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Correlation effects in Yb+ and implications for parity violation
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Calculation of the energies, magnetic dipole hyperfine structure constants, E1 transition amplitudes between the
low-lying states, and nuclear spin-dependent parity-nonconserving amplitudes for the 2S1/2- 2D3/2,5/2 transitions
in 171Yb+ ion is performed using two different approaches. First, we carried out many-body perturbation theory
calculation considering Yb+ as a monovalent system. Additional all-order calculations are carried out for selected
properties. Second, we carried out configuration interaction calculation considering Yb as a 15-electron system
and compared the results obtained by two methods. The accuracy of different methods is evaluated. We find that
the monovalent description is inadequate for evaluation of some atomic properties due to significant mixing of the
one-particle and the hole-two-particle configurations. Performing the calculation by such different approaches
allowed us to establish the importance of various correlation effects for Yb+ atomic properties for future
improvement of theoretical precision in this complicated system.
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I. INTRODUCTION

The Yb+ ions have been a subject of heightened interest
in recent years owing to use of this system in a number of
different applications including quantum information studies
[1,2], searches for variations of fundamental constants [3], and
development of the optical frequency standards [4–7].

Manipulation and detection of a trapped Yb+ hyperfine
qubit was described in [1]. An efficient scheme to carry
out gate operations on an array of trapped Yb+ ions was
suggested in [2]. Yb+ is of particular interest to the atomic
clock development due to the availability of two different
(quadrupole [5] and octupole [7]) metastable transitions that
can be used as optical frequency standards. In 2012, the
performance of the optical frequency standard based on
electric-octupole transition 2S1/2(F = 0) → 2Fo

7/2(F = 3) in
a single trapped Yb+ ion was investigated [7]. This work has
demonstrated that the octupole transition in 171Yb+ can be
used to realize an optical clock with a systematic uncertainty
of 7.1 × 10−17 [7]. Moreover, it has been shown that a clock
based on a linear combination of the quadrupole and the
octupole transition frequencies of Yb+ can have a significantly
reduced blackbody shift [8]. An availability of two metastable
transitions suitable for the development of the precision
frequency standard made Yb+ an attractive candidate for the
search of the variation of the fine-structure constant.

The 2S1/2 → 2D3/2 transition in Yb+ was also proposed
[9] for study of the nuclear spin-dependent (SD) parity-
nonconserving (PNC) effects. Such an experiment will be able
to yield the nuclear anapole moment that arises due to parity-
violating interaction between nucleons in the nucleus [10].
Study of the weak hadronic interactions is of particular interest
due to significant discrepancy between constraints on weak
nucleon-nucleon couplings obtained from the cesium anapole
moment and those obtained from other nuclear parity-violating
measurements [11,12].

Accurate calculation of Yb+ properties is very difficult
owing to the large number of low-lying states of the hole-
two-particle configurations such as 4f 135d6s and their strong

mixing with one-particle (monovalent) configurations, such
as 4f 146p. The properties of ytterbium ions were studied
in a number of theory papers (see, e.g., [13] and references
therein). Because the main configuration of the ground state of
Yb+ is 4f 146s, this ion can be considered as a system with one
electron above the closed shells. Alternatively, one can treat
the 4f electrons as the valence electrons, and consider Yb+
as a system with 15 valence electrons. Both approaches have
advantages and drawbacks. In the following, we refer to them
as a single-electron approach and a many-electron approach.

The advantages of a monovalent (single-electron) method
are high accuracy and relative simplicity. In particular, the
core-valence correlations can be treated very accurately.
However, the problem is that the states belonging to the
configurations with the unfilled 4f shell, such as 4f 136s2 and
4f 135d6s, are lying very low in Yb+. A knowledge of their
properties is important for a number of experimental schemes
mentioned above. A single-electron method is unable to treat
such states since these are not monovalent states. Moreover,
the states with filled 4f shell (such as 4f 146p 2P o

3/2) can
strongly interact with a closely located state with the unfilled
4f shell. This mixing can significantly affect the properties
of both states. Again, the single-electron approach does not
take into account this interaction that drastically affects the
accuracy of this approach for the states where this mixing is
large. This effect is illustrated on the example of calculation
of the magnetic dipole hyperfine structure (hfs) constant A of
the 4f 146p 2P o

3/2 state. It was calculated by several different
methods that considered Yb+ as a monovalent system [13–16].

The resulting values are in reasonable agreement with each
other but are factor of 2 smaller than the experimental result.
As we show in this work, the reason for this discrepancy of
theory and experiment is the strong configuration interaction
between the 4f 146p 2P o

3/2 and 4f 135d6s 3[3/2]o3/2 states.
The many-electron methods, such as the conventional

configuration interaction (CI), allow us to study the properties
of the states with both filled and unfilled 4f shell on equal
footing. It also allows us to take into account the configuration
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interaction between nearby levels. However, the accuracy of
the 15-electron CI approach is generally lower than that of
single-electron methods due to omission of the correlation
corrections between the core [1s2, . . . ,5p6] electrons and the
valence electrons. So far, it has not been possible to incorporate
successfully the core-valence correlations into a many-electron
CI.

In this work, we carried out calculation of Yb+ properties
using both the single-electron approach, with both many-body
perturbation theory (MBPT) and all-order methods, and the 15-
electron configuration interaction method. The use of the both
approaches allows us to study the properties of all low-lying
states. Since these methods are to some extent complementary
to each other, they give us a clearer picture of the importance
of various correlation effects and provide more complete
theoretical description of the Yb+ properties. This work will
allow us to outline a pathway for the development of more
accurate approaches for the calculation of Yb+ properties of
interest to applications listed above. Because of the importance
of the Yb+ for various applications, experimental values of
other properties will become available in the future for further
theory tests. Yb+ is an excellent system for benchmark tests
of new theoretical approaches capable of describing strong
electron correlations. A development of such new approaches
is also needed to improve theoretical description of complex
atoms, such as Dy or Ho, which is becoming more important
owing to recent experimental developments and new proposals
with these systems [17–19].

