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Binding energies and structures of Ca-He, weakly bound triatomic complexes

David Lépez-Durdn, Rocio Rodriguez-Cantano, Tomds Gonzalez-Lezana, Gerardo Delgado-Barrio, and Pablo Villarreal”
Instituto de Fisica Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid, Spain

Franco A. Gianturco
Department of Chemistry and CNISM, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
(Received 27 June 2012; published 1 August 2012)

Bound states of **Ca-"He,, n = 3,4, triatomic complexes are investigated. The potential-energy surface,
represented as the addition of atomic-pair interactions, is that recently used to study these systems by Gou
and Li, Phys. Rev. A 85, 012510 (2012). The results obtained from three different methods, in fair agreement,
profoundly disagree with those reported in the reference above. In addition, we address the feasibility of two Ca-He
interactions existing in the literature by analyzing the characteristics of their ground and excited vibrorotational
states. To this end, simulated absorption spectra in the region of microwaves are also presented and discussed.
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I. INTRODUCTION

Helium droplets provide an ideal matrix for spectroscopic
studies due to their high cooling rate, low temperature, and
weak interactions [1-4], and are nowadays routinely used
for the spectroscopic characterization of molecules. Trimers
formed with an atomic impurity and He atoms are usually
interpreted as extreme limiting cases of larger droplets. The
shifts of the electronic transition lines with respect to the
isolated atom determine the location of the impurity attached
to a droplet. The issue of establishing solvation instead of
surface location for an impurity atom in a helium droplet
is therefore of great importance to further understand the
behavior of the spectroscopic observations as a function of the
droplet’s size. While most impurities (atomic and molecular)
are found to reside in the interior [5], it is also well established
that according to the model of Ref. [6], alkali-metal atoms
preferentially reside in a “dimple” at the surface of the drops for
both helium isotopes [3,7]. In turn, the borderline character for
the solvation properties of alkaline-earth atoms in He droplets
requires the use of high-quality impurity-He pair interaction
potentials. Excitation spectra of alkaline-earth atoms attached
to helium nanodroplets have been recorded using laser-induced
fluorescence spectroscopy [8—10], and more recently through
a variety of spectroscopic techniques applied to the analysis
of the excited state [11]. In particular, it has been established
that Ca atoms reside on the surface of superfluid boson helium
nanodroplets [9], in agreement with density functional theory
calculations [12].

In this sense, the study of the preferences shown by the
impurities regarding their precise location with respect to the
surrounding pair of He atoms in the trimer is expected to
provide some light into the intrinsic nature of its interaction
with the rare gas. As commonly accepted, the weakness of
these interactions allows one to represent the potential-energy
surface (PES) as a simple sum of two-body (2B) potentials.
While the potential describing the He-He forces within the
droplet is well established [13], there are several studies de-
scribing the Ca-He interaction. Besides some previous works
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on the subject, the potentials by Lovallo and Klobukowski [14]
and by Kleinekathofer [15] turn out to be the ones commonly
used. Whereas the former exhibits an equilibrium distance
of about 10 gy and a depth of almost 15 K, the potential
of Ref. [14] indicates that the Ca-He well has a minimum
shifted to a slightly larger equilibrium distance and has a much
shallower depth of about 5 K.

The interest in the existing potentials for describing the
interactions within the triatomics under study here has been
renewed by recent investigations performed by Gou and
Li [16], who employed the Ca-He potential of Ref. [15] to
calculate the bound states of the Ca-He, system. According
to their results, both the fermionic (formed with two 3He
atoms) and the bosonic (formed with “*He atoms) clusters
are capable of supporting several such states. However,
as indicated elsewhere [17], some of the reported binding
energies seem to be at odds with respect to the corresponding
dissociation limits and, for the case of Ca-*He,, with the global
minimum of the PES. A similar investigation [18] with the
weaker Ca-He potential by Lovallo and Klobukowski [14]
reveals the existence of a pair of bound states for both
isotopic variants, with noticeably smaller binding energies
than those observed for the potential of Ref. [15]. Here,
in an attempt to shed some light on the reliability of the
intriguing results reported by Gou and Li [16], we present
three different calculations on the bound levels, and on their
corresponding structures, for bosonic Ca-*He, and fermionic
Ca-3He, complexes. In addition, we try to clarify the situation
with respect to the differences in the Ca-He interaction as
described by the two above-mentioned potentials. We further
estimate the energy levels for rotationally excited trimers and
simulate their absorption spectra within the electric dipole
approximation, which is data that could serve as guidance for
possible experimental observations to be carried out on the
present system.

