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Exact time evolution of the pair distribution function for an entangled two-electron initial state
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Based on the correlated ground-state wave function of an exactly solvable interacting one-dimensional two-
electron model Hamiltonian we address the switch-off of confining and interparticle interactions to calculate the
exact time-evolving wave function from a prescribed correlated initial state. Using this evolving wave function,
the time-dependent pair probability function R(x;,X2,t) = ny(xy,x2,1)/[n(x1,) n(xz,1)] is determined via the
pair density n,(x;,x,,t) and single-particle density n(x,t). It is found that R(0,0,r = co0) = R(0,0, = 0) > 1,
and R(x;,x,,t*) = 1 atafinite r* for A # 0 interparticle interaction strength in the initial two-electron model. By
expanding n(x,t) in an infinite sum of closed-shell products of time-dependent normalized single-particle states
and time-dependent occupation numbers P, (A,t), the von Neumann entropy S(A,t) = — Z,fio Pu(H)InPy(t) is
calculated as well. The such-defined information entropy is zero at t*(A) and its maximum in time is S(A,t =

oo) = S(A,t =0).
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I. MOTIVATIONS

The solution of the time-dependent quantum mechanical
many-electron problem is one of the central problems in
many important areas of contemporary physics and chemistry.
The common interest is mainly driven by experimental and
technological progress to probe and control electronic states
on the atomic time scale, as, for instance, in attosecond
precision time-resolved investigations [1]. The main goal of
this study is to investigate physical and easily visualizable
quantities like the single-particle probability density n(x,r)
and the pair probability density n,(x;,x7,7), of an interacting
two-particle model in the time domain. Their understanding
provides [2] transparent and complementary insight into the
nature of multiparticle systems. Since the chosen (see below)
time-dependent interacting two-electron problem is exactly
solvable, the results obtained on such quantities could be useful
in alternative approaches like the time-dependent density
matrix functional theory [3—6] and the time-dependent density
functional theory [7—11] where the basic variables contain less
and less information than an exact wave function, but enough
to get any physical observable. The quantum information
aspect of interacting systems is an important current research
topic as well, but only little is known on time-dependent
occupation numbers and natural orbitals. Recent numerical
works on one-dimensional scattering processes [4,12] herald,
for instance, a nonmonotonic change in the associated quantum
entropy as a function of time.

This theoretical paper is organized as follows. In Sec. II, we
give a detailed analytical derivation of our time-dependent ba-
sic quantities. [llustrative figures are added as well. Section III
is devoted to a short summary and an outlook.

II. RESULTS AND DISCUSSION

According to the above motivation, the present study rests
on the exact ground-state solution of a frequently employed
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[13-20] two-electron model Hamiltonian
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in one space dimension. Using Hartree atomic units (i.e., 7 =
m = 1) and the simple canonical transformations x4 = (x; +

xz)/ﬁ and x_ = (x; — xz)/«/i, one gets
N 1 d? 1 1 d? 1
g=|_-% 2,22 L e )
[ zdxi+2a°x+]+[ 2dx T2 @
where agp = wy and by = wog~/1 — 2A are convenient short-
hands. The repulsive interparticle interaction corresponds to
A € [0,0.5] and the attractive case to A <A0 in our notation.
Due to the separability of the Hamiltonian H, the ground-state

wave function (x;,x;) becomes a product in the above
canonical variables

Y(x1,x2) = P(x4) p(x-)

[P
X exp —§b0x7 , 3)

but this state is not separable as a simple product in the original
coordinates x; and x,, when A # 0 (i.e., when there is an
inseparable entanglement due to electron correlation).

Here we take this product state as an initial state
W(xy,x2,t =0) = ¢p(x1)p(x_) and solve the time-dependent
Schrodinger equation with a new (r) Hamiltonian

. 1 & 14
goo_ L& _1a& @
2.dx2  2dx?

to derive the W(xy,x2,1) = D (x4, 1)P(x-,1) function after a
sudden quench [10] of all interactions in H. Practically, due
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to the simplicity of H,, we can employ the standard

1 i
G(xj,x’,t) = —— ex [—(x< — x’»)2i|

N T TR A
Green’s function (the subscript j refers to + and —) in a
well-known [21] manner

D(xj,1) = / dx} G(xj,x},t)q)(xj). 5)

After evaluation of the independently propagating components
of W(xy,x,,t) we get

1/4 1 bAVA
W(xy,x2,t) = (ﬂ) exp [——a, xi 1 - itao):| (—t>
b4 2 b4
1
xen{—ihxzﬂ—im@} (6)

where a, = ap/(1 + t?a}) and b, = by/(1 + 1?b3). It is this
exact wave function, with a built-in initial correlation, which
is used below to generate time-dependent probabilities.

