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Quantum electrodynamic corrections to the g factor of helium P states
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The Landé g factor describes the response of an atomic energy level to an external perturbation by a uniform
and constant magnetic field. In the case of many-electron systems, the leading term is given by the interaction
μB ( �L + 2 �S) · �B, where �L and �S are the orbital and spin angular momentum operators, respectively, summed
over all electrons. For helium, a long-standing experimental-theoretical discrepancy for P states motivates a re-
evaluation of the higher order terms which follow from relativistic quantum theory and quantum electrodynamics
(QED). The tensor structure of relativistic corrections involves scalar, vector, and symmetric and antisymmetric
tensor components. We perform a tensorial reduction of these operators in a Cartesian basis, using an approach
which allows us to separate the internal atomic from the external degrees of freedom (magnetic field) right from
the start of the calculation. The evaluation proceeds in a Cartesian basis of helium eigenstates, using a weighted
sum over the magnetic projections. For the relativistic corrections, this leads to a verification of previous
results obtained using the Wigner-Eckhart theorem. The same method, applied to the radiative correction (Bethe
logarithm term) leads to a spin-dependent correction, which is different for singlet versus triplet P states.
Theoretical predictions are given for singlet and triplet 2P and triplet 3P states and compared to experimental
results where available.
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I. INTRODUCTION AND OVERVIEW

A. Few-electron systems and g factor

The quantum electrodynamic (QED) theory of bound
systems describes, among other things, three “fundamental”
characteristic effects that involve the spectrum of bound
systems, namely, (i) the Lamb shift, which is the energy shift of
bound states due to the self-interaction of the electrons and due
to tiny corrections to the Coulomb force law at small distances,
(ii) the g factor of bound states, which describes the energy
shift of a bound state due to the interaction with an external,
uniform magnetic field (Zeeman effect), and (iii) the hyperfine
splitting, which is given by the interaction of bound electrons
with the nuclear magnetic moment. These effects seem to be
the three most commonly studied QED effects for bound states,
because of prominent high-precision experiments in all three
mentioned areas. The leading QED corrections to all three
mentioned effects are given by the self-energy of the orbiting
particle and by vacuum polarization.

The long-standing discrepancy between theory and ex-
periment for the Zeeman coupling factor g′

L for the 23P

state of helium [1] has motivated a number of independent
theoretical papers [2–5] on the subject. Here, by convention,
g′

L is the complete orbital part of the gJ factor for the helium
P state, including relativistic and radiative corrections. For
hydrogenlike systems, the self-energy corrections to the gJ

factor and to the hyperfine splitting can be formulated in
a similar framework [6,7], by observing that they can be
described as a “dressed” self-energy correction in an additional
magnetic field, namely, for the case of the gJ factor, in a
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uniform external magnetic field, and, for the case of the
hyperfine splitting, in the magnetic dipole field of the atomic
nucleus.

For more complex atoms and ions, the theory of the
g factor is more complicated because in higher order, the
electron-electron interaction is intertwined with the coupling
to the external magnetic field. In leading order, the total orbital
angular momentum �L and the spin angular momentum �S
couple to the external magnetic field �B as described by the
Hamiltonian matrix element

〈HM〉 ≈ 〈μB ( �L + 2 �S) · �B〉 = gJ μB B μ , (1)

where gJ is the Landé g factor, and μB is the Bohr magneton;
that is, μB = −e/(2m) where m is the electron mass and e =
−|e| is the electron charge. The orbital angular momentum
�L and the spin angular momentum �S are summed over all
electrons. As long as the separation into terms proportional
to �L · �B and �S · �B remains valid, this gives rise to an orbital
gL ≈ 1 factor and a spin gS ≈ 2 factor, so that

gJ = gL

J (J + 1) + L(L + 1) − S(S + 1)

2J (J + 1)

+ gS

J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
. (2)

In leading order, the Landé g factor is thus given by the well-
known formula

gJ ≈ 3J (J + 1) − L(L + 1) + S(S + 1)

2J (J + 1)
. (3)

In higher order, due to spin-orbit coupling, one cannot separate
the magnetic-field interaction any more into terms proportional
to �L · �B and �S · �B, and therefore, one cannot uniquely
identify the orbital gL and spin gS factors any more. For
hydrogen, the corresponding mechanism has been discussed in
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Appendix A of Ref. [8]. The separation into gL and gS remains
valid up to relative order α3, where α is the fine-structure
constant, provided one adds a tiny correction due to a higher
order tensor structure, called gx in Refs. [4,9].

B. Angular-momentum algebra

For P states, as opposed to S states, the angular momentum
algebra involved in the calculation of the bound-electron g

factor can become rather complicated, and two approaches
have been used. In approach (i), used in Refs. [4,9], the authors
formulate the entire theory in terms of Wigner 3J , 6J , and 9J

symbols, which enables them to perform all calculations in
terms of reduced matrix elements. In turn, these can be written
in terms of the radial component of the wave functions as
obtained from variational calculations.

In approach (ii), which has been used for hydrogenlike
systems [8], one first chooses a specific component of the
Hamiltonian “vector” μB( �L + 2�S), multiplying the magnetic
field �B, and a specific magnetic projection of the reference
state. Natural choices consist in the z component of the
Hamiltonian “vector” and the state with magnetic projection
μ = 1

2 as indicated in Eqs. (15) and (16) of Ref. [8]. Due to the
Wigner-Eckhart theorem, one can then formulate all relative
corrections to the g factor in terms of ratios, relating the effect
calculated with a correction to the magnetic Hamiltonian to
the leading-order effect, provided one uses the same state for
each matrix element. This disentangles the internal atomic
degrees of freedom from the external degrees of freedom (the
magnetic field). For the hyperfine splitting, a similar approach
is outlined around Eq. (7) of Ref. [7].