Another goal of this paper is to evaluate spin-dependent
parity-violating amplitudes for the 4f 146s 2S1/2-4f 145d 2DJ

transitions in Yb+ and to study the effects of various
correlation corrections to this quantity. The calculation of
the PNC amplitude is required to analyze the experimental
PNC studies and extract the anapole moment (unless the
measurements are carried out with several isotopes). Such
experimental study with Yb+ is presently underway in Los
Alamos [9]. So far, a nonzero anapole moment was observed
only in Cs [10]. The Cs result is in disagreement with
the nuclear physics predictions for the Cs anapole moment
and constraints on weak nucleon-nucleon couplings [11,12]
prompting further investigations. The spin-dependent PNC
effects in the 4f 145d 2D3/2-4f 146s 2S1/2 transition of Yb+
were recently investigated in Ref. [15]. The authors of
Ref. [15] treated Yb+ as a monovalent system. They noted
significant cancellation between different terms contributing
to the SD PNC amplitudes which merited further investigation
carried out here. We note that the total uncertainty in the
value of the anapole moment that can be extracted from the
experiment with a single isotope includes the theoretical and
experimental uncertainties. Other PNC experiments that are
presently underway include studies with Yb [20], Fr [21], and
Ra+ [22]. Large atomic parity violation effect was observed in
neutral Yb [20].

The paper is organized as follows. Section II is devoted
to the single-electron approach. We present the results of
calculations of the low-lying energy levels, the magnetic dipole
hfs constants, E1 transition amplitudes between the low-
lying states, and nuclear spin-dependent parity-nonconserving
amplitudes for the 2S1/2-2D3/2,5/2 transitions. The all-order
results are also given for the energy levels and electric dipole

matrix elements. In Sec. III, we present the energy levels,
magnetic dipole hfs constants, and E1 transition amplitudes
for the low-lying states calculated in the framework of the
15-electron CI method. We compare the results obtained by
either method. If the results differ from each other, the reasons
are analyzed. The conclusions are described in Sec. IV. We
use atomic units h̄ = |e| = me = 1 through the paper unless
stated otherwise.

II. SINGLE-ELECTRON APPROACH AND RESULTS

In this approach, the 4f electrons are considered as the core
electrons. We start from the solution of the Dirac-Fock (DF)
equations carrying out the self-consistency procedure for the
[1s2, . . . ,4f 14] core electrons. Then, the valence orbitals 6–8s,
6–7p, and 5–6d were constructed in the V N−1 approximation
(N is the total number of the electrons in the system). The
basis set used in calculations included virtual orbitals up
to 23s,23p,23d,22f , and 14g formed with the help of the
recurrent procedure described in Refs. [23,24]. The MBPT
corrections can be included by solving the equation

Heff ψn = εnψn (1)

with the effective Hamiltonian defined as Heff ≡ H0 + �,
where H0 is the Dirac-Fock Hamiltonian and the operator �

takes into account virtual core excitations.

A. Energy levels

First, we find the energies of the low-lying states in various
approximations and compare them with the experimental
values [25]. As we already mentioned, we are able to obtain
only the energies for the states with filled 4f shell in
the framework of this approach. In Table I we present the
ionization potential (line 1) and the energies of the low-lying
states obtained in different approximations. At the DF stage
of the calculations, even the order of the levels is incorrect.
An inclusion of the second-order MBPT corrections restores
the correct order of levels listed in Table I. The second-order
MBPT values are listed in the column labeled “MBPT.”

As expected, the agreement between the experimental and
theoretical energies significantly improves with the inclusion

TABLE I. The comparison of the energy levels calculated in dif-
ferent approximations with experiment [25]. The ionization potential
is given in the first line (in a.u.), the energy levels of the excited states
are counted from the ground state (in cm−1). The columns labeled
“DF” and “MBPT” correspond to the Dirac-Fock and DF + MBPT
approximations with the MBPT corrections included in the second
order. The higher orders of the MBPT are included in the results listed
in the column labeled “MBPT(HO).” The results of the single-double
all-order calculation are listed in the column labeled “All-order.”

DF MBPT MBPT(HO) All-order Experiment

2S1/2 0.41366 0.45211 0.44473 0.45090 0.44775a

2D3/2 24272 24450 22711 22820 22961
2D5/2 24752 25952 24178 24261 24333
2P o

1/2 24702 28636 27945 27945 27062
2P o

3/2 27513 32242 31403 31481 30392

aThis is equal to the ionization potential =98269 cm−1 [25].
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of the correlation corrections beyond DF approximation. At
the same time, the correlations are large and accounting for
only the second-order MBPT corrections is not sufficient. To
calculate the energy levels (and subsequently other properties)
more accurately, we need to take into account the higher
orders (HO) of the MBPT. We designate this approximation
as MBPT(HO) and label the results of such calculations
accordingly in the text and the tables.

In this approach, we include higher-order corrections
by introducing screening coefficients Ck for the Coulomb
lines in self-energy diagrams (see, e.g., [26]). The latter can
be calculated as an average screening of the two-electron
Coulomb radial integrals of a given multipolarity k. These
coefficients serve as an approximation to the insertion of
polarization operator in Coulomb lines. The coefficients Ck

were chosen as follows: C0 = 1.3, C1 = 0.75, and Ck = 1 for
k � 2. The resulting energies are listed in Table I in the column
labeled “MBPT(HO).” The ionization potential obtained in the
MBPT(HO) approximation agrees with the experiment at the
level of 0.07%; the energies of the even-parity states are within
1% from the experimental values, and the energies of the
2P o

1/2 and 2P o
3/2 states were reproduced with the 3% accuracy.