First we derive the normalized one-particle probability
density n(x,t) from the diagonal of the reduced one-particle
density matrix (one-matrix) in the usual way

o0
n(x,t) = / dxzW(x; = x,x3,t) V*(xs = x,x3,1). @)

oo

After a straightforward calculation we get for this density

12
nGef) = <3) o ®)

"

in which ; = 2a,b, /(a; + b;). Remarkably enough, by using
Mehler’s formula [22] for generating functions and previ-
ous experience [15,17,19], we can decompose this density
uniquely (see below) in the following closed-shell-like [23]
manner

00 5\ 1
Gt =Y (1 - s,xs,)"][(“’;) 0

k=0

2
<o (-3000 ) mvam| . o)
in terms of an infinite sum of weighted product of normalized
one-particle oscillator states. The underlying constraint behind
this mapping is Q; = &,;(1 — &)/(1 + &), and it is satisfied
with & = (Ja, — vb,)*/(Ja; + V/b,)* and &, = /a,b,. At
t — 0 we recover the unique stationary results (£ and @) of
earlier works [15,19]. We have Y ;- (1 — &)(&,)* = 1 for all
time, which shows that the evolving probability density n(x,t)
is properly normalized.

At this point we stress few remarkable facts. If one is
tempted to use instead of Eq. (1) an effective (e), say Kohn-
Sham, single-particle Hamiltonian

A, L& + & 41 Q2 (x7 +x3),  (10)
e=—"=\53 +t-3 = Xy +x3),
2\dx? T ax2) 27Vt

with a prescribed 2, = 2agby/(ap + bp) to get the precise
initial density at A # 0, the time-dependent density after the
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FIG. 1. Calculated dimensionless ratio, defined via €2,/ 2,(t), as
a function of time measured in atomic units. The solid curve refers
to the repulsive interparticle interaction, while the dashed one to the
attractive case. See the text for further details on numerical values
used in data generation.

switch-off of the potential in H, would be
Q.72
n,_,(x,t) — I:%] e—Qp(t)xz, (11)

in which Q,(#) = €,./(1 + t*Q?2) according to the propagation
of the auxiliary product form for the initial ground-state wave
function. For # > 0 one has n.(x,t) # n(x,t).

Furthermore, one could, from a purely mathematical point
of view, reproduce n(x,t) in a point-wise manner by taking,
for instance, the @, = 2, replacement in the infinite sum of
Eq. (9) together with the & = £(t) = [t?agbo/(2 + t*aoby)]
change. This is dictated by the above single constraint on two
new [here €2, and &(¢)] variables. Clearly, considering only the
decomposition of an exact density n(x,t), one may run into a
many-to-one [24] problem. As it is well known, the bijectivity
question [25] is crucial in those proofs by which one can,
at least in principle, safely apply certain basic variables (say
the density) in effective iterative calculations of observable
physical quantities in many-body problems. In our case with
two electrons, only €2; and &; provide the unique (see above)
decomposition which is continuous in time. We will use the &,
and &(¢) representations below, in Eq. (14).

In Fig. 1, we illustrate the €2,/€2.(¢) ratio as a function
of time. To generate this ratio we used wy =1 (a.u.),
and the A =0.48 and A = —12 values to model repulsive
and attractive interparticle interactions, respectively. These
choices for couplings will be applied throughout this study
when we exhibit further illustrative figures. They result in a
common &, = 0.146 value at + = 0, independent of the sign
of A. We add that this duality behind such a dimensionless
quantity holds [17] for any A € [0,0.5]. The figure shows
quite transparently how the output of an effective model
can depart from an exact result in time. For the r — oo
limit we get [,/ Q.(¢)] — [2+/aobo/(ag + by)]> < 1 for any
A # 0. Thus, we can conclude that the auxiliary single-particle
modeling results in a more compact probability distribution for
t > 0 than the exact description.