For helium, it is preferable to formulate the theory in
terms of elements of the radial wave functions alone, by
expressing the matrix elements in terms of sums over magnetic
projections, where the angular and spin degrees of freedom are
summed over and evaluated in closed form. The latter sum can
naturally be expressed in terms of a “radial” representation
of a P state as obtained from a variational calculation in a
fully correlated, nonrelativistic basis. Here, we thus choose
an approach combining ideas from (i) and (ii). First, the
relativistic and radiative corrections are expressed in terms
of particular tensor structures, and then, we evaluate these on
a weighted sum over the projections m of the total angular
momentum of the helium state. This approach combines the
advantages of approach (i), namely, the easy applicability to
helium, with the advantages of approach (ii), namely, the full
disentanglement of the external degrees of freedom (magnetic
field) from the internal atomic degrees of freedom right from
the start of the calculation.

Our investigation is motivated in part by an interesting
theoretical-experimental disagreement between the experi-
mental result reported in Ref. [1] and theory work described in
Refs. [2–4] and Sec. V of Ref. [5]. Our calculation is valid
up to and including relativistic and radiative correction of
relative order α3 and to second order in the electron-nucleus
mass ratio (for the leading nonrelativistic term). We proceed
as follows. In Sec. II, the terms in the Hamiltonian which
govern the bound-state g factor are analyzed in terms of their
tensor structure. The discussion is complemented in Sec. III
by an analysis of the spin and the tensor reduction of the

particular correction terms. Finally, in Sec. IV, numerical
evaluations are described which allow us to obtain a highly
accurate theoretical prediction for the gJ factor in helium,
for 2P and 3P states. Conclusions are reserved for Sec. VI.
Atomic units with e = h̄ = 1 (e denotes the physical electron
charge), unit electron mass m = 1, α = 1/c, and ε0 = 1/(4π )
are used throughout the paper.

II. HAMILTONIAN

A. Leading order

A careful treatment of the g factor requires an analysis of
the reduced-mass dependence. We denote the electron mass as
m and the mass of the nucleus as M . The reduced mass μ and
the mass ratio λ are given by

μ = mM

m + M
, λ = − μ

M
. (4)

The interaction with the external magnetic field, in leading
order plus the reduced-mass correction, is given by [10,11]

HM = μB

∑
a

[
gL (�ra × �pa) + gS

2
�σa

]
· �B

−μB

m

M

∑
a �=b

(�ra × �pb) · �B . (5)

The finite mass of the nucleus yields a correction term (second
term) of orderO(λ). The sum over a and b in Eq. (5) counts the
electrons of the bound system. The well-known spin factor gS

can be expressed in the form (including two-loop corrections)

gS = 2

(
1 + α

2π
− 0.328 478 695

α2

π2
+ · · ·

)
. (6)

It is equal to the g factor of the free electron including the
anomalous magnetic moment. The terms proportional to gL

in Eq. (5) give rise to an orbital factor gL = 1 − m/M . The
terms in Eq. (5) contain all terms of relative order O(λ). We
note that this scaling of gL, which has originally been derived
in Ref. [10], goes beyond the “trivial scaling” of momenta and
distances, which is discussed below.

Namely, in general, the scaling of the momenta and
distances with the reduced mass entails the scaling factors
(see the Appendix)

�p → �p (1 + λ), �r → (1 + λ)−1 �r . (7)

It results in prefactors of the form (1 + λ)n with a certain
scaling degree n. For the leading terms given in Eq. (5), we
have n = 0, and the terms commute with the nonrelativistic
Hamiltonian of the helium atom [without mass polarization;
see Eq. (A2) below]:

H0 =
∑

a

( �p2
a

2μ
− Z

ra

)
+

∑
a>b

1

rab

. (8)

While the first-order correction to the wave function due
to the magnetic interaction vanishes, the mass polarization
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term Hmp

Hmp = − λ

μ

∑
a>b

�pa · �pb . (9)

generates a nonvanishing perturbation to the wave function.
The perturbation can then be evaluated on the leading-order
Hamiltonian (5). For the finite-mass effect of order O(λ2),
one additional effect is the mass polarization correction to the
second term in Eq. (5). The third-order term involving the
leading magnetic interaction term in Eq. (5) and two mass
polarization insertions also yields a finite-mass correction of
second order in λ. Its effect on the gL prefactor and off-diagonal
corrections are discussed in the following.

B. Tensor decomposition of the Zeeman Hamiltonian

Let us now turn to the tensor decomposition of the Zeeman
Hamiltonian. The first term in Eq. (5) can be rewritten in the
form

HM0 = μB
�G0 · �B , (10a)

Gi
0 =

∑
a

(
gL vi

0,a + gS

2
d0 σ i

a

)
, (10b)

vi
0,a = (�ra × �pa)i , d0 = 1 , (10c)

where vi
0,a is a vector coefficient and d0 is a diagonal

(scalar) coefficient multiplied only by a spin matrix. Here
and in the following, Cartesian coordinates are denoted by
superscripts; that is, the x component of �v0,a is given as vx

0,a

(the superscript assumes the values i = x,y,z). In general,
a superscript i denotes a Cartesian component, whereas the
lowercase variable i (no superscript or subscript) is otherwise
reserved for the imaginary unit. We have decomposed the
tensor structure of Eq. (10) into a vector and a spin part. This
approach is now generalized to other corrections δH to the
leading Zeeman Hamiltonian HM0,

δHM = μB

∑
γ

�Gγ · �B, (11)

where γ counts the correction terms. The operators �Gγ are
linearly coupled to the magnetic field �B. We split each element
Gγ into a tensor structure of spatial coordinates coupled to the
magnetic field �B as well as spin matrices �σa . From the spinless
terms of the form �v · �B, we obtain the vector coordinates vi .

The second-order spatial tensors Aij in terms of the form
Aijσ i

aB
j can be tensorially decomposed into a diagonal

(scalar) part d, a symmetric tensor part t , and an antisymmetric

tensor part r ,

Aij = d

3
δij + t ij + rij , (12a)

d = Akk, (12b)

t ij = Aij + Aji

2
− 1

3
δij Akk, (12c)

rij = Aij − Aji

2
, (12d)

where the summation convention is used for the Cartesian
coordinates as is done throughout the paper.

