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Lowest 1�g and 1�u states of the hydrogen molecule in strong magnetic fields: An application
of the configuration-interaction method with Hylleraas-Gaussian basis set
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With the Hylleraas-Gaussian basis set, in which the term of r1
12 is expanded approximately in Gaussian-type

geminals, a full configuration-interaction (CI) method is applied to calculate the lowest 1�g and 1�u states of
the hydrogen molecule in magnetic fields up to 2.35 × 107 T. In the absence of magnetic field, the total energies
of the lowest 1�g and 1�u states in our calculation are −1.174 447 7(4) at the equilibrium distance of R =
1.40 a.u and −0.756 613 4(6) at R = 2.43 a.u., respectively. Compared to the CI method with Gaussian basis set,
a significant improvement in the precision of the total energies and the dissociation energies at corresponding
equilibrium distances has been achieved. The z1-z2 probability density distributions in different field regions are
calculated and analyzed.
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I. INTRODUCTION

Since the discovery of huge magnetic fields of 102−105 T
in white dwarfs [1] and 107−109 T in neutron stars [2], the
electronic structure of atomic and molecular systems in strong
magnetic fields has become a very interesting subject for
several decades [3]. The strong magnetic effects also exist in
semiconductors with small effective electron mass and large
dielectric constants. For example, the unit of strong magnetic
field is H 0

eff = m2
effe

3c/ε2h̄3 for the hydrogenlike excitons in
direct-gap semiconductors, which is 6.57 T in CaAs [3] and
could be less than 1 T in Ge and InSb [4].

Most of the investigations are focused on simple atomic
systems in strong magnetic fields. Now we have abundant
knowledge concerning the behaviors of hydrogenlike and
heliumlike atoms in strong magnetic fields [5–10]. A full
configuration-interaction (CI) method with an anisotropic
Gaussian basis set was performed for the helium atom in the
field region of 0−100 a.u. (1 a.u. corresponds to 2.35 × 105 T)
[11,12]. Total energies for spin singlet and triplet states with
positive and negative z parity in the subspace of magnetic
quantum number M = 0 and M = −1 have been provided.
However, the calculations of triplet states were easier than that
of singlet states, because the cusp at the origin and the strong
electronic correlation between the two electrons for singlet
states is difficult to treat with the superposition of Gaussians.
To overcome the disadvantage of the Gaussian basis set, a
kind of Hylleraas-Gaussian basis set including r1

12 and r
1/2
12

was applied to calculate the ground and low-lying states of
the helium atom in strong magnetic fields [13]. The ground
state of the helium atom is improved to −2.903 715, which is
much better than −2.903 351 obtained by Becken et al. using
a Gaussian basis set [11], and the accuracy of the calculation
increases with increasing field strength.

Compared to many investigations about atoms in strong
magnetic fields, the studies of molecular systems are rarely
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reported. As the simplest molecular system, the hydrogen
molecular ion H2

+ was investigated in many references
[14–23]. Some valuable information on general magnetic-
field-induced properties of molecular systems can be extracted
from the study of the H2

+ ion. With the Born-Oppenheimer
approximation, the validity of which in the presence of strong
magnetic fields has been studied by Schmelcher et al. [20],
Guan et al. investigated the H2

+ ion in an aligned strong
magnetic field by a generalized pseudospectral method [21];
accurate data on equilibrium distances, binding energies, and
dissociation energies for the ground and low-lying states were
obtained. Highly precise results of the H2

+ ion in a strong
magnetic field were obtained by Vincke et al. and Baye
et al. using the Lagrange-mesh method for parallel to the
molecule axis [22] and arbitrary orientations [23]. In Ref. [24],
Turbiner and López-Vieyra presented a detailed review of
the qualitative and quantitative works about the one-electron
molecular systems H2

+, H3
2+, H4

3+, (HeH)2+, and He2
3+ in

a magnetic field ranging from 105 T to 4.414 × 109 T.
There would be more phenomena and behaviors for

multielectron molecular systems in strong magnetic fields
due to the correlation between electrons. However, even for
the simplest multielectron molecular system, there exist only
a few studies about the electron structure and properties of
the hydrogen molecule in strong magnetic fields [25–35].
With a basis set of nonorthogonal, nonspherical Gaussian
orbitals and the CI method, Detmer et al. performed a detailed
investigation on the total energies, dissociation energies, and
potential curves of the 1�g , 1�u, 3�g , 3�u, 1�g , 1�u, 3�g ,
and 3�u states of the hydrogen molecule in magnetic fields
[33,34]. It was found that, for the hydrogen molecule oriented
parallel to the magnetic field, the ground state is the 1�g