As a test of the MBPT(HO) approach, we also calculated
the energy levels using the linearized single-double coupled-
cluster method (also referred to as the all-order method).
This method allows us to include the higher-order correlation
corrections in an ab initio way by effectively summing
the dominant correlation contributions to all orders of the
perturbation theory. The single-double all-order method was
demonstrated to produce very accurate atomic properties for
alkali-metal atoms and other monovalent systems. We refer
the reader to the review [27] for a description of the all-order
approach and its applications. The all-order data are listed in
the column labeled “All-order” in Table I. These energy values
have been previously listed in [28]. We find that ab initio all-
order energy levels are close to the MBPT(HO) values, serving
as an additional verification of the MBPT(HO) approximation.

B. Magnetic dipole hfs constants and E1 transition amplitudes

To calculate magnetic dipole hfs constants and E1 transition
amplitudes, we construct effective valence operators for the
magnetic dipole hyperfine interaction Hhfs and the electric
dipole operator d. First, we solve the random-phase approxi-
mation (RPA) equations, which is equivalent to the summation
of the dominant sequence of many-body diagrams to all orders
of MBPT [26,29]. Then, we include additional corrections
(beyond RPA) to the effective operators: the core-Brueckner,
structural radiation (SR), and normalization corrections.

The results obtained for the hfs constants are listed in
Table II. This table illustrates that the MBPT corrections
are generally large and contribute significantly to the hfs
constants A. The RPA, core-Brueckner, SR, and normalization
corrections also have to be taken into account. The 2DJ states
are particularly sensitive to different corrections. For instance,
the RPA correction even changes the sign of A(2D5/2). The SR
corrections (which are usually relatively small) are found to
be significant in this case and change the values of A(2D3/2)
and A(2D5/2) by more than 40%.

The final values of all hfs constants obtained in this work
are, in general, in reasonable agreement with the experimental
data and other theoretical results with the exception of two
cases. We find a significant difference between our value of
A(2D3/2) and the value found in [15]. The difference is most
probably due to inclusion of the corrections beyond RPA in this
work. Our result is in a good agreement with the experiment.
All of the theoretical values are in disagreement with the
experimental value of the A(2P o

3/2), demonstrating that this
hfs constant can not be correctly reproduced in the framework
of a single-electron approach. As we will discuss in more detail
in the section devoted to the 15-electron CI, this problem arises
due to a strong mixing of the 4f 146p 2P o

3/2 state and a nearby
4f 145d6s 3[3/2]o3/2 state. A possible sensitivity of A(2P o

3/2) to
the configuration mixing was also mentioned in Ref. [15].

We also calculated the E1 amplitudes for the transitions
between the low-lying states and compared them with other

TABLE II. The breakdown of different contributions to the hfs constants A (in MHz) (I = 1/2, μ = 0.4919 [30]). First row gives the DF
values and the following rows give MBPT(HO), RPA, core-Brueckner (σ ), structural radiation (SR), and normalization (Norm.) corrections.
The row labeled “Total” gives the final numbers. The values are compared with the experimental and other theoretical [13–16] results.

2S1/2
2D3/2

2D5/2
2P o

1/2
2P o

3/2

DF 9577 290 111 1542 183
MBPT(HO) 2993 109 38 549 58
RPA 1672 −55 −308 323 132
σ −762 −13 −5 −10 −5
SR −188 167 67 −9 −35
Norm. −201 −9 1 −24 −3
Total 13091 489 −96 2371 330
Experiment 12645(2)a 430(43)b −63.6(7)c 2104.9(1.3)a 877(20)d

Ref. [13] 13172 2350 311.5
Ref. [14] 12730 2317 391
Ref. [15] 13217 291 2533 388
Ref. [16] 13332 447 −48 2516 322

aReference [14].
bReference [31] and references therein.
cReference [32].
dReference [33].
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available data. The lifetime τ of the 2P o
1/2 state was measured

with a high precision in Ref. [34] to be equal to 8.12(2) ns. The
2P o

1/2 state can decay to the 2D3/2 and 2S1/2 states. The decay
channel to the ground state strongly dominates. The branching
ratio from the 2P o

1/2 state to the metastable 2D3/2 state was
measured to be 0.00501(15) [1]. Using two these quantities,
we find the transition probabilities

W
(2

P o
1/2 → 2S1/2

) = 0.995/τ
(2

P o
1/2

)
= 1.23(5) × 108 s−1 (2)

and

W
(2

P o
1/2 → 2D3/2

) = 0.00501/τ
(2

P o
1/2

)
= 6.17(18) × 105 s−1. (3)

Respectively, the “experimental” reduced matrix ele-
ments (MEs) of the electric-dipole moment operator are
|〈2S1/2||d||2P o

1/2〉| = 2.471(3) a.u. and |〈2D3/2||d||2P o
1/2〉| =

2.97(4) a.u.
At the present time, the most precise measurement of the

2P o
3/2 lifetime, τ (2P o

3/2) = 6.15(9) ns, was carried out in [35].
The 2P o

3/2 state mainly decays by the E1 transitions to the
2S1/2, 2D3/2, and 2D5/2 states. Then,

1

τ
(2

P o
3/2

) ≈ W
(2

P o
3/2 → 2S1/2

) + W
(2

P o
3/2 → 2D3/2

)
+W

(2
P o

3/2 → 2D5/2
)
. (4)

The transition probabilities W (2P o
3/2 → 2D3/2) and

W (2P o
3/2 → 2D5/2) were calculated in Ref. [13] to be 3.6 ×

105 s−1 and 1.9 × 105 s−1, respectively. Thus, they are more
than two orders of magnitude smaller than 1/τ (2P o