The paper is organized as follows: The next section briefly
describes the intermolecular forces employed in the present
study, while Sec. III provides details on our theoretical
methods. Section IV presents and discusses the results we have
obtained on Ca-*He, and Ca-*He, complexes, while Sec. V
summarizes our conclusions.

©2012 American Physical Society
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FIG. 1. (Color online) Interatomic-energy potentials for He-
He [19] and Ca-He systems. Ca-He(1): Ref. [15]; Ca-He(2): Ref. [14].

II. THE INTERACTION POTENTIALS

The PES is represented as a simple sum of two-body (2B)
potentials,

Vror(R1,R2,R3) = Vea_ne(R1) + Vea—ne(R2) + VHe—He(R3).
(1)

For the He-He interaction potential, we have selected the
analytical form suggested by Aziz and Slaman [19], which
takes advantage of several features of the experimental data and
which has been employed several times already in our previous
studies of similar clusters [20]. As mentioned in Sec. I, the
Ca-He interaction chosen here is that of Kleinekathofer [15],
which is also given in analytical form.

Figure 1 displays the He-He [19] and Ca-He [15] in-
teratomic potentials used in this work. For comparison, the
Ca-He potential [14] recently used by us [18] is also included
in this figure. As can be seen, the previously used Ca-He
interaction [14] presents its equilibrium distance at around 12
ap and a well depth near 5 K, while these quantities are ~5
ap and ~12 K, respectively, for the He-He interaction. Within
a classical picture, the situation suggested indicates a closer
packing of the two helium atoms that then push out the calcium
partner [18]. This is not so clear for the Ca-He interaction [15]
considered here, which shows an equilibrium distance around
10 ap and a well depth near 15 K. Nevertheless, the bottom
of the present PES should be ~—42 K, and no bound states
lower in energy than this magnitude should be found. Hence,
and even for a totally rigid Ca-He, complex, the energy value
reported for the ground level of the bosonic system in Ref. [16]
becomes unphysical.

III. THEORETICAL METHODS

A. Discrete variable representation in satellite coordinates

The Hamiltonian describing the Ca-He, triatomic system
can be written in satellite coordinates { Ry}, after separation

PHYSICAL REVIEW A 86, 022501 (2012)

of the center-of-mass motion, as [21]
2 2 92 2
he 0 I;
H = E |:——— + _2MR/% + VCa_He(Rk)i|
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+ VHefHe(Rl P RZ ,COS)/) -

Vg Vg, (2
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where R; are the vectors from the Ca atom to the different

He atoms, [, are the angular momenta associated with Ry,

w is the reduced mass of the Ca-He system, and cosy =

R, - R,/R|R;. In a space-fixed coordinate system, we con-

sider the following basis functions:

G (R1.R2) = fu,(RD) fu, ROV (RRy),  (3)

where the f;,, functions, associated with the Ca-He vibrations,
are the fixed-node functions of Muckerman [22] leading to
a discrete variable representation (DVR). They have been
recently detailed [18]. In Eq. (3), ),%}' are angular functions
in the coupled representation,

yzfg(kl’k2)=(—1)L¢2[‘—_HZ(£1 ly L>

-0 w—M M
X Yy, 001,00 Y 110 (62.62), )

where iik = Ri/Rx = (6k,¢x) are unit vectors, () are 3-j

symbols, and Y, , are spherical harmonics. L is the quantum
number associated with the total angular momentum L = I, +
I, with third component M, and ¢; and my; (k = 1,2) are
quantum numbers associated with the angular momenta I; and
the Ca-He vibrations, respectively, and are collected into a set
of quantum numbers {g;} = {m €}