The orbital angular momentum part in leading order is
identified as the vector term vi

0,a , and the spin part as related to
the scalar operator d0. For the finite-mass correction in Eq. (5)
with Gi

1 in tensor form, we have the identification

Gi
1 = − m

M

∑
a �=b

vi
1,ab, (13a)

vi
1,ab = (�ra × �pb)i , (13b)

which is included as the first term (γ = 1) in δHM . This
grouping is extended to higher order terms and to make contact
with the literature. According to Appendix A of Ref. [9] and
Eqs. (2)–(4) of Ref. [4], we can split the gL and gS factors
into leading-order terms, denoted by the same symbols, and
corrections δgL and δgS , which, when added to gL and gS , yield
the complete results g′

L and g′
S , which include the correction

terms. So, for triplet P states,

δgL = g′
L − gL, δgS = g′

S − gS. (14)

This notation has been introduced in the theoretical analysis
of the experimental data for helium 2 3P states [9] based
on angular momentum methods [4,12,13]. Compared to
Eqs. (22) and (23) of Ref. [4], the prefactors in the ex-
pressions δgL = g′

L − √
(2L + 1)L(L + 1)/6 gL and δgS =

g′
S − √

(2S + 1)S(S + 1)/6 gS evaluate to unity for triplet P

states; for singlet P states, the first equality in Eq. (14) remains
valid while gS = 0. The symmetric tensor parts t ij are related
to the gx factor [9], and the mean values of the antisymmetric
part rij result in a zero correction. Later, these quantities were
determined in subsequent theoretical calculations of other
authors [4,14]. We follow these conventions in order to be
able to compare our final formulas with their results. We here
use a Cartesian decomposition of the higher order Zeeman
Hamiltonian, as an alternative to angular algebra methods
with 3J , 6J , and 9J symbols [9], and identify the tensor
contributions to gL, gS , gx as described in the following.

C. Relativistic corrections

Relativistic corrections have been derived from the Breit Hamiltonian [15–17]. We follow formulas from Eq. (32) of Ref. [5]
with six relativistic corrections to the Zeeman effect,

δHrel = μB α2
∑

a

{
− �p 2

a

2
[(�ra × �pa) + �σa] · �B + Z

gS − 1

4

(�ra × �σa)(�ra × �B)

r3
a

− gS − 2

4
( �pa · �σa) ( �pa · �B)

}

+μBα2
∑
a �=b

{
− gS − 1

4

(�rab × �σa)(�ra × �B)

r3
ab

− gS

4

(�rab × �σb)(�ra × �B)

r3
ab

+ pi
a

2

(
δij

rab

+ ri
ab r

j

ab

r3
ab

)
(�rb × �B)j

}
, (15)

δHrel = μB
�G2 · �B .
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It is straightforward to identify the Cartesian tensor form of the relativistic correction �G2,

Gi
2 = μB α2

∑
a

{
− 1

2

(
vi

2,a + d2,a σ i
a

) + Z (gS − 1)

4

(
2

3
d3,a σ i

a − t
ij

3,a σ j
a

)
− gS − 2

2

(
d2,a σ i

a

3
+ t

ij

4,a σ j
a

)}

+μB α2
∑
a �=b

{
− gS − 1

4

(
2

3
d5,ab σ i

a − t
ij

5,ab σ j
a + r

ij

5,ab σ j
a

)
− gS

4

(
2

3
d5,ab σ i

b − t
ij

5,ab σ
j

b + r
ij

5,ab σ
j

b

)

− 1

2

(
vi

61,ab − vi
62,ab

) }
. (16)

Indeed, the tensor components from the first four terms in
Eq. (16a) read as follows:

d2,a = �p 2
a , (17a)

vi
2,a = �p 2

a (�ra × �pa)i , (17b)

d3,a = 1

ra

, (17c)

t
ij

3,a = 1

r3
a

(
ri
ar

j
a − 1

3
δij r2

a

)
, (17d)

t
ij

4,a = pi
a pj

a − 1

3
δij �p 2

a . (17e)

Furthermore, we have the following terms from the fifth
corrections in Eq. (16a):

d5,ab = �ra · �rab

r3
ab

, (17f)

t
ij

5,ab = 1

r3
ab

(
ri
ar

j

ab + r
j
a ri

ab

2
− �ra · �rab

3
δij

)
, (17g)

r
ij

5,ab = 1

2r3
ab

(
ri
ar

j

b − rj
a ri

b

)
. (17h)

Finally, the sixth term in Eq. (16a) yields a remaining vector
structure,

vi
61,ab = (�ra × �pb)i

rab

, (17i)

vi
62,ab = (�ra × �rb)i (�rab · �pb)

r3
ab

. (17j)

We proceed to a final numerical evaluation of these
corrections later.

D. Self-energy correction

We follow Ref. [5] and base the calculation of the low-
energy part of the self-energy proceeds on a nonrelativistic
Hamiltonian in the presence of an electromagnetic field in the
length gauge,

H = H0 + HM0 + Hγ − e �r1 · �E − e �r2 · �E, (18)

where H0 is the unperturbed Hamiltonian of the atom, Hγ is
the Hamiltonian of the photon field, HM0 is the leading-order
magnetic interaction given in Eq. (10), and the two dipole
interaction operators describe the interaction of the bound

electrons with the quantized electromagnetic field. The self-
energy has the form

δE = − 2 α

3 π

∫ ε

0
dω ω3 〈φ|(�r1 + �r2)

× 1

H0 + HM − E0 + ω
(�r1 + �r2)|φ〉. (19)

It is understood that δ E is to be expanded in first order
in the magnetic field �B. Then, replacing the coordinates by
electron momenta and using commutation relations, it is easy
to rederive Eq. (38) of Ref. [5], additionally assuming that the
state φ has definite mL and mS quantum numbers (projections
of the orbital and spin angular momenta onto the quantization
axis). We might just as well assume that the reference state
has a defined value of the magnetic quantum number mJ of
the total angular momentum,

δE = −2 μB

α

π
{i εirs〈mJ |( �p1 + �p2)r

× ln |2(H0 − E)| ( �p1 + �p2)s |mJ 〉}Bi. (20)

Adjusting the self-energy correction to our convention, we
obtain the tensor structure

δE = −2 μB

α

π
〈mJ | �G3 · �B|mJ 〉, (21)

where Gi
3 ≡ vi

7 is given by the expression in curly brackets in
Eq. (20). Thus, the self-energy correction has a simple vector
structure and contributes to the orbital momentum L part.