3/2) ≈
1.626 × 108 s−1. Even if the accuracy of W (2P o

3/2 → 2DJ )
is not so high (for example, ∼20%–30%), it practically does
not affect the final accuracy of the W (2P o

3/2 → 2S1/2) inferred
from the experiment. Using the experimental value of τ (2P o

3/2),
we find the probability of the 2P o

3/2 → 2S1/2 transition from

Eq. (4) yielding |〈2S1/2||d||2P o
3/2〉| ≈ 3.36(3) a.u. The same

experimental value for this reduced ME was quoted in [15].
In Table III, we present the results obtained for the

reduced MEs of the electric dipole moment operator d in the
DF approximation and list the MBPT(HO), RPA, and other
corrections. We emphasize that the core-Bruckner, SR, and
normalization corrections are small in this case, and we do not
present them separately. The sum of these corrections is given
in the table in the row labeled “Other.” We also calculated the
E1 matrix elements using the ab initio all-order method [27].
These values are listed in the row labeled “All-order.” These
results include the dominant SR, normalization, and other
corrections to all orders. The MBPT(HO) and single-double
all-order results are in close agreement.

C. Parity-nonconserving amplitude

We carried out the calculation of the spin-dependent
PNC amplitudes for the 2S1/2 → 2D3/2,5/2 transitions. The
Hamiltonian describing the main part of the nuclear spin-
dependent PNC electron-nuclear interaction can be written
as follows:

HSD = GF√
2

κ

I
α Iρ(r), (5)

where GF ≈ 2.2225 × 10−14 a.u. is the Fermi constant of the
weak interaction, κ is the dimensionless coupling constant,
α = ( 0 σ

σ 0 ), and γ5 are the Dirac matrices, I is the nuclear spin,
and ρ(r) is the nuclear density distribution.

We consider the nucleus to be a uniformly charged sphere.
Then,

ρ(r) = 3

4πR3
θ (R − r).

The root-mean-square charge radius is rrms = 5.2891 fm
[36] and, respectively, the nuclear radius R = √

5/3 rrms ≈
6.828 fm.

TABLE III. The breakdown of different contributions to the reduced MEs of the electric dipole moment operator d (in a.u.). First row gives
the DF values. The second and third rows give the MBPT(HO) and RPA corrections, respectively. The row labeled “Other” is the sum of the
core-Brueckner, structural radiation, and normalization corrections. The row labeled “Total” gives the final numbers. The results of the SD
all-order calculation are given in the row labeled “All-order.” The values are compared with the experimental and other theoretical [13,15,16]
results.

|〈2S1/2||d||2P o
1/2〉| |〈2S1/2||d||2P o

3/2〉| |〈2D3/2||d||2P o
1/2〉| |〈2D3/2||d||2P o

3/2〉| |〈2D5/2||d||2P o
3/2〉|

DF 3.24 4.54 3.86 1.70 5.20
MBPT(HO) −0.16 −0.24 −0.47 −0.23 −0.61
RPA −0.33 −0.42 −0.32 −0.12 −0.36
Other 0.002 −0.05 −0.006 0.001 −0.002
Total 2.75 3.83 3.06 1.35 4.23
All-order 2.64 3.71 2.98 1.32
Experiment 2.471(3)a 3.36(3)b 2.97(4)a

Reference [13] 2.68 3.77 2.97 1.31 4.12
Reference [15] 2.72 3.84 3.09 1.36
Reference [16] 2.72 3.83 3.06 1.35 4.23

aReferences [1,34].
bReference [35], see also explanation in the text.
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If |i〉 and |f 〉 are the initial and final atomic states of the same nominal parity, then taking into account the nuclear
SD part of the PNC interaction in the lowest nonvanishing order, one can write the electric dipole transition matrix element as

〈f |dq,SD|i〉 =
∑

n

[ 〈f |dq |n〉〈n|HSD|i〉
Ei − En

+ 〈f |HSD|n〉〈n|dq |i〉
Ef − En

]
, (6)

where |a〉 ≡ |JaFaMa〉, F = I + J is the total angular momentum, M is the projection of F, and HSD is given by Eq. (5).
The expression for the reduced ME of dSD was derived in [37] and is given by

〈Jf Ff ||dSD||JiFi〉

= √
I (I + 1)(2I + 1)(2Fi + 1)(2Ff + 1)

∑
n

[
(−1)Jf −Ji

{
Jn Ji 1

I I Fi

}{
Jn Jf 1

Ff Fi I

}
〈Jf ||d||n,Jn〉〈n,Jn||HSD||Ji〉

En − Ei

+ (−1)Ff −Fi

{
Jn Jf 1

I I Ff

}{
Jn Ji 1

Fi Ff I

}
〈Jf ||HSD||n,Jn〉〈n,Jn||d||Ji〉

En − Ef

]
. (7)

For the 2S1/2 → 2DJ transitions, where J = 3/2 and 5/2, in 171Yb (I = 1/2) we obtain from Eq. (7)

〈2DJ ,Ff ||dSD||2S1/2,Fi〉

=
√

3 (2Fi + 1)(2Ff + 1)

2

∑
n

[
(−1)J−1/2

{
Jn 1/2 1

1/2 1/2 Fi

} {
Jn J 1

Ff Fi I

} 〈2DJ ||d||n,Jn〉〈n,Jn||HSD||2S1/2〉
En − E2S1/2

+ (−1)Ff −Fi

{
Jn J 1

1/2 1/2 Ff

}{
Jn 1/2 1

Fi Ff I

} 〈2DJ ||HSD||n,Jn〉〈n,Jn||d||2S1/2〉
En − E2DJ

]
. (8)

For subsequent calculations, it is convenient to write

〈2DJ , Ff ||dSD||2S1/2,Fi〉 = 〈2DJ ,Ff ||d · R1 · HSD||2S1/2,Fi〉 + 〈2DJ ,Ff ||HSD · R2 · d||2S1/2,Fi〉, (9)

where we denote the terms involving summations over n by
R1 and R2.