We turn to the physically important pair density,
ny(xy,x2,t). In our two-electron model it is given by
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[14,16] the probability function W (x;,x,,1)¥*(x1,x2,¢). Thus
we get

a; b[ 12 1 2 2
no(x1,x2,1) = - exp —E()c1 +x2)(a, + b;)

x exp[—xixa(a; — byl (12)

in the original variables, x; and x,, showing the entanglement
transparently. Clearly, this function contains more information
than the density n(x,7) or the corresponding one matrix.
Therefore, statements based on its behavior in time put
useful controls on speculations based only on n(x,). Using
ny(xy,x7,t), we define [14] our central probability distribution
function as R(x1,x2,t) = ny(x1,x2,1)/[n(x1,t)n(xz,1)]. In the
noninteracting case (A = 0), or in an auxiliary single-particle
modeling, this pair distribution is unity at any time and
x;, reflecting the independent motions of particles. Thus,
deviations of R(x;,x3,t) from unity show the influence of an
initial built-in correlation in the time domain. In the long-time
(t — o0) limit we have a, — (apt>)~"! and b, — (bot>)~".
Thus, the prefactor in ny(x;,x;) behaves in this limit as
~(&t*)~!, which shows the expected flattening of this physical
quantity. Notice that the flattening is weaker in n(x,¢) since its
prefactor o< [14/ap + bo]~! fort — oo.

After substitutions and rearrangement we arrive at the
following expression

a, + b, 1, (@ —bt)2i|
Rx1,x0,t) = | —— ) exp| —= + _
(e 0.0) <2 a,b,) P |: 2(351 XZ) a; + b,

x exp[—x1x2(a; — by)]. (13)

This distribution function is R(0,0,¢) > 1 at contact. Fur-
thermore, considering the above-stated limits, we get for
its prefactor R(0,0,r = 0) = R(0,0, = o0) > 1 for any A.
Even more importantly, when a, = b, for A #0 we get
a R(xy,x2,t*) = 1 value which appears at t* = 1//apby =
1/®. This t* depends on the sign of A, and for a strong
repulsive interparticle interaction, where A € [0,0.5], it can
be very large since ot* = (1 — 2A)~'4 With an @ = 0.5 (in
a.u.) and a moderate interparticle repulsion A = 3/8, we are
in the typical atomic time scale since t* >~ 3 (i.e., it is about
73 x 107'8 s in normal units).

In the A — 0.5 critical limit (i.e., for strong-enough initial
interparticle correlation) this time interval could be even larger.
The finite value of time for A # 0 signals a time interval
(a memory range) within which the pair distribution still
resembles for its initial shape in the x; and x; space variables.
This similarity is lost for # > ¢* when there is a sign change in
the second exponent of Eqs. (12) and (13). Such a sign-change
could occur in the stationary situation only under a sign change
of the interaction strength A in Eq. (1).

In Fig. 2 we plot the R(0,0,#) probability function as
a function of time, which is measured in atomic units.
As we prefixed at Fig. 1, we apply wp =1 and the A =
0.48 and A = —12 values to model repulsive and attractive
interparticle interactions, respectively. The solid curve refers
to the repulsion and the dashed curve rests on attraction.
With these parameters we get, respectively, about ¢* ~ 2.2
and 1* ~ 0.45. The attractive case needs a shorter time to go
through, at its #* >~ 0.45 value, an independent-particle-like
situation in which, as we mentioned, R(x;,x,,t) = 1. Figure 2
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FIG. 2. The dimensionless probability function R(0,0,7) (i.e., the
pair distribution function at the origin x; = x, = 0, as a function
of time 7). The same parameters are used as in Fig. 1. The solid
and dashed curves refer to repulsive and attractive interparticle
interactions, respectively.

shows that the tendency to the R(0,0, = oo) = R(0,0,r = 0)
limit value is slow in the repulsive case. The shape of the
dashed curve is more narrow around its * >~ 0.45. In this
(attractive) case the particles were localized more at x; = x;
in an attractive external field.

In the light of the above change (at a; = b; for A # 0) in
the time-dependent pair density, we investigate its possible
consequence in an entropy determined via our time-dependent
natural occupation numbers Pr(A,f) = (1 — E)EN as S(t) =
=Y 220 P(?) In P(¢). Thus, in terms of the unique & =
[(v/a; — v/D;)?/Ja; + +/B;)*] < 1 introduced at Eq. (9), we
get

&
1-§

which is an information-theoretic measure of entanglement
on the time scale. The above entropy has zero value, as
minimum, att* = 1/+/apbo for A # 0. The maximum depends
solely on the interparticle coupling A, and its behavior is
S(t = 0) = S(r = 00). Therefore, the information provided by
this entropy faithfully reproduce the main characters embodied
in the pair distribution function of a two-particle entangled
state. If we use, following an earlier [26] work on entanglement
dynamics, the so-called linear (L) entropy as an alternative
measure we get Sy (t) = 2&,/(1 + &;). This shows the same
global behaviors as the von Neumann entropy S(z). If one
were tempted to use the auxiliary £(¢) [see after Eq. (11)]
instead of our &, the entropies were monotonously growing
functions of time.