III. EVALUATION OF THE g FACTOR

In first-order perturbation theory, one requires only the
diagonal matrix elements in the total angular momentum �J .
Insofar as first-order theory is concerned, one may replace
HM0 + δHM by its restriction to the (2J + 1)-dimensional
subspace spanned by the orthonormal vectors for mJ = −J,

−J + 1, . . . ,J . Then, the magnetic Hamiltonian linear in the
�B field can be rewritten as follows, in terms of the gJ factor
and �J ,

HM0 + δHM = μB

3∑
γ=0

�Gγ · �B = μB gJ
�J · �B. (22)

In order to calculate the gJ factor, it is helpful to write it as
an average over all magnetic projections. Using the shorthand
notation |mJ 〉 for the state with quantum numbers |L,S,J,mJ 〉,
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an important relation is

〈mJ | �G · �B|mJ 〉 = 〈mJ |
�G · �J �J · �B

�J 2
|mJ 〉 = mJ gJ B,

gJ = 〈mJ | �G · �J |mJ 〉
J (J + 1)

. (23)

This relation holds for any mJ , and �G may stand for any of
the �Gγ or for the sum �G = ∑3

γ=0
�Gγ . Summing over mJ and

dividing by the number of states 2J + 1, the gJ factor can be
determined as follows:

gJ = 1

J (J + 1)(2J + 1)

∑
i=0

J∑
mJ =−J

〈mJ | �Gi · �J |mJ 〉. (24)

This expression involves a sum over the angular momentum
projections and is manifestly independent of mJ .

A. Reduction of spin degrees and J

The �Gγ with γ = 0,1,2,3 have been defined in
Secs. II B–II D. According to Eq. (12), the terms can be
decomposed into diagonal d terms and symmetric as well as
antisymmetric t and r terms. Using Eq. (24), one can express
the g-factor contribution of a term of the form �G · �J in terms of
the multiplicative factor J (J + 1)(2J + 1), a correction to the
gJ factor, and radial matrix elements. For a contribution to �Gγ ·
�J of the form d �σ · �J , one can deduce for P states the formula

J∑
mJ =−J

〈mJ | d �σ · �J |mJ 〉

= AJS J (J + 1) (2J + 1)
∑

a

〈ψk|d|ψk〉, (25a)

A21 = A11 = 1

2
, A10 = 0. (25b)

The Cartesian basis |ψk〉 of P states is normalized to
〈ψk|ψl〉 = 1

3 δkl [see Eq. (31)]. The basis of the |ψk〉 states
contains states without an explicit spin wave function, where
the coordinate part is symmetrized or antisymmetrized, ac-
cording to Eq. (31) below. For a vector �v coupled to �J in
Eq. (24), we use the following reduction scheme:

J∑
mJ =−J

〈mJ |�v · �J |mJ 〉

= BJS J (J + 1) (2J + 1) i εijk〈ψi |vj |ψk〉, (26a)

B21 = B11 = −1

4
, B10 = −1

2
. (26b)

For a symmetric, traceless (quadrupole) tensor, we can
project onto the Cartesian basis for P states as follows:

J∑
mJ =−J

〈 mJ | t ij σ i J j |mJ 〉

= CJS J (J + 1) (2J + 1)
∑

a

〈ψj |t jk|ψk〉, (27a)

C21 = − 1

10
, C11 = 1

2
, C10 = 0. (27b)

Finally, for a antisymmetric tensor rij coupled to σ i
a J j , the

total contribution to the gJ factor vanishes for all states under
investigation here.

For excited helium P states, the leading-order expression
(2) evaluates to

gJ (n3PJ=0,1,2) = 3
2 , gJ (n1P1) = 1, (28)

where n is the principal quantum number of the excited state,
and the result for n3P0 is not of physical interest because the
magnetic projection for the state with J = 0 always is μ = 0.
The correction δgJ to the Landé g factor can be expressed in
terms of δgL, δgS , and gx [see Eq. (14)], and prefactors AJS ,
BJS , and CJS ,

δgJ = AJS δgS − 2 BJS δgL + 1
3 CJS δgx, (29)

where the AJS , BJS , and CJS coefficients are given in
Eqs. (25)–(27), respectively. It is probably useful to note that
our scheme is easily generalized to other low orbital momen-
tum states, for example, D states, which have submanifolds
with S = 0 and S = 1, and J = 1,2,3.

IV. NUMERICAL EVALUATION

The nonrelativistic wave function of the P state ψ and its
energy E0 are determined for a Schrödinger equation with a
nonrelativistic Hamiltonian Eq. (8),

H0 ψ = E0 ψ, (30)

based on the Rayleigh-Ritz variational principle. We use
a basis set of explicitly exponentially correlated functions
(following Refs. [18,19])

ψk =
N∑

m=1

wm

[
rk

1 e−akr1−bkr2−ckr12 ∓ (r1 ↔ r2)
]
, (31)

which for the singlet (triplet) states is symmetric (antisymmet-
ric) under an exchange of spatial coordinates, as required by the
Pauli exclusion principle. We re-emphasize that the superscript
k denotes the Cartesian coordinate; that is, the wave function
with an orientation along the x axis would be denoted as ψx and
involve the x coordinates rx

1 and (in the exchange term) rx
2 . The

parameters (a,b,c) for the ith function are randomly generated
from an optimized box (A1,A2) × (B1,B2) × (C1,C2) under
the additional constraints ak + bk > ε as well as bk + ck > ε

and ck + ak > ε, where ε =
√

2 (E+
0 − E0) with E+

0 being the
lowest singlet (triplet) P state energy for He+.