To calculate the nuclear spin-dependent PNC amplitude
defined by Eq. (8), one needs to sum over all possible inter-
mediate states or to solve the corresponding inhomogeneous
equation. Here, we solve the inhomogeneous equation using
the Sternheimer-Dalgarno-Lewis method [38,39] in the va-
lence sector. The results obtained in different approximations
are presented in Table IV.

We carried out the calculations in the DF and
DF + MBPT(HO) (i.e., including the higher orders of the
MBPT) approximations. Note that in these approximations,
〈2DJ ||HSD||2P o

J ′ 〉 = 0 and, respectively, the second term in
Eq. (9) is also zero. Then, we solved the RPA equations,
which are equivalent to the summation of the corresponding
many-body diagrams to all orders for both d and HSD operators
in Eq. (8). Smaller contributions that include core-Brueckner,
structural radiation, and normalization corrections were also
taken into account. When the RPA corrections are included, the
intermediate nP o

3/2 states also contribute to the spin-dependent
PNC amplitude drastically increasing (in absolute value) the
second term in Eq. (9).

The initial and final states are the many-electron states.
Therefore, we need to account for the core excitations. This
contribution (labeled as “core” in Table IV) was calculated in
the DF and RPA approximations.

Table IV (see the column labeled “RPA + other”) illustrates
that the two terms in Eq. (9) are comparable in their magnitude,
but have the opposite sign for all Fi → Ff transitions.
Therefore, they partially cancel each other. Unfortunately, the

accuracy of the calculation of the second term is expected to
be rather poor since the intermediate 2P o

3/2 state contributes to
the second term at the level of 90%. The quality of the wave
function for this state near the nucleus is expected to be low be-
cause of the discrepancies of the theoretical and experimental
values for the magnetic dipole hfs constant A(2P o

3/2) discussed
above. Because of the significant cancellation between terms,
the final numbers in Table IV are expected to only give
an order-of-magnitude estimate of the spin-dependent PNC
amplitudes.

A similar single-electron approach was used by Dzuba and
Flambaum in [15] for calculating the PNC amplitude. They
have rescaled the ab initio value of the ME 〈n|HSD|m〉 as

〈n|HSD|m〉rescaled =
√

Aexp(n) Aexp(m)

Ath(n) Ath(m)
〈n|HSD|m〉, (10)

where Aexp(k) and Ath(k) are the experimental and theoretical
values of the magnetic dipole hfs constant of the state k. The
assumption that

〈2
D3/2|HSD|2P o

3/2

〉
rescaled ∼

√
Aexp(2D3/2) Aexp

(2
P o

3/2

)
(11)

may not hold for the Yb+ ions due to the mixing of the
4f 146p 2P o

3/2 and 4f 135d6s 3[3/2]o3/2 states. An admixture
of the configuration 4f 135d6s to the leading configuration
4f 146p of the 2P o

3/2 state leads to an additional contri-
bution to the hfs constant A(2P o

3/2) which is proportional
to 〈4f 135d6s|Hhfs|4f 135d6s〉. This is a large contribution.
However, the configuration 4f 135d6s does not contribute
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TABLE IV. The nuclear spin-dependent PNC amplitude (in units iκ · 10−12 |e|a0), where a0 is the Bohr radius. The values obtained in
the DF and DF + MBPT(HO) approximations are listed in the columns labeled “DF” and “MBPT(HO).” The RPA and other corrections are
included in the results listed in the column labeled “RPA + other.” The rows labeled “core” show contributions of the core excitations. The
final values (given in the rows labeled “Total”) are compared with the results obtained in Ref. [15].

Ff Fi DF MBPT(HO) RPA + other Ref. [15]

1 0 〈2D3/2,Ff ||d · R1 · HSD||2S1/2,Fi〉 6.2 6.6 6.9
〈2D3/2,Ff ||HSD · R2 · d||2S1/2,Fi〉 0 0 −5.1

core 0.7 0.7 0.8
Total: 〈2D3/2,Ff ||dSD||2S1/2,Fi〉 6.9 7.3 2.6 3.1(1.9)

1 1 〈2D3/2,Ff ||d · R1 · HSD||2S1/2,Fi〉 1.5 1.6 1.5
〈2D3/2,Ff ||HSD · R2 · d||2S1/2,Fi〉 0 0 −3.2

core 0.2 0.2 0.2
Total: 〈2D3/2,Ff ||dSD||2S1/2,Fi〉 1.7 1.8 −1.5 −1.3(4)

2 1 〈2D3/2,Ff ||d · R1 · HSD||2S1/2,Fi〉 −3.3 −3.5 −3.6
〈2D3/2,Ff ||HSD · R2 · d||2S1/2,Fi〉 0 0 1.8

core −0.4 −0.4 −0.4
Total: 〈2D3/2,Ff ||dSD||2S1/2,Fi〉 −3.7 −3.9 −2.2 −2.6(1.3)

2 1 〈2D5/2,Ff ||d · R1 · HSD||2S1/2,Fi〉 0.2
〈2D5/2,Ff ||HSD · R2 · d||2S1/2,Fi〉 −1.1

core −0.1
Total: 〈2D5/2,Ff ||dSD||2S1/2,Fi〉 −1.0

explicitly to 〈4f 145d|HSD|4f 135d6s〉 because the one-electron
ME 〈4f |HSD|6s〉 = 0. Our values are in agreement with the
results of Dzuba and Flambaum [15] within the estimated
uncertainties.

III. 15-ELECTRON CONFIGURATION INTERACTION

We demonstrated in the preceding sections that the single-
electron method sometimes fails to correctly predict certain
properties of the Yb+ ions due to mixing of configurations
outside of the monovalent states space. This mixing can be
taken into account within the framework of the 15-electron
CI. In this approach, the 4f electrons are also considered as
the valence electrons.