In Fig. 3 we exhibit the S(¢) quantity, an information-
theoretic measure, as a function of time. We can see that
not only the mentioned global information (i.e., limiting
constant values and sign-dependent t* oc (1 — 2A)~* values)
are compatible with those exhibited in Fig. 2 for R(0,0,t), but
there is a surprising semiquantitative shape overlap between
the corresponding curves over the whole time domain as well.
Thus, we may conclude that for our interacting system the
investigated quantum-mechanical and information-theoretic
measures provide essentially the same details on the time
dependence of an initial entanglement.

S(t) = —In(1 - &) —

In&,, (14)
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FIG. 3. The information-theoretic entropy S(t), as a function of
time ¢ measured in atomic units. The same parameters are used as
in Figs. 1 and 2. The solid curve refers to the repulsive interparticle
interaction, while the dashed one to the attractive case.

As expected on physical grounds, the time dependence
of S(t) found above for our model system is opposite to
the dependence found quite recently [4,12] in numerical
one-dimensional scattering studies. Now, at this level of under-
standing trends, we compare our time-dependent information
entropy with a time-dependent entropy in thermodynamics.
According to a basic book [27] on statistical physics (see
Fig. 1 in its paragraph 7), such a dependence could arise in
a thermodynamical system for a very large (very improbable)
fluctuation at a ¢*. In this case, as Landau concluded after his
discussion of the law of entropy increase, one could say that
fort < t* and ¢ > t* the system has higher entropy.

We finish this section by a further analogy. Since, as
noted first by Srednicki [15], there is a formal mapping
at t = 0 between the above S(+ = 0) form in Eq. (14) and
an ideal thermal oscillator specified by frequency @ and
temperature T = &/In(1/£), we are tempted to extend this
formal correspondence now to the time domain. We define
therefore, using the substitutions of ® = @; and £ = &; in the
above equation for 7', a new 7; function. We get, in such a
manner, zero values for ;- at t* due to &+ = 0. Thus, atz £ 0,
a zero in our entropy is in harmony with a zero in temperature,
in accord with Nernst’s theorem [27].

III. SUMMARY AND OUTLOOK

Motivated by the theoretical and experimental importance
of having a detailed understanding of time-dependent pro-
cesses on the atomic time scale, an exact solution is given for
the time evolvement of a two-electron state under the action of
a new Hamiltonian. Specifically, the associated single-particle
probability n(x,t), and the pair probability function n, (x1,x2,t)
are determined. The analysis is supplemented by an investiga-
tion on the information-theoretic time-dependent entropy S(¢).
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It is found that the conventional pair probability distribution
function R(x,x3,t) = na(xy1,x2,t)/[n(x1,t)n(x,,¢)] and the
von Neumann entropy S(7), both of global nature on entan-
glement, show consistently a remarkable behavior of the time
development of a correlated initial two-electron state. There
is a certain t*, the magnitude of which depends on the initial
correlation, at which the pair distribution function goes through
a noninteracting-like state. This time scale is in the atomic
range. Within the framework of the applied two-electron
model, the analytical results presented here are exact. Thus, we
believe that they could provide a useful complement to earlier
numerical studies on entropies in time-dependent two-body
scattering problems.

As an outlook, we speculate that our theoretical findings
could be important in several problems with the initial con-
finement of interacting (repulsively or attractively) particles,
like in ionization problems of atoms [28,29] with transient
atomic structures or in electron-hole and electron-electron
dynamical processes [30,31] in condensed matter physics.
The sign effect of interparticle interaction can result in
peculiarities beyond a simple mean-field description applied
commonly for charge-neutral [30] pair excitations in metals.
Similarly, the interpretation of data obtained in electron-pair
emission spectroscopy needs methods beyond an effective
one-electron treatment. Indeed, it was emphasized [31] that
the very existence of correlation cannot be formulated within
a single-particle picture.

Finally, the precise interrelation between time-dependent
natural orbitals and laser-dressed Floquet states is a challeng-
ing problem to future attempts. Our study may also find appli-
cations in the analysis of evolving pairs in optically generated
atom-condensates under a tailored change in the sign of inter-
particle interactions. From a technological perspective, there is
an increasing [32] thrust toward engineering ultracold atomic
many-body systems for applications in quantum metrology. A
deeper understanding of the dynamics in interacting systems
is of crucial importance in this context as well.
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