state for γ � 0.18 a.u., and it changes to the unbound 3�u

state for 0.18 � γ � 12.3 a.u. For strong magnetic fields of
γ � 12.3 a.u., the ground state is the strongly bound 3�u state.
More recently, the variations in electron density and bonding
for the lowest 1�g state of the hydrogen molecule under strong
magnetic fields have been investigated by a time-dependent
density functional theory [35]. However, the result of the
ground state 1�g in the field-free case is higher than that
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obtained by Detmer. In this work, we apply the CI method
based on the Hylleraas-Gaussian basis set, which has been
successfully applied to the two-electron atomic system [13],
to the calculation of the hydrogen molecule in magnetic fields.

II. THEORY AND METHOD

The hydrogen molecule is treated by the Born-
Oppenheimer approximation. The origin of coordinates co-
incides with the middle point of the internuclear axis of the
hydrogen molecule and the nuclei are located on the z axis.
Assuming that the direction of the magnetic field is parallel
to the molecule axis and a symmetric gauge for the vector
potential of the magnetic field is used, the nonrelativistic
Hamiltonian of the hydrogen molecule in a magnetic field
reads in atomic units

H =
2∑

i=1

{
1

2

(
P i + 1

2
B × r i

)2

− 1

|r i − R/2| − 1

|r i + R/2|
}

− 1

r12
+ 1

R
+ B · S, (1)

where R and R are the vector and magnitude of the internulcear
distance, r12 is the distance between the two electrons, and B
and S are the vectors of magnetic field and total electronic spin,
respectively. The field strength is measured by the parameter
γ = B/B0 with B0 = 2.35 × 105 T. The upper bounds to
the energies of the hydrogen molecule in magnetic fields
are obtained by solving the Schrödinger equation using the
Rayleigh-Ritz variational method.

The trial wave function of the Hamiltonian in Eq. (1) is writ-
ten as a product of the spatial and the spin part, i.e.,�tot = �χ .
Using the linear combination of atomic orbitals–molecular
orbitals (LCAO-MO) ansatz, � can be written as

� =
∑
ij

cij r
n
12

[
�P

i (r1) �P
j (r2) ± �P

i (r2) �P
j (r1)

]
,

(2)
n = 0, 1,

where �P
i and �P

j are one-electron molecular orbitals of
the H2

+ ion. The molecular orbitals are built from atomic
orbitals centered at each nucleus, which have been established
in Ref. [16]:

�P
i (r) = φi

(
r, +R

2

)
+ (−1)P+Pa φi

(
r, −R

2

)
, (3)

�P
j (r) = φj

(
r, +R

2

)
+ (−1)P+Pa+Pg φj

(
r, −R

2

)
. (4)

P and Pa are the parities of the H2
+ ion and corresponding

atomic orbitals while Pg is the parity of the hydrogen
molecule. The φi [r, ± (R/2)] and φj [r, ± (R/2)] are the
atomic orbitals centered at the nuclei, which have the forms

φi

(
r, +R

2

)
=ρ|mi |+2ki

(
z − R

2

)li

e−αiρ
2−βi [z−(R/2)]2

eimiϕ,

(5)

and

φi

(
r, −R

2

)
= ρ|mi |+2ki

(
z + R

2

)li

e−αiρ
2−βi [z+(R/2)]2

eimiϕ,

with mi = . . . −2, 0, 1, 2, . . . , Li = 0, 1, 2 . . . . (6)

Here αi and βi are positive nonlinear variational parameters.
To obtain these parameters, the standard simplex method [36]
has been applied in the one-particle optimization procedure
of the H2

+ ion and H atom. We also use a direct two-particle
optimization procedure of the hydrogen molecule.

The advantage of our basis set is the Hylleraas term r1
12,

which is used to describe the correlation between electrons.
The key step is that r1

12 is replaced by an approximate expansion
of Gaussian-type geminals:

r1
12 ≈

∑
ν

bν

(
1 − e−τνr

2
12
)
. (7)

The integrals of all the matrix elements can be evaluated
in Cartesian coordinates (see the Appendix for a detailed
example).