We again start from the solution of the Dirac-Fock
equations, but the construction of the DF orbitals is more
complicated than in the monovalent approximation described
in the preceding section. The odd-parity low-lying levels
belong to three different configurations: 4f 136s2, 4f 146p,
and 4f 135d6s. Therefore, if we construct the basis set
in a standard way, i.e., in the V N−1 approximation, the
4f 136s2 and 4f 135d6s states will have much higher energy
than the 4f 146p states and, respectively, there will be no
mixing interaction between these configurations. To avoid this
problem, we carry out the initial self-consistency procedure for
the [1s2, . . . ,4f 14, 6p] configuration. Then, all electrons were
frozen and two electrons (one from the 4f shell and another
one from the 6p shell) were moved to the 6s shell. Thus, the 6s

orbital was constructed for the 4f 136s2 configuration. Next,
all electrons were frozen again and one electron from the 6s

shell was moved to the 5d shell. The 5d3/2,5/2 orbitals were
constructed for the 4f 135d6s configuration.

The basis set used in the CI calculations included virtual
orbitals up to 8s, 8p, 7d, 7f , and 5g. The virtual orbitals
were constructed as described in [23,24]. As a result, the basis
set we used for these calculations is rather short since the

size of the configuration space grows very rapidly with the
increase of the basis set. The configuration space was formed
by allowing single and double excitations for the even-parity
states from the configurations 4f 146s and 4f 145d and for the
odd-parity states from the configurations 4f 146p, 4f 136s2,
and 4f 135d6s. To check convergence of the CI, we calculated
the low-lying energy levels for three cases: (1) including the
single and double excitations to the shells 6s, 6p, 5d, and
5f (we designate it [6sp5df ]), (2) including the single and
double excitations to [7sp6df 5g], and (3) including the single
and double excitations to [8sp7df 5g]. In the last case, the
configuration space consisted of ∼2 300 000 determinants and
calculation of the energy levels was rather lengthy.

A. Energy levels

The low-lying energy levels were calculated using the
three CI spaces described above. The results are presented
in Table V.

We were able to reproduce the low-lying even- and
odd-parity states belonging to five different configurations
4f 146s, 4f 145d, 4f 146p, 4f 136s2, and 4f 135d6s (the column
[8sp7df 5g] in Table V) reasonably well. The theoretical
energy levels for the 4f 146p 2P o

J states are located deeper than
the experimental levels. It is not surprising since the initial
self-consistency Dirac-Fock procedure was carried out for
this configuration. The levels of the 4f 135d6s configuration
are in reasonable agreement with the experimental data. The
4f 145d 2DJ states are lying 5%–7% higher than the experi-
mental levels. This is also expected because, as we mentioned
above, the 5d orbital was constructed not for the 4f 145d

configuration, but for the 4f 135d6s configuration. We observe
the worst agreement with the experiment for the 4f 136s2 2Fo

7/2
state. A reason is a particular sensitivity of this state to the
configuration interaction. It was confirmed by calculations
carried out with other (smaller) sets of configurations (not
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TABLE V. The energy levels of the low-lying excited states counted from the ground state (in cm−1). The columns [6sp5df ], [7sp6df 5g],
and [8sp7df 5g] give results obtained using different sets of the configurations described in the text. The results of the single-double all-order
calculations are presented in the column labeled “All-order” for comparison. The experimental energy levels [25] are presented in the column
labeled “Experiment.”

Configuration Term [6sp5df ] 7sp6df 5g] [8sp7df 5g] All-order Experiment

4f 146s 2S1/2 0 0 0 0 0

4f 145d 2D3/2 29978 24237 24615 22820 22961
2D5/2 30283 25068 25464 24261 24333

4f 136s2 2F o
7/2 24621 26735 26760 21419

4f 135d6s 3[3/2]o5/2 22977 25992 26201 26759

4f 146p 2P o
1/2 21266 24057 24289 27945 27062

4f 135d6s 3[3/2]o3/2 26232 28782 28973 28758
3[9/2]o9/2 27595 30169 30364 30224

4f 146p 2P o
3/2 24288 27093 27324 31481 30392

4f 135d6s 3[11/2]o11/2 27732 30412 30616 30563
3[11/2]o13/2 28297 31165 31407 31632

3[5/2]o7/2 29928 32329 32531 31979
3[5/2]o5/2 30323 32730 32939 32731

included in Table V). We assume that more configurations
have to be taken into account to reproduce this energy level
with good precision.

It is worth noting that it was essential to include the 5g

shell into consideration as illustrated by the comparison of the
columns [6sp5df ] and [7sp6df 5g] in Table V. Most of the
observed differences in the energy levels listed in these two
columns are due to including configurations involving the 5g

orbitals into the CI space. A number of levels are very sensitive
to these configurations. An addition of the 8s, 8p, 7d, and 7f

shells (compare the columns [7sp6df 5g] and [8sp7df 5g] in
the table) led to much smaller changes in the energy levels.
Comparison of these three sets appears to indicate that further
extension of the CI space (which will be extremely time
consuming) will not lead to any qualitative changes for a
majority of the states. The results obtained in the framework of
the single-double all-order approach are presented in Table V
for comparison.

In Sec. II, we discussed a poor agreement between the
experimental value of the magnetic dipole hfs constant
A(4f 146p 2P o

3/2) and the value obtained in the single-
electron approach. A strong interaction of this state with
the closely lying 4f 135d6s 3[3/2]o3/2 state was suggested
as a possible reason of this disagreement. Our calculation
with the [8sp7df 5g] CI space reproduced the difference
between the energies of the 2P o

3/2 and 3[3/2]o3/2 states almost
perfectly (1649 cm−1), although the order of the levels was
not correct. The experimental difference is 1634 cm−1. It
makes us confident that the configuration mixing of these two
states is taken into account sufficiently correctly. We would
like to stress that our calculations are purely ab initio. No
semiempirical parameters were used in the framework of this
approach.