In order to obtain a more accurate representation of the
wave function, we use two boxes that model the short-range
and medium-range asymptotics of the helium wave functions.
In this basis, the matrix element of the nonrelativistic Hamil-
tonian H0 can be represented as a linear combination of the
integrals

(a,b,c,n1,n2,n12)

=
∫

d3r1 d3r2 r
n1−1
1 r

n2−1
2 r

n12−1
12 e−ar1−br2−cr12 , (32)

with non-negative n1, n2, and n12. Methods for their com-
putation are well known [20]. The linear coefficients dm

in Eq. (31) are obtained from a solution of a generalized

022508-5



M. PUCHALSKI AND U. D. JENTSCHURA PHYSICAL REVIEW A 86, 022508 (2012)

TABLE I. Mean values of the tensor structures entering Eqs. (25)–(27), for 2 1P , 2 3P , and 3 3P states. In view of A10 = C10 = 0, only the
phenomenologically relevant results are indicated for singlet P states.

Operator 2 1P 2 3P 3 3P

i εijk〈ψi |vj

0,a |ψk〉 −2.0 −2.0 −2.0

i εijk〈δψi
mp|vj

0,a |δψk
mp〉 −0.805 549 556(6) −1.096 171 714(2) −1.366 172(4)

i εijk〈δψi
mp|δψi

mp〉 0.402 774 778(8) 0.548 085 857 1(4) 0.683 086 2(2)

i εijk〈ψi |vj

1,ab|ψk〉 −0.131 044 018 6(5) 0.256 875 920 7(3) 0.069 756 861(4)

i εijk〈ψi |vj

1,a |δψk
mp〉 −1.131 383 6(3) −1.204 232 1(4) −1.025 36(6)

〈ψk|d2,a |ψk〉 A10 = 0 4.110 292 724 2 4.116 162 168 5

i εijk〈ψi |vj

2,a |ψk〉 −0.483 020 291 31 −0.216 764 422 66 −0.259 969 064 25

〈ψk|d3,a |ψk〉 A10 = 0 2.109 944 701 6 2.116 045 575 2

〈ψj |t jk

3,a|ψk〉 C10 = 0 0.072 236 399(2) 0.080 111 516 9(4)

〈ψj |t jk

4,ab|ψk〉 C10 = 0 0.077 581 379(2) 0.084 694 997 4(3)

〈ψk|d5,a |ψk〉 A10 = 0 0.109 596 679 06 0.115 928 981 92

〈ψj |t jk

5,ab|ψk〉 C10 = 0 0.066 891 418 855(5) 0.075 528 036 275(1)

i εijk〈i|vj

61,ab|ψk〉 −0.077 009 223 65(3) −0.024 049 685(6) 0.030 684 751 1(4)

i εijk〈ψi |vj

62,ab|ψk〉 0.029 866 744 798(1) 0.008 854 469 40(2) −0.001 716 909 955(6)

i εijk〈ψi |vj

7,ab|ψk
mp〉 0.195 754(2) 0.264 705(2) 0.088 415(4)

eigenvalue problem. The numerical accuracy of the results
is estimated from the apparent numerical convergence of the
matrix elements as the size of the basis is increased. For
the calculation of ψk , we use an expansion with a moderate
number up to 2 N = 900 basis functions (we use a prefactor
2 in order to clarify the distribution of the basis functions
onto two variational boxes, as described in Ref. [19]). The
numerical accuracy of the following nonrelativistic reference
values,

E0(2 1P ) = −2.123 843 086 498 101 3(3), (33a)

E0(2 3P ) = −2.133 164 190 779 283 1(2), (33b)

E0(3 3P ) = −2.058 081 084 274 275(1), (33c)

is fully sufficient for our calculations. All entries in Eq. (33)
are consistent with the values given in Table III of Ref. [21].
For 2 3P , our result also is in agreement with the entry in
Eq. (20) of Ref. [22].

Using the wave functions ψk , we are able to obtain all
necessary mean values defined by the tensor components d,
vi , and t ij . In order to perform the calculation, the set of
integrals of the form given in Eq. (33a) needs to be extended
by additional classes including one or two of the indices n1, n2,
and n12 being equal to −1. The analytic formulas for the master
integrals and related recurrence schemes are well known, as
given in Ref. [23]. Numerical values for the states with definite
orbital momentum and spin-angular symmetries 2 1P , 2 3P , and
33P are presented in Table I. Because the coefficients A10 and
C10 vanish, we do not provide values for the d and t ij elements
for singlet P states. Values without an error estimation are cut
to eleven digits; all of these are believed to be numerically
significant.

In order to determine the finite-mass effect of order O(λ2),
we first calculate the mass polarization correction to the wave

function, scaling the λ parameter out of the perturbation,

λ
∣∣δψk

mp

〉 = −λ
1

(E0 − H0)′
�p1 · �p2

μ
|ψk〉. (34)

The expression |δψk
mp〉 is relevant for the entries in the third

column of Table I. The operator �p1 · �p2 in Eq. (9) changes
neither the orbital angular momentum nor the spin symmetry
when acting on ψk in Eq. (34). Thus, it can be expressed
using a basis consisting only of the ψk defined in Eq. (31).
Variational parameters for δψmp are generated in analogy to
those for the wave function ψ , but the size of the basis is
chosen to be larger (2Nmp = 3N ). With these results in hand, it
is straightforward to calculate the mass polarization correction
for a given operator. The only effect is the second-order
correction to the vi

1,ab in Eq. (13). Together with part of the
third-order correction to vi

0,a , we obtain

〈ψi |Gj

1|ψk〉
= − m

M

∑
a �=b

[〈ψi |vj

1,ab|ψk〉 + 2 λ 〈ψi |vj

1,ab

∣∣ δ ψk
mp

〉]
+ λ2

∑
a

〈
δψi

mp

∣∣vj

0,a

∣∣δψk
mp

〉
, (35)

where the formula is expressed in compact form by writing the
coefficient of the first term as m/M , not μ/M . The other terms
in the third-order perturbation of vi

0,a result in the shifted gL

coefficient in the leading term in Eq. (5),

gL = 1 − m

M
− λ2 〈

δψi
mp

∣∣δψi
mp

〉
= 0.999 862 916 942 649(5)(55), (36)

where the first uncertainty estimate refers to the numerical un-
certainty of the particular contribution (finite-mass correction
to gL), and the second uncertainty comes from the CODATA
electron-α mass ratio m/M = 1.370 933 555 78(55) × 10−4

employed in the calculation.
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TABLE II. δgJ contributions to the singlet 2 1P1 state where δgS =
δgx = 0. The fine-structure constant is α = 1/137.035 999 074(44),
and the electron-α mass ratio is m/M = 1.370 933 555 78(55) ×
10−4 (see Ref. [32]). Theoretical uncertainties come from our estimate
of higher order effects in the order α4 (first parentheses) and
finite-mass relativistic correction of order α2λ (second).