III. RESULTS AND DISCUSSIONS

Let us discuss the strategy for the selection of the basis
functions first. As the projection Lz of the electronic angular
momentum commutes with the Hamiltonian in Eq. (1), the
angular momentum numbers mi and mj of the two molecular
orbitals must satisfy the constraints mi + mj = M . Here we
take the selection of the basis functions of the lowest 1�g state
at field strength γ = 1.0 a.u. for an example. We select 32 H2

+
molecular orbitals �i optimized for mi = 0 (17 with gerade
parity P = 0 and 15 with ungerade parity P = 1), and we select
35 hydrogen atomic orbitals optimized for mj = 0 to constitute
the molecular orbitals �j (18 with P = 0 and 17 with P =
1). Then the molecular orbitals �i and �j , combined with
the Hylleraas term rn

12, compose 561 basis functions according
to Eq. (2). It is useful to choose the molecular orbitals with
opposite angular momentum numbers ±1, and ±2 or higher to
combine a total angular momentum M = 0, and the procedure
is similar to that of mi = 0 and mj = 0. In the final trial wave
function, we also include about 1200 H2 molecular orbitals
attained by direct two-particle optimization, combined with
the Hylleraas term as well. The combination strategy in this

work could be demonstrated as {αH+
2

i ,β
H+

2
i ,αH

j ,βH
j ,r0

12} and

{αH2
i ,β

H2
i ,α

H2
j ,β

H2
j ,r

0/1
12 }. Considering the size of the basis set

and the computational time, only the two-particle optimized
parameters {αH2

i ,β
H2
i ,α

H2
j ,β

H2
j } are combined with r1

12.
Table I presents the convergence of the total energy with

including more configurations, as well as the contributions to
the total energy from different configurations for the lowest
1�g state at the equilibrium distance R = 1.23 a.u. at the
field strength γ = 1.0 a.u. The quantity Rc in the last column
shows the ratio of successive difference defined in Ref. [37]
and Et (∞) is the extrapolated energy using the last Rc = 3.72.
The different sign of �E is due largely to the Hylleraas term
rn

12, which leads to a mixture of configurations. The absolute
value of contribution decreases with increasing mi . As the
contribution of (+4, −4) configuration is about 10−7 order
of magnitude, the configurations with mi greater than 3 are
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TABLE I. Total energies and the contributions (in atomic units) from different configurations for the hydrogen molecule of the lowest 1�g

state at the field strength γ = 1.0 a.u. Et stands for the total energy using the configuration and all configurations listed before it. Rc and Et

(∞) are the convergence ratio and the extrapolated energy, respectively.

(mi , mj ) Number of terms �E Et Rc

(0, 0) 1464 − 1.733 838 967 6 − 0.891 101 505
(+1, −1) 2347 0.029 413 416 4 −0.891 175 345
(+2, −2) 2775 0.000 228 775 4 −0.891 180 110 15.49
(+3, −3) 3175 0.000 005 444 3 −0.891 182 241 2.23
(+4, −4) 3575 0.000 000 387 6 −0.891 182 813 3.72
1/R 0.813 008 130 0
γ Sz 0.000 000 000 0
Total 3575 −0.891 182 813 9
Et (∞) −0.891 183 1(3)

excluded in our calculation, and we limit ki in Eqs. (5) and (6)
to 0 and li to 0 and 1 for the same reason. The final sizes of
our basis sets are about 2100–3200 for the lowest 1�g state
and about 1500–2500 for the lowest 1�u state, respectively.

Table II lists the equilibrium distances Req, the dissociation
energies Ed, and the total energies Et at the equilibrium
distances for the lowest 1�g state in magnetic fields. The
blanks in the equilibrium distances column mean that they are
equal to the equilibrium distance calculated by the Hylleraas-
Gaussian basis set. Most results of the equilibrium distance
for the lowest 1�g state are in good agreement with that
obtained by Detmer et al. [33] from the field-free case to γ =
100 a.u. Only for the case of γ = 0.1 a.u. and γ = 1.0 a.u.,
the equilibrium distances calculated with Hylleraas-Gaussian
basis set are 1.40 and 1.23 a.u., respectively, while they are 1.39
and 1.24 a.u. in Ref. [33]. The total energy at the equilibrium
distance R = 1.40 a.u. in the field-free case is −1.174 447 7(4)
in our calculation. Compared to −1.173 892 obtained by the
full CI method [33] with a large Gaussian basis set, our result
has an improvement of about 5 × 10−4 a.u. and is much closer
to −1.174 475 931 400 216 7(3) at the equilibrium R = 1.4011
a.u. obtained by Pachucki [38]. The Hylleraas-Gaussian basis

set provides a better description of the real wave function, so
that the results are improved about 5 × 10−4 a.u. on average
in the presence of magnetic fields. While increasing the
field strength, the equilibrium distance Req decreases and the
corresponding dissociation energy increases monotonously.