In the next section, we present the values of the magnetic
dipole hfs constants and E1 transition amplitudes between
the low-lying states. We compare these results with those

obtained in the single-electron approximation and discuss the
role of the mixing of monovalent and one-hole–two-particle
configurations.

B. hfs constants, E1 transition amplitudes,
and other observables

The values of the magnetic dipole hfs constants obtained
using three sets of configurations are listed in Table VI. We
compare these results with the values listed in Table II obtained
using the single-electron method. We will discuss the results
obtained for the largest [8sp7df 5g] CI space.

For the even-parity states, the hfs constants found in the 15-
electron CI are close to the values obtained at the MBPT(HO)
stage (see Table II). Such an agreement looks reasonable. The
CI results include the correlation corrections between the 4f

and other valence electrons. In the single-electron approach,
these are core-valence correlations. At the same time, the core
excitations from all shells up to 4f are completely disregarded
in the 15-electron CI approach. The configuration mixing
does not play very significant role for the even-parity states
considered here because the even states with unfilled 4f shell
are located rather far from the ground and 2D3/2,5/2 states.

The value of A(2P o
1/2) is very close to the result obtained

in the single-electron approach in the DF approximation. Our
analysis shows that in the many-electron case the contributions
of all electrons (except the 6p1/2) nearly cancels with each
other and the final value is determined almost completely by
the contribution of the 6p1/2 electron.

The most significant disagreement between the experi-
mental and theoretical hfs constants in the single-electron
approach (by a factor of 2.7) was found for the 2P o

3/2 state.
This problem is resolved in the many-electron calculation.
The 15-electron CI gives the value 765 MHz, which differs
from the experiment by only 13% (see Table VI, column
[8sp7df 5g]). The admixture of the 4f 135d6s 3[3/2]o3/2 state
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TABLE VI. The magnetic dipole hfs constants A (in MHz). The columns [6sp5df ], [7sp6df 5g], and [8sp7df 5g] give results obtained
using different sets of the configurations described in the text. The MBPT(HO) results are presented in the column labeled “MBPT(HO)” for
comparison. The available experimental values are given in column labeled “Experiment.”

Configuration Term [6sp5df ] [7sp6df 5g] [8sp7df 5g] MBPT(HO) Experiment

4f 146s 2S1/2 18430 12916 12679 13091 12645(2)a

4f 145d 2D3/2 690 425 455 489 430(43)b

2D5/2 252 154 164 −96 −63.6(7)c

4f 136s2 2F o
7/2 946 973 977 905.0(5)d

4f 135d6s 3[3/2]o5/2 4520 3848 3841

4f 146p 2P o
1/2 1264 1437 1532 2371 2104.9(1.3)a

4f 135d6s 3[3/2]o3/2 −964 −742 −798
3[9/2]o9/2 −719 −436 −430

4f 146p 2P o
3/2 783 763 765 330 877(20)e

4f 135d6s 3[11/2]o11/2 1427 1347 1365
3[11/2]o13/2 2036 1782 1776

3[5/2]o7/2 3208 2776 2770
3[5/2]o5/2 1518 1246 1237

aReference [14].
bReference [31] and references therein.
cReference [32].
dReference [40].
eReference [33].

to the 4f 146p 2P o
3/2 state leads to an appearance of the

contribution from the one-electron ME 〈6s|Hhfs|6s〉, which
strongly affects the value of this constant. Based on the
results obtained in the single-electron approach (see Table II,
the row RPA), we estimate that the core-valence correlation
corrections will increase this number, making it even closer
to the experimental result. Thus, if the interaction between
the 2P o

3/2 and 3[3/2]o3/2 states is taken into account, the value
of A(2P o

3/2) turns out to be in a good agreement with the
experimental result.

We found only one experimental result for the states with
the unfilled 4f shell listed in Table VI (for the 4f 136s2 2Fo

7/2
state). Our value agrees with the experiment at the level
of 7%. An assignment of uncertainties to the hfs constants
of these states is not trivial. One source of errors is the
insufficiently large CI space. The corresponding uncertainties
may be estimated by a comparison of the results obtained
for the [7sp6df 5g] and [8sp7df 5g] CI spaces. We see that
the difference is not so large (at the level of a few percent).
Another source of uncertainties is the core-valence correlations
omitted in this approach. A magnitude of these corrections
can be estimated using the results obtained in DF + MBPT
method (see Table II). For the large hfs constants A(2S1/2)
and A(2P o

1/2), they contribute ∼30%–35%. In the 15-electron
approach, these corrections are expected to be smaller because
the CI core [1s2, . . . ,5p6] contains less electrons and is more
“hard” than the [1s2, . . . ,5p6, 4f 14] core. Thus, we estimate
accuracy of our results to be at the level of 25%–30%. For
comparison, we also present in Table VI the results obtained
in the framework of the single-electron MBPT(HO) approach.

We also calculated the E1 transition amplitudes for the low-
lying states. The reduced MEs of the electric dipole operator
d are given in Table VII. It is instructive to compare the results

obtained by the single-electron and 15-electron CI methods.
This comparison is carried out in Table VIII.

