev

. (11)

We showed in Eq. (6) that the reduced matrix element
〈v||r||n〉 scales simply as 1/Za . Also, the dependence of
the nonrelativistic energy on Za is given by Eq. (3) to be
Z2

a . Therefore, all terms in the summation have the same
dependence on Za , and the total dependence on Za must
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TABLE X. Magnetic dipole hyperfine coefficients A (calculated in [42]) and their scaling with increasing Z along the lithium isoelectronic
sequence. Values of Za were obtained from Dirac-Fock calculations using the relation Za =

√
|2n2E|, where n is the principal quantum number

and E is the orbital energy in atomic units. The notation |p means to use the values in the previous row of the table.

Isotope I gI A (MHz) [42] Za
(A/gI )

(A/gI )|p

ZZ3
a

Zi+1

ZZ3
a

Zi+1

∣∣∣
p

7
3Li 3/2 2.1709 399.34 1.25
9
4Be+ 3/2 −0.7850 −625.55 2.31 4.35 4.20
11
5 B2+ 3/2 1.7924 3603.77 3.33 2.53 2.49

13
6 C3+ 1/2 1.4048 5642.40 4.35 2.00 2.00

15
7 N4+ 1/2 −0.5664 −3973.68 5.36 1.74 1.74

17
8 O5+ 5/2 −0.7575 −8474.13 6.36 1.59 1.59

19
9 F6+ 1/2 5.2578 88106.93 7.37 1.50 1.50

necessarily be the same. We must then have

δE ∼ α0 ∼
(

1

Za

)4

. (12)

Equation (12) suggests that in systems with high effective
charge (large Za) such as highly charged ions, the BBR shift
will be strongly suppressed compared to neutral systems.

D. Scaling of the hyperfine structure

Operators with large negative powers of radius will not
follow the Coulomb radius scaling, given by Eq. (7), since
the wave function at small distances cannot be described by
Pnl . Instead, we must use the approach of Fermi-Segré (see,
e.g., [41]) where the normalized squared wave function at
the origin ∼Z(Zion + 1)2/ν3. Since ν = n(Zion + 1)/Za , we
then come to the following scaling law for the hyperfine A

coefficient:

A

gI

∼ ZZ3
a

(Zion + 1)
,

where we have factored out the nuclear g factor, gI , which
varies greatly between nuclei. We compare this scaling law
with experimental data in Table X. A similar result may
be derived for the electric quadrupole hyperfine constant
B. We should also point out that the widths of hyperfine
transitions will scale as ω3 ∼ A3, therefore relaxation of
hyperfine structure will occur much faster in HCIs.

TABLE XI. Scaling dependences for HCIs for various sources of
systematic shifts in optical clocks.

Second-order Stark shift ∼ 1/Z4
a

Blackbody shift ∼ 1/Z4
a

Second-order Zeeman shift suppresseda

Electric quadrupole shift ∼ 1/Z2
a

Fine structure ∼ Z2Z3
a/(Zion + 1)

Hyperfine A coefficient ∼ ZZ3
a/(Zion + 1)

aThe Zeeman shift is sensitive to the specific fine and hyperfine
structure of the transition, but may be suppressed in HCIs due to
a larger energy denominator.

VIII. CONCLUSION

In this paper, we have discussed all level crossings available
in the periodic table and their characteristics. We separately
discussed and identified several highly charged ions near level
crossings and presented estimates for the energy intervals in
some of these ions. Again, we note that we have reasonable
accuracy (of the order of 1%) for ionization energies. There-
fore, the absolute error in the energy interval is of the order of
1% of the ionization potential for a given ion.

We also calculated scaling laws in terms of the effective
screened charge Za for transition matrix elements, energy
intervals (including fine structure), blackbody radiation, and
the hyperfine shift—these provide a quick and reliable way
to estimate the size of these atomic properties given the
knowledge of these properties in a near-neutral ion. In order to
facilitate these estimates, we have also tabulated empirical
values for Za for singly-occupied electron orbitals above
closed shells. Our scaling laws predict the BBR shifts in HCIs
will be strongly suppressed. On the other hand, the hyperfine
structure is much more important.