Figure 1 shows the energy curve of the lowest 1�g state
for specific field strengths, where the energy of the vertical
axis is shown with respect to the dissociation limit, i.e.,
E(R) = Et (R) − limR→∞ Et (R). It is shown clearly that the
equilibrium distance decreases, while the depth of the well
increases dramatically with increasing field strength. The
dissociation energy at the equilibrium distance increases with
increasing field strength (inset of Fig. 1).

For the lowest 1�u state in the field-free case, the
equilibrium distance and the total energy at the equilib-
rium distance, 2.43 and −0.756 690 483, respectively, were
obtained with high accuracy by Cencek et al. [39]. The
corresponding data amount to 2.42 a.u. and −0.756 111,
respectively, in Ref. [33] using a Gaussian basis set. Our results
obtained by the Hylleraas-Gaussian basis set are 2.43 a.u. and
−0.756 613 4(6), respectively, which are in good agreement
with Cencek’s accuracy results. In Table III, most equilibrium

TABLE II. Equilibrium distances Req, total energies Et, and dissociation energies Ed at equilibrium distances of hydrogen molecule for the
lowest 1�g state as a function of field strengths γ . All quantities are in atomic unit.

γ Req Req
a Ed Et Et

a limR→∞ Et

0.0 1.40 0.174 447 8(4) − 1.174 447 7(4) − 1.173 436b − 0.999 999 9
− 1.173 892c

0.01 1.40 0.174 459 7(4) − 1.174 409 6(4) − 1.173 396 − 0.999 949 9
0.05 1.40 0.174 743 7(4) − 1.173 497 0(4) − 1.172 407 − 0.998 753 3
0.1 1.40 1.39 0.175 608 8(4) − 1.170 661 7(4) − 1.169 652 − 0.995 052 9
0.2 1.39 0.178 816 0(4) − 1.159 579 0(4) − 1.158 766 − 0.980 763 0
0.5 1.33 0.195 329(2) − 1.089 750(2) − 1.089 082 − 0.894 421 0
1.0 1.23 1.24 0.228 846(2) − 0.891 184(2) − 0.890 336 − 0.662 337 7
2.0 1.09 0.291 808(2) − 0.336 236(2) − 0.335 574 − 0.044 427 7
5.0 0.86 0.438 714 0(5) 1.800 488 3(5) 1.801 212 2.239 202 3
10.0 0.70 0.616 163 8(1) 5.888 242 2(1) 5.889 023 6.504 406 0
50.0 0.417 1.372 545(2) 42.591 739(2) 42.592 815 43.964 284 0
100.0 0.334 1.914 328 8(3) 90.506 070 3(3) 90.506 974 92.420 399 1

aReference [33].
bLarger basis set.
cSmaller basis set.
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FIG. 1. Potential-energy curves (PECs) of the lowest 1�g state
for γ = 0.0, 1.0, 10.0, and 100.0 a.u. The quantity of the vertical
axis is taken as E(R) = Et (R) − limR→∞ Et (R). The inset shows
the evolution of the dissociation energies at the equilibrium distances
with increasing field strength.

distances are in good agreement with the results obtained by
Detmer except for γ � 0.1 a.u. For γ � 0.1 a.u. our equilibrium
distances are larger than that obtained through Gaussian basis
by 0.01 a.u. Compared with the energies calculated with the
Gaussian basis set, an improvement of about 5 × 10−4 a.u. is
obtained from γ = 0.01 to 50 a.u. With increasing magnetic
field strength the dissociation channel of the lowest 1�u state
changes from H(0+) + H(0−) to H2 → H−(0+

s ) + H+ (the
subscript s denotes that the H− state is a singlet state) at
about γ ∼ 20 a.u. So the calculated total energies of the H−
for corresponding states at the field strength of γ = 50 and
100 a.u. are provided in the last column in Table III, while they
are 46.359 385 and 95.436 219, respectively, in Ref. [40]. We
also plot the energy curve of the lowest 1�u state for specific
field strengths in Fig. 2. The quantity of the vertical axis in
Fig. 2 is the same as that of Fig. 1 and the inset shows the
evolution of the dissociation energy at the equilibrium distance
with increasing field strength. It shows that the equilibrium
distance decreases and the depth of the well increases with
increasing field strength.