The results indicate the following trend. The values of the
MEs of the transitions between the ground and 2P o

J states
are closer to the experimental values in the 15-electron CI
approach, while DF + MBPT method gives better agreement
with the experiment for the 2P o

1/2-2D3/2 transition. As we
noted above, taking into account the configuration mixing is
important for the 2P o

3/2 state. This mixing also manifests itself
for the reduced ME |〈2S1/2||d||2P o

3/2〉| although its influence
is weaker than for the hfs constant A(2P o

3/2).
We conclude that all |〈2DJ ||d||2P o

J ′ 〉| matrix elements are
obtained to better accuracy in the single-electron method. In
the single-electron approach, the 5d orbital was constructed for
the f 145d configuration which is “native” for the 2DJ states.
In the 15-electron CI approach, it was constructed for the
f 135d6s configuration. Most likely, the set of configurations
used to form the wave function of the 2DJ states is not
sufficiently large (even for the biggest CI space that we have
considered) to correctly reproduce their properties.

TABLE VII. The absolute values of the reduced MEs |〈γ ′||d||γ 〉|
(in a.u.), where γ are the even-parity states and γ ′ are the odd-parity
states.

f 146s 2S1/2 f 145d 2D3/2 f 145d 2D5/2

f 146p 2P o
1/2 2.51 2.53

f 146p 2P o
3/2 3.32 1.05 3.27

f 136s2 2F o
7/2 0.063

f 135d6s 3[3/2]o5/2 0.00075 0.0037
f 135d6s 3[3/2]o3/2 1.10 0.27 0.86
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TABLE VIII. Comparison of the reduced MEs of the electric dipole moment found in the single-electron approach (the row DF + MBPT)
and in the 15-electron CI approach (the row 15-el. CI). The values in the row DF + MBPT include the MBPT(HO), RPA, and smaller corrections.
The experimental values are presented in the third row.

|〈2S1/2||d||2P o
1/2〉| |〈2S1/2||d||2P o

3/2〉| |〈2D3/2||d||2P o
1/2〉| |〈2D3/2||d||2P o

3/2〉| |〈2D5/2||d||2P o
3/2〉|

DF + MBPT 2.75 3.83 3.06 1.35 4.23
15-el. CI 2.51 3.32 2.53 1.05 3.27
Experiment 2.471(3)a 3.36(3)b 2.97(4)a

aReferences [1,34].
bReference [35], see also explanation in the text.

In the recent work of Huntemann et al. [7], the quadrupole
moment � of the 4f 136s2 2Fo

7/2 state was measured to be
� = −0.041(5) ea2

0 . The quadrupole moment � of a state
|γ J 〉 (where γ designates all quantum numbers except J )
is determined as

� = 2

√
J (2J − 1)

(2J + 3)(2J + 1)(J + 1)
〈γ J ||Q2||γ J 〉, (12)

where Q2 is the electric quadrupole operator.
We carried out the calculation of �(4f 136s2 2Fo

7/2) for three
increasing CI spaces [6sp5df ], [7sp6df 5g], and [8sp7df 5g].
The results are presented in Table IX. As illustrated by the
table, our result obtained for the largest CI space coincides
with the theoretical value of Ref. [41] and is five times greater
(in absolute value) than the experimental result. At the same
time, we see that � is very sensitive to the configuration
interaction. The quadrupole moment is rather small due to
large cancelations of one-electron contributions, which is
expected to make its accurate calculation more difficult. All
this makes the result obtained even for the biggest CI space
[8sp7df 5g] rather inconclusive. Based on our calculations, we
can only roughly estimate this quantity as �(4f 136s2 2Fo

7/2) ∼
−0.1 ea2

0 .
Finally, we note that an attempt to take into account core-

valence correlations by combining the 15-electron CI with
the MBPT was unsuccessful. The main problem, which was
repeatedly discussed earlier (see, e.g., [42]), is instability of the
MBPT for the mean-field potential V N , which includes a large
number of valence electrons. An accounting for the MBPT
corrections leads to an appearance of huge contribution from
the subtraction diagrams [43]. These diagrams are calculated

TABLE IX. The quadrupole moment � of the 4f 136s2 2F o
7/2 state

(in ea2
0 ). The results are presented for three CI spaces [6sp5df ],

[7sp6df 5g], and [8sp7df 5g] and compared with the experimental
and another theoretical value.

�

[6sp5df ] −0.40
[7sp6df 5g] −0.06
[8sp7df 5g] −0.20
Other theory [41] −0.22
Experiment [7] −0.041(5)

only in the second order of the MBPT. This is insufficient for
accurate treatment of the core-valence correlations.

This problem does not allow us to calculate the SD PNC
amplitude more accurately by the 15-electron CI method
than it was done in the single-electron approach because the
matrix element of the SD PNC Hamiltonian 〈2DJ ||HSD||2P o

3/2〉
is greatly increased when we include the RPA and other
corrections. To perform similar calculation in the framework of
the 15-electron CI, we need to include the subtraction diagrams
into consideration, which makes this approach very unstable.

Formulating CI + all-order approach that can treat two-
particle–one-hole states on the same footing as the monovalent
states appears to be a promising way for a development
of methodologies capable to further improve the calculation
accuracy of the Yb+ properties.

IV. CONCLUSION

To conclude, we calculated the energies, magnetic dipole
hfs constants, E1 transition amplitudes between the low-lying
states, and the nuclear spin-dependent parity-nonconserving
amplitudes for the 2S1/2-2D3/2,5/2 transitions. Our calculations
were carried out in the framework of the single-electron
DF + MBPT method and by the 15-electron CI method. All-
order calculations were also carried out for selected properties
using the linearized single-double coupled-cluster method.

The specific character of Yb+ ion manifests itself due
to the presence of the low-lying states with unfilled 4f

shell. A configuration interaction between them and the states
with filled 4f shell significantly affects the properties of
both types of states. We demonstrated this configuration
mixing by analyzing the properties of the 4f 146p 2P o

3/2 state.
In particular, we found that an admixture of the nearby
4f 135d6s 3[3/2]o3/2 state should be taken into account. Various
contributions to the spin-dependent parity-violating amplitude
are discussed and a method to improve accuracy further is
proposed.
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