2 1P1 δgL × 106

Finite mass [Eq. (35)] − 8.968 94
Relativistic [Eq. (15)] − 7.853 19
Self-energy [Eq. (21)] 0.024 22
Total − 16.798(9)(7)
Theory: Ref. [3] − 15.771
Theory: Ref. [4] − 16.810 165. . .a

aThere is no uncertainty estimate given in Ref. [4].

The most numerically intensive part of the g factor calcu-
lations in Eq. (24) is the vector component of the self-energy
correction (21), which can be reduced [5] to the expression

iεijk〈ψi |vj

7 |ψk〉 = (δirδks − δisδkr ) 〈ψi |( �p1 + �p2)r

× ln |2(H0 − E)| ( �p1 + �p2)s |ψk〉, (37)

which differs from the ordinary Bethe logarithm in the
absence of a linear term H0 − E multiplying the logarithm.
Matrix elements involving the logarithm of the Hamiltonian
necessitate the use of the methods usually employed for
Bethe logarithm calculations for excited states in helium,
where, due to conceivable numerical challenges, for a long
time asymptotic formulas [24–27] in 1/n and 1/Z were
the preferred method of calculation. Direct and accurate
calculations of logarithmic sums over the helium spectrum
have become possible only quite recently [28–30]. Here, we
closely follow to the integral representation of the Bethe
logarithm [31], which for the expression in Eq. (37) has a

particular compact form,

i εijk〈ψi |vj

7 |ψk〉 =
∫ 1

0
dt

f (t)

t3
, (38a)

f (t) = (δirδks − δisδkr )〈ψi |( �p1 + �p2)r

× 1

H0 − E0 + ω
( �p1 + �p2)s |ψk〉, (38b)

t = 1√
1 + 2 ω

. (38c)

We perform an integration over 100 equally spaced and
optimized t points, following ideas outlined in Ref. [31].
The well-defined limit of the integrand, limt→0 f (t)/t3 = 0,
facilitates the numerical evaluation.

V. RESULTS

The numerical data for the individual operators allows us
to obtain theoretical analysis of the L, S, and the x part of the
Landé g factor, as defined in Refs. [4,9] and discussed above.
We express our results in terms of δgJ , which is obtained as
the difference of the total prediction and the leading term [see
Eq. (14)]. For the numerical evaluation, we use Eq. (24). We
express the correction δgJ to the Landé g factor in terms of
δgL, δgS , and δgx , and prefactors AJS , BJS , and CJS , as given
in Eqs. (25)–(27), and (29).

We keep the conventions of Refs. [4,9] and compare
our results to the experimental and theoretical literature. In
Tables II and III, we provide data split into a finite-mass
part related to Eq. (13) including the second-order mass
polarization correction Eq. (35), the relativistic correction
Eq. (16a), and the self-energy correction given in Eq. (21). The
first conceivable source of uncertainty for these contributions
is purely numerical, due to the finite numerical accuracy
of the components in Table I. However, in most cases, the

TABLE III. δgJ contributions to triplet P states. Again, the theoretical uncertainty of the final theoretical prediction comes from the estimate
of higher order effects in the order α4 and finite-mass relativistic correction of order α2 λ (first and second parentheses, respectively).

2 3P J δgL × 106 δgS × 106 δgx × 106

Finite mass [Eq. (35)] 17.620 32 0.0 0.0
Relativistic [Eq. (16a)] − 6.912 92 − 80.429 3 − 5.385 487
Self-energy [Eq. (21)] 0.032 74 0.0 0.0
Total 10.740(2)(2) − 80.43(2)(4) − 5.385 5(13)(2)
Theory: Ref. [4] 10.719 291 . . .a − 80.436 904 . . .a − 5.391 808 . . .a

Theory: Ref. [2] 10.6(4) − 80.46(1) − 3.5(1.5)
Theory: Ref. [3] 8.838 − 80.401 − 5.344
Theory: Ref. [5] 10.752 033 . . .

Experiment: Ref. [1] 4.9(1.9)
Experiment: Ref. [9] 3.8(9.0) − 76.0(2.4) 4.0(25.0)

3 3P J δgL × 106 δgS × 106 δgx × 106

Finite mass [Eq. (35)] 4.788 03 0.0 0.0
Relativistic [Eq. (16a)] − 3.029 57 − 75.083 9 − 2.648 665
Self-energy [Eq. (21)] 0.010 94 0.0 0.0
Total 1.769(9)(2) − 75.08(2)(4) − 2.648 7(7)(3)
Theory: Ref. [4] 1.772 223 . . .a − 75.096 557 . . .a − 2.650 192 . . .a

Theory: Ref. [33] − 0.17(2.8) − 75.13(3.27) − 2.75(10.02)

aThere is no uncertainty estimate given in Ref. [4].
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numerical uncertainty is negligible as compared to the omitted
higher-order effects.

We are able to report that our results confirm the numerical
data reported previously in Ref. [4] at the level of relativistic
operators without finite-mass corrections. Here, we attempt
to go beyond the leading relativistic effects. The self-energy
correction to the P state g factor consists of two parts, one
of which involves a Bethe-logarithm-type term (logarithmic
sum over virtual excited states) and is ultraviolet finite, in
contrast to the Bethe logarithm contribution to the S state
Lamb shift, which is known to be uv divergent [34,35]. The
second contribution due to the self-energy is a high-energy
contribution, which is manifest in the anomalous magnetic
effects of the free electron, which are included into the
relativistic Zeeman Hamiltonian given in Eq. (15). These
contributions are ir finite. We obtain very good agreement
with a numerical result reported in Ref. [5] for the-self energy
correction δgL for 2 3P . Combining relativistic and radiative
effects, we should mention the presence of an additional third
term with a prefactor gS − 2 in Eq. (15). In Ref. [4], this term
had not been taken into account, apparently, but its numerical
magnitude does not shift the final result significantly. Our
self-energy correction, which we add to the relativistic result
of Ref. [4], includes the relativistic anomalous magnetic
moment effects of the electron and the spin dependence of
the Bethe logarithm term. We also include O(λ2) corrections
to the leading order, resulting in the finite-mass correction
in Eq. (35). Such correction gives −0.8 × 10−8, −1.0 × 10−8,
and −1.3 × 10−8 to the δgL of 2 1P , 2 3P , and 3 3P respectively,
having the order of the self-energy correction.