Figure 3 shows the z1-z2 probability density distribution
of the hydrogen molecule for the lowest 1�g state at the

FIG. 2. PECs of the lowest 1�u state for γ = 0.0, 1.0, 10.0,
and 100.0 a.u. The quantity of the vertical axis is taken as
E(R) = Et (R) − limR→∞ Et (R). The inset shows the evolution of
the dissociation energies at the equilibrium distances with increasing
field strength.

corresponding equilibrium distance. It is mainly distributed
in the second and the fourth quadrants, which indicates
that the two electrons tend to reside in the vicinity of a
different nucleus. With increasing the field strength, the z1-z2

probability density distribution of the lowest 1�g state at
the equilibrium distance is compressed to the vicinity of the
origin, which leads to a higher probability of electrons locating
between the two nuclei so that the Coulomb repulsion between
two nuclei is reduced. As a direct consequence, the equilibrium
distance between the nuclei decreases and a larger binding
energy is induced.

Figure 4 shows a different distribution pattern of the
probability density for the 1�u state, where the probability
is large in the first and third quadrants. The coordinates of
the largest probability density shown by the white cross in
Fig. 4(a) are z1 = −1.2 a.u. and z2 = −1.2 a.u. (or z1 = 1.2
a.u, z2 = 1.2 a.u.) at γ = 0 a.u. and R = 2.42 a.u., which
means that the electrons tend to locate near the same nucleus
and in a plane vertical to the z axis. The point with the largest
probability density is also shown at γ = 100 a.u and R =
0.490 a.u. in Fig. 4(d) by the white cross with z1 = −0.2 a.u.
and z2 = −0.5 a.u. [or the other three points where (z1, z2)

TABLE III. Equilibrium distances Req, total energies Et, and dissociation energies Ed at equilibrium distances of hydrogen molecule for
the lowest 1�u state as a function of field strengths γ . All quantities are in atomic unit.

γ Req Req
a Ed Et Et

a limR→∞ Et

0.0 2.43 2.42 0.131 613 5(6) − 0.756 613 4(6) − 0.756 111 − 0.624 999 9
0.01 2.43 2.42 0.131 685 1(6) − 0.756 510 4(6) − 0.756 069 − 0.624 825 3
0.05 2.44 2.43 0.133 260 4(6) − 0.754 101 9(6) − 0.753 408 − 0.620 841 5
0.1 2.47 2.46 0.137 199 5(5) − 0.747 136 0(5) − 0.746 347 − 0.609 936 5
0.2 2.53 0.147 787 3(5) − 0.723 352 8(5) − 0.722 812 − 0.575 565 5
0.5 2.50 0.181 091 3(5) − 0.603 062 1(5) − 0.602 596 − 0.421 970 8
1.0 2.30 0.226 133 1(9) − 0.317 308 5(9) − 0.316 748 − 0.091 175 4
2.0 2.01 0.291 483 7(6) 0.388 591 4(6) 0.389 051 0.680 075 1
5.0 1.60 0.415 427 6(3) 2.856 555 8(3) 2.857 162 3.271 983 4
10.0 1.30 0.543 099 9(3) 7.326 453 3(3) 7.327 008 7.869 553 2
50.0 0.667 0.666 0.834 437 0(4) 45.524 424 2(2) 45.524 983 46.358 861 2(2)
100.0 0.490 1.044 165 5(2) 94.391 042 2(1) 94.391 271 95.435 207 7(1)

aReference [33].
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FIG. 3. The z1-z2 probability density distribution of the lowest
1�g state at equilibrium distance for specific field strength. (a) γ =
0.0 a.u., R = 1.4 a.u.; (b) γ = 1.0 a.u., R = 1.23 a.u.; (c) γ = 10.0 a.u.,
R = 0.70 a.u.; (d) γ = 100.0 a.u., R = 0.334 a.u. The length scale
for the axes is in Bohr radii (atomic units). The values on the dashed
line and the short dashed line show corresponding probability density
contours.

are (−0.5, −0.2), (0.2, 0.5), and (0.5, 0.2), respectively]. The
geometry of the probability density distribution, illustrated
by the contour of 0.020 (the short dashed lines in Fig. 4),
changes dramatically with increasing field strength. In the
strong magnetic-field case, the electrons also tend to locate
near the same nucleus, but one locates between the nuclei
(the Coulomb repulsion between two nuclei is reduced) and
the other locates outside. In Fig. 4(d), the tails along z1 and z2

axis imply that the electron which tends to locate outside the
nuclei could distribute in a relatively broad region along the z

axis in a strong magnetic field.