The potential future applications of HCIs, as discussed in
this paper, are clear—the strong dependence of transitions in
HCIs on the variation of the fine-structure constant makes
them good candidates for laboratory tests of cosmological α

variation. Finally, the existence of level crossings leads to the
availability of transitions that can be excited by optical lasers.
This is an experimental advantage that HCIs have over nuclear
clocks, which have also been proposed to probe the variation
of fundamental constants [21,24], but require lasers operating
in the petahertz range to excite neutrons or protons.
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APPENDIX: DEVIATIONS FROM MADELUNG FILLING

In some neutral atoms, there are deviations from the
Madelung order of filling; for example, these deviations are
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TABLE XII. Deviations from Madelung filling (usual periodic
table filling) in neutral atoms.

Element Actual filling Madelung filling

24Cr [Ar] 3d54s [Ar] 3d44s2

29Cu [Ar] 3d104s [Ar] 3d94s2

41Nb [Kr] 4d45s [Kr] 4d35s2

42Mo [Kr] 4d55s [Kr] 4d45s2

44Ru [Kr] 4d75s [Kr] 4d65s2

45Rh [Kr] 4d85s [Kr] 4d75s2

46Pd [Kr] 4d95s [Kr] 4d85s2

47Ag [Kr] 4d105s [Kr] 4d95s2

57La [Xe] 5d6s2 [Xe] 4f 6s2

58Ce [Xe] 4f 5d6s2 [Xe] 4f 26s2

64Gd [Xe] 4f 75d6s2 [Xe] 4f 86s2

78Pt [Xe] 4f 145d96s [Xe] 4f 145d86s2

79Au [Xe] 4f 145d106s [Xe] 4f 145d96s2

89Ac [Rn] 6d7s2 [Rn] 5f 7s2

90Th [Rn] 6d27s2 [Rn] 5f 27s2

91Pa [Rn] 5f 26d7s2 [Rn] 5f 37s2

92U [Rn] 5f 36d7s2 [Rn] 5f 47s2

93Np [Rn] 5f 46d7s2 [Rn] 5f 57s2

96Cm [Rn] 5f 76d7s2 [Rn] 5f 87s2

commonly observed in the transition elements. Similar to
our treatment of the level crossings due to the Coulomb
degeneracy, we now examine all available deviations from
the Madelung filling order and characterize them. Recall that
for level crossings that occur due to Coulomb degeneracy, we
had crossings of type s–f , s–d, and p–f only. In contrast,
we only find s–d and d–f type crossings in isoelectronic
sequences starting from atoms that have deviations (see
Table XII for an exhaustive list).

A specific example is lanthanum, with a ground state of
[Xe] 5d6s2. Here the 5d orbital is filled before the 4f orbital,

while from the Madelung rule, we would expect the 4f to be
filled first. Because 5d has higher n than 4f , further along
the isoelectronic sequence Coulomb degeneracy will cause
the 4f orbital to be lower in energy than the 5d orbital. In
Ce+, the ground state is [Xe]4f 5d2. Pr2+ has a ground state
of [Xe]4f 3, which shows that all crossings have occurred by
Zion = 2. We find that all crossings caused by the deviation
from the Madelung rule occur at low ion charge.

(a) 3d–4s. This crossing occurs due to the additional
stability offered by half-filled and filled 3d orbitals in Cr and
Cu, respectively. The half or complete filling of the 3d orbitals
is preferred to a filled 4s orbital, as a result one of the 4s

electrons in these atoms fills a 3d orbital instead. For the Cr
isoelectronic sequence, the remaining 4s electron eventually
fills a 3d state instead.

(b) 4d–5s. In the ground states of Nb, Mo, Ru, Rh, Pd,
and Ag, the 4d shell fills before the 5s shell is closed. This is
consistent with the calculations done on the Rb isoelectronic
sequence, which reveals that the 4d and 5s orbitals cross at
Z = 39.