There are two significant sources of theoretical uncertainty
for the final results, which are given by finite-mass corrections
to the relativistic effects and by higher order QED contri-
butions. In the results reported in Ref. [4], the mass scaling
and mass polarization corrections to the relativistic effects
have been included; these results are of relative order O(α2 λ)
with respect to the leading g-factor term. However, there are
additional finite-mass relativistic effects of the same order,
which can be deduced from Eq. (40) in Ref. [11] and which
should be included in a systematic treatment. Here, we do
not perform a complete calculation of the terms of order
O(α2 λ), and so we do not include the relativistic reduced-mass
correction at all in our final results. We use some partial results
we have obtained in the order O(α2 λ) in order to estimate the
size of the relativistic-recoil correction.

These include the scaling and the mass polarization
corrections for the L part in 2 1P1 (4.4 × 10−9), as well as
for the x part (1.6 × 10−9) and the S part (2.5 × 10−8). In
2 3PJ , we have 1.1 × 10−10 for the x part, 9.2 × 10−10 for
the L part, and 2.5 × 10−8 for the S part. Finally, for the x

part in 3 3PJ , we have a result of 1.7 × 10−10. These results
guide our estimates of the theoretical uncertainty indicated in
Tables II and III, where we multiply the partial results with a
conservative weight factor of 1.5. For the higher order QED
contributions, we are not even able to present approximate
formulas based on, for example, hydrogenic contributions,
because the theory of the Zeeman effect has not been developed
until now to this order. Therefore, we use the combined value
from the relativistic correction multiplied by a factor α2, and
the leading QED correction multiplied by a factor α, to obtain a

conservative estimate of the uncertainty due to the uncalculated
higher order effects. We employ an additional conservative
enlargement factor of 5 in order to estimate the size of the
effects of order α3.

As evident from Tables II and III, agreement of theory and
experiment is rather satisfactory for a number of contributions,
with the exception of a 2σ discrepancy for δgS (comparing our
result to that of Ref. [9]) for the 2 3P state and a 3 σ discrepancy
for δgL (comparing our result to that of Ref. [1]). It would be
very interesting to remeasure the effect and clarify the status
of the experimental results.

VI. CONCLUSIONS

In the calculation of the gJ factor of excited states of helium,
all aspects of atomic physics play a role: electron correlation,
relativity, and QED radiative corrections. Furthermore, these
effects are all intertwined; that is, there are QED radiative
corrections multiplying the relativistic effects, contributing
in higher order. We here carry out a theoretical analysis of
the P -state g factor of singlet and triplet helium states, with
a special emphasis on relativistic, radiative, and finite-mass
corrections. The effects are calculated through order α2 (for
the relativistic effects), and we also include radiative effects of
order α3. Furthermore, finite-mass corrections of order λ and
λ2 are included, while available partial results for the effects of
relative order α2 λ are used in order to estimate the theoretical
uncertainty in this order. Results are summarized in Tables II
and III; a 2σ discrepancy for δgS in comparison to Ref. [9] and
a now-famous 3σ discrepancy for δgL in comparison to Ref. [1]
highlight the need for additional experimental evidence before
definitive conclusions can be drawn.

With regard to the QED self-energy correction to the g

factor, one encounters a peculiar situation for P states: Namely,
both the high-energy part as well as the low-energy part are
separately finite, while the low-energy part is given by a
Bethe-logarithm term and the high-energy part is given by
the anomalous magnetic moment. Both terms are finite, and
it is easy to overlook one of the contributions. For atomic
hydrogen, this has been verified both numerically [7] and
analytically [8]. For helium singlet versus triplet states, we
find that the low-energy part of the self-energy correction to
the bound-state g factor is spin dependent.

Our calculations are performed in an angular-momentum
coupling scheme which allows us to separate the internal
degrees of freedom of the atom from the interaction with the
external magnetic field. The angular momentum algebra can
become rather involved for helium P states. We fully confirm
the relativistic treatment of Ref. [4] using our mixed approach.
In a more general context, one may recall that the contribution
of the anomalous magnetic moment to the P -state lifetime
in few-electron systems has recently given rise to interesting
experimental-theoretical discrepancies [36] which remain to
be fully resolved.
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APPENDIX: NONRELATIVISTIC TREATMENT

The nonrelativistic Hamiltonian of an n-electron atom is
given as (in atomic units)

H = �p2
N

2M
+

∑
a

( �p2
a

2m
− Z

ra

)
+

∑
a>b

1

rab

, (A1)

where we keep the electron mass m and the nucleus mass
M in symbolic form. In the center-of-mass system, we have

�pN = −∑
a �pa , and therefore

H =
∑

a

( �p2
a

2μ
− Z

ra

)
+

∑
a>b

(
1

rab

+ �pa · �pb

M

)
, (A2)

where the latter term corresponds to the mass polarization. The
reduced mass μ is given as

1

μ
= 1

m
+ 1

M
. (A3)

If we define the ratio λ = −μ/M as in Eq. (4), then an
important identity is

1 + λ = 1 − μ

M
= μ

m
. (A4)

[1] C. Lhuillier, J. P. Faroux, and N. Billy, J. Phys. (Paris) 37, 335
(1976).

[2] S. A. Lewis and V. W. Hughes, Phys. Rev. A 11, 383
(1975).

[3] J. M. Anthony and K. J. Sebastian, Phys. Rev. A 48, 3792
(1993).