IV. CONCLUSION

In this work, we study the electronic structure and properties
of the hydrogen molecule for the lowest 1�g and 1�u state
in parallel magnetic fields. Compared to the results calculated
using the Gaussian basis set, the results we attained were closer
to the best available data in the literature. In the presence of
magnetic fields, the improvements in total energies are more
than 6 × 10−4 a.u. and average 5 × 10−4 a.u. for the lowest
1�g and 1�u state, respectively. The z1-z2 probability density
distributions of the two states at the corresponding equilibrium
distances were calculated and analyzed. It showed that the
probability of electrons locating between two nuclei increases
with increasing field strength. Therefore, the equilibrium
distances decrease and the dissociation energies at equilibrium
distances increase. All our calculations have been carried out
on a Dawning TC5000 cluster.

FIG. 4. The z1-z2 probability density distribution of the lowest
1�u state at equilibrium distance for specific field strength. (a) γ =
0.0 a.u., R = 2.43 a.u.; (b) γ = 1.0 a.u., R = 2.3 a.u.; (c) γ =
10.0 a.u., R = 1.30 a.u.; (d) γ = 100.0 a.u., R = 0.490 a.u. The
length scale for the axes is in Bohr radii (atomic units). The values
on the dashed line and the short dashed line show corresponding
probability density contours. The white cross denotes the coordinates
of the corresponding largest probability density.
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APPENDIX

All the integrations involving here are evaluated in Carte-
sian coordinates. First, we rewrite the atomic orbital in Eq. (5)
as

φi

(
r,+R

2

)
=

∑
σ

( |mi |
σ

) ∑
τ

(
ki

τ

)

× [isgn(mi)]
σ x|mi |−σ+2(ki−τ )yσ+2τ

×
(

z − R

2

)li

e−αix
2−αiy

2−βi [z−(R/2)]2
. (A1)

The overlap matrix elements can be obtained in an analytic
expression using the Gaussian-type basis. The matrix elements
for the kinetic, paramagnetic, and diamagnetic terms can be
reduced to simple overlap elements. In order to evaluate the
matrix elements of nucleus attraction and electron repulsion,
Singer transformation is used to regularize the singularities.

1

f (r)
= 2√

π

∫ ∞

0
e−f 2(r)u2

du. (A2)
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For the electron-nucleus and electron-electron integrals, f (r) is 1/(|r ± R/2|) and 1/(|r1 − r2|), respectively. For evaluating the
electron-nucleus integral, we defined an integral I :

I :=
∫ ∞

0
du

∫
dx1dx2x

nxik

1 x
nxjl

2 e−αikx
2
1 e−αikx

2
2 e−γ (x2−x1)2

e−u2x2
1

∫
dy1dy2y

nyik

1 y
nyjl

2 e−αiky
2
1 e−αiky

2
2 e−γ (y2−y1)2

e−u2y2
1

×
∫

dz1dz2 (z1 − D)nzi (z2 − D)nzj (z1 + D)nzk (z2 + D)nzl e−βi (z1−D)2
e−βk (z1+D)2

e−βj (z2−D)2
e−βl (z2+D)2

×e−γ (z2−z1)2
e−u2(z1−D)2

. (A3)

Integrating over coordinate space, we obtained

I =
∫ ∞

0
du

∑
Cxy(1 + auu

2)−Txy

∑
Cz(1 + buu

2)−Tz eCze[1/(1+buu
2)], (A4)

au = αjl + γ

αikαjl + αijklγ
, bu = βjl + γ

βikβjl + βijklγ
, (A5)

where Txy and Tz are positive integers or half-integers; Cxy , Cz, and Cze are some finite constants. As the function including u at
the exponent had the same form as the expression 1 + buu

2 in the formulas, Taylor expansion was considered.

I =
∫ ∞

0
du

∑
Cxy(1 + auu

2)−Txy

∑
Cz(1 + buu

2)−Tz

∑
k

1

k!
Ck

ze(1 + buu
2)−Tz−k. (A6)

Finally, the electron-nucleus integral is

I =
∑

CxyCz

∑
k

1

k!
Ck

ze2F1

(
Tz + k,

1

2
, Txy + Tz + k;

au − bu

au

)
. (A7)

Therefore, the electron-nucleus integral can be expressed in hypergeometric function and evaluated eventually under Taylor
expansion. The electron-electron integral can also be treated the same as the electron-nucleus integral although the electron-
electron integral is more complicated.
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