(c) 4f –5d. Due to angular momentum and parity consid-
erations, there exist optical E1 transitions in neutral La, Ce,
and Gd, as well as for near-neutral ions in the vicinity of these
atoms. The 4f and 5d orbitals must necessarily cross due to
Coulomb degeneracy. Our calculations show that this crossing
occurs at Z = 58 for the La isoelectronic sequence.

(d) 5d–6s. The ground states of Pt and Au show a deviation
from Madelung filling. According to our calculations, the 5d

orbital lies below the 6s orbital for Z = 56, which is the next
ion in the isoelectronic sequence. The crossing occurs near the
beginning of the isoelectronic sequence because the orbitals
are very close in energy to begin with.

(e) 5f –6d. The ground states of Ac, Th, Pa, U, Np, and
Cm have a single electron in the 6d3/2 orbital. In the example
of neutral Th, the 6d orbitals lie below the 5f orbitals, but in
singly-ionized Pa+, the level crossing has occurred [43] and
the 5f orbitals lie around ∼5000 cm−1 below the 6d orbitals.
This crossing is also present in the Th3+ ion that has several
potential atomic-clock transitions with enhanced sensitivity to
α variation [20].
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and J. Ullrich, Phys. Rev. Lett. 107, 143002 (2011).
[6] P. Beiersdorfer, Phys. Scr., T 134, 014010 (2009).
[7] J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum, R. F.

Carswell, and M. B. Bainbridge, Phys. Rev. Lett. 107, 191101
(2011).

[8] J. A. King, J. K. Webb, M. T. Murphy, V. V. Flambaum, R. F.
Carswell, M. B. Bainbridge, M. R. Wilczynska, and F. E. Koch,
(unpublished).

[9] J. K. Webb, V. V. Flambaum, C. W. Churchill, M. J.
Drinkwater, and J. D. Barrow, Phys. Rev. Lett. 82, 884
(1999).

[10] M. T. Murphy, J. K. Webb, and V. V. Flambaum, Mon. Not. R.
Astron. Soc. 345, 609 (2003).

[11] J. C. Berengut and V. V. Flambaum, Europhys. Lett. 97, 20006
(2012).

[12] T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou,
A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M.
Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R.
Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist,
Science 319, 1808 (2008).

[13] H. Dehmelt, N. Yu, and W. Nagourney, Proc. Natl. Acad. Sci.
USA 86, 3938 (1989).

[14] V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. Lett.
82, 888 (1999).

022517-12

http://dx.doi.org/10.1088/0953-4075/34/19/201
http://dx.doi.org/10.1103/PhysRevLett.91.183001
http://dx.doi.org/10.1139/P07-115
http://dx.doi.org/10.1103/PhysRevLett.106.013002
http://dx.doi.org/10.1103/PhysRevLett.107.143002
http://dx.doi.org/10.1088/0031-8949/2009/T134/014010
http://dx.doi.org/10.1103/PhysRevLett.107.191101
http://dx.doi.org/10.1103/PhysRevLett.107.191101
http://dx.doi.org/10.1103/PhysRevLett.82.884
http://dx.doi.org/10.1103/PhysRevLett.82.884
http://dx.doi.org/10.1046/j.1365-8711.2003.06970.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06970.x
http://dx.doi.org/10.1209/0295-5075/97/20006
http://dx.doi.org/10.1209/0295-5075/97/20006
http://dx.doi.org/10.1126/science.1154622
http://dx.doi.org/10.1073/pnas.86.11.3938
http://dx.doi.org/10.1073/pnas.86.11.3938
http://dx.doi.org/10.1103/PhysRevLett.82.888
http://dx.doi.org/10.1103/PhysRevLett.82.888


HIGHLY CHARGED IONS WITH E1, M1, AND E2 . . . PHYSICAL REVIEW A 86, 022517 (2012)
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