[4] Z. C. Yan and G. W. F. Drake, Phys. Rev. A 50, R1980 (1994).
[5] K. Pachucki, Phys. Rev. A 69, 052502 (2004).
[6] V. A. Yerokhin and U. D. Jentschura, Phys. Rev. Lett. 100,

163001 (2008).
[7] V. A. Yerokhin and U. D. Jentschura, Phys. Rev. A 81, 012502

(2010).
[8] U. D. Jentschura, Phys. Rev. A 81, 012512 (2010).
[9] S. A. Lewis, F. M. J. Piachanick, and V. W. Hughes, Phys. Rev.

A 2, 86 (1970).
[10] M. Phillips, Phys. Rev. 76, 1803 (1949).
[11] K. Pachucki, Phys. Rev. A 78, 012504 (2008).
[12] F. R. Innes and C. W. Ufford, Phys. Rev. 111, 194 (1958).
[13] A. R. Edmonds, Angular Momentum in Quantum Mechanics

(Princeton University Press, Princeton, NJ, 1974).
[14] R. A. Hegstrom, Phys. Rev. A 7, 451 (1973).
[15] W. Perl and V. W. Hughes, Phys. Rev. 91, 842 (1953).
[16] A. Abragam and J. H. Van Vleck, Phys. Rev. 92, 1448 (1953).
[17] K. Kambe and J. H. Van Vleck, Phys. Rev. 96, 66 (1954).
[18] V. I. Korobov, Phys. Rev. A 61, 064503 (2000).

[19] M. Puchalski, U. D. Jentschura, and P. J. Mohr, Phys. Rev. A
83, 042508 (2011).

[20] R. A. Sack, C. C. J. Roothaan, and W. Kolos, J. Math. Phys. 8,
1093 (1967).

[21] G. W. F. Drake, in Long-Range Casimir Forces: Theory and
Recent Experiments on Atomic Systems, edited by F. S. Levin
and D. A. Micha (Plenum, Woodbury, NY, 1993), pp. 107–217.

[22] K. Pachucki, J. Phys. B 35, 3087 (2002).
[23] V. I. Korobov, J. Phys. B 35, 1959 (2002).
[24] C. Schwartz, Phys. Rev. 123, 1700 (1961).
[25] G. W. F. Drake and R. A. Swainson, Phys. Rev. A 41, 1243

(1990).
[26] S. P. Goldman and G. W. F. Drake, Phys. Rev. Lett. 68, 1683

(1992).
[27] G. W. F. Drake and W. C. Martin, Can. J. Phys. 76, 679 (1998).
[28] G. W. F. Drake and S. P. Goldman, Can. J. Phys. 77, 835 (1999).
[29] V. I. Korobov and S. V. Korobov, Phys. Rev. A 59, 3394 (1999).
[30] V. I. Korobov, Phys. Rev. A 69, 054501 (2004).
[31] K. Pachucki and J. Komasa, Phys. Rev. Lett. 92, 213001 (2004).
[32] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 80,

633 (2008).
[33] P. B. Kramer and F. M. Pipkin, Phys. Rev. A 18, 212 (1978).
[34] H. A. Bethe, Phys. Rev. 72, 339 (1947).
[35] K. Pachucki, Ann. Phys. (NY) 226, 1 (1993).
[36] A. Lapierre et al., Phys. Rev. Lett. 95, 183001 (2005).

022508-9

http://dx.doi.org/10.1051/jphys:01976003704033500
http://dx.doi.org/10.1051/jphys:01976003704033500
http://dx.doi.org/10.1103/PhysRevA.11.383
http://dx.doi.org/10.1103/PhysRevA.11.383
http://dx.doi.org/10.1103/PhysRevA.48.3792
http://dx.doi.org/10.1103/PhysRevA.48.3792
http://dx.doi.org/10.1103/PhysRevA.50.R1980
http://dx.doi.org/10.1103/PhysRevA.69.052502
http://dx.doi.org/10.1103/PhysRevLett.100.163001
http://dx.doi.org/10.1103/PhysRevLett.100.163001
http://dx.doi.org/10.1103/PhysRevA.81.012502
http://dx.doi.org/10.1103/PhysRevA.81.012502
http://dx.doi.org/10.1103/PhysRevA.81.012512
http://dx.doi.org/10.1103/PhysRevA.2.86
http://dx.doi.org/10.1103/PhysRevA.2.86
http://dx.doi.org/10.1103/PhysRev.76.1803
http://dx.doi.org/10.1103/PhysRevA.78.012504
http://dx.doi.org/10.1103/PhysRev.111.194
http://dx.doi.org/10.1103/PhysRevA.7.451
http://dx.doi.org/10.1103/PhysRev.91.842
http://dx.doi.org/10.1103/PhysRev.92.1448
http://dx.doi.org/10.1103/PhysRev.96.66
http://dx.doi.org/10.1103/PhysRevA.61.064503
http://dx.doi.org/10.1103/PhysRevA.83.042508
http://dx.doi.org/10.1103/PhysRevA.83.042508
http://dx.doi.org/10.1063/1.1705321
http://dx.doi.org/10.1063/1.1705321
http://dx.doi.org/10.1088/0953-4075/35/14/306
http://dx.doi.org/10.1088/0953-4075/35/8/312
http://dx.doi.org/10.1103/PhysRev.123.1700
http://dx.doi.org/10.1103/PhysRevA.41.1243
http://dx.doi.org/10.1103/PhysRevA.41.1243
http://dx.doi.org/10.1103/PhysRevLett.68.1683
http://dx.doi.org/10.1103/PhysRevLett.68.1683
http://dx.doi.org/10.1139/cjp-77-11-835
http://dx.doi.org/10.1103/PhysRevA.59.3394
http://dx.doi.org/10.1103/PhysRevA.69.054501
http://dx.doi.org/10.1103/PhysRevLett.92.213001
http://dx.doi.org/10.1103/RevModPhys.80.633
http://dx.doi.org/10.1103/RevModPhys.80.633
http://dx.doi.org/10.1103/PhysRevA.18.212
http://dx.doi.org/10.1103/PhysRev.72.339
http://dx.doi.org/10.1006/aphy.1993.1063
http://dx.doi.org/10.1103/PhysRevLett.95.183001