Further, one builds up a symmetry-adapted basis set of
functions:

—1/2
YEM = (21 + SmmyBe,0)] T [dllh 4+ e (=1 gl

®)

which are eigenfunctions of £*, the inversion, and P, the
permutation of the He atoms, with eigenvalues & = (—1)“17%
and «, respectively [18]. Matrix elements of the Hamiltonian
of Eq. (2), as well as expressions for probability distributions
of the variables R (R = R; or R;), cosy, or R3, can be found
in Ref. [23]. The eigenstates of H are then of the form

LMex __ (v) LMek
\Ijv - Zaqlqz 1//(11(12 ’ (©)
9192

with associated energies EL¢*, which are degenerate in M.

The existence of absorption spectra, or their numerical
simulation, could shed some light on the comparative physical
feasibility of the two different Ca-He interactions [14,15]. Us-
ing first-order perturbation theory in the dipole approximation,
the simulated absorption spectrum would consist of lines of
intensity,

2

. (D

where p is the dipole moment, and e is the electric field, at an
energy of the incident photon iw=EL % — ELe<,
We have resorted to model the dipole moment as well

as to perform a simple estimate of the intensities of the

I L'M'e'c" < vLMek) o [(WEM | - e WEMe)
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possible transitions. As an essentially nonlinear molecule,
taking into account that calcium is more polarizable than
helium and fixing—in spite of its inherent floppiness—the
R and R, Ca-He distances at the position of the peaks of the
corresponding distributions (see below), the bending motion
(oscillations in y) should produce an effective dipole moment
along the bisectrix of the He- Ca-He y angle with separated
positive and negative charges, with the former being near the
Ca atom and the latter being near the middle of the He-He
distance, i.e., proportional to R; + R,

1 o cos(y/2) (Ry + Ry). (8)

We assume linear polarization of the electric field. Choosing
the space-fixed Z axis along the direction of polarization, the

relevant transition moment becomes
I-e =z xcos(y/2)(costy + coshy), 9

LM JK G—ji+L N RS il 4
(VY| Picosy)| Y/ E) = 8Ls8mr (=D A(Zl,ﬁz»ll,Jz){jz L 6[\o

and
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to be included in Eq. (7). According to the modeling of u, with
the Ca-He distances being kept fixed, the calculation of the
transition intensities therefore reduces to estimating integrals
of the form

(y€1e7 cos(y/2) (cost; + Cosgz)’ye{‘é{w'>
= Z y[f%‘COS(V/z)‘yhh )( i }cog@l +00592‘yz Ll )7

JKjij2

(10)

where the identity has been introduced to allow for the
separation into products of analytical integrals [23]. In-
deed, by expanding in Legendre polynomials cos(y/2) =
>, ¢ Pi(cosy), and noting that cos® = P;(cost), one arrives
at (see, e.g., Egs. (27) and (30) of Ref. [23])

AoJi\[
0 0 0

A2
. o) (11)
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and something similar for the integrals involving Pj(cosé,) by
exchanging j; by j, and £} by £,. In Eq. (12), the §;.; and
appearing in Eq. (11) have been already taken into account,
{:::yare6-j symbols, and, in both equations, the A coefficients

are Ak,l,m,n) = /Qk + 1[4+ 1)2m + 1)2n + 1). The
presence of the last 3-j symbol in Eq. (12) ensures that
only L' = L,L £ 1 <« L (0 # 0) transitions become allowed.
Also, by accounting for symmetry-adapted functions, and
after some algebra, the additional selection rules ¥’ = x and

&’ = —e are readily obtained.

B. Distributed Gaussian functions method

The distributed Gaussian functions (DGF) method [24-26]
has been employed before for different systems with two
identical rare-gas atoms and an impurity atom, as in the
Li-He, [20], He,-H™ [27] and Ne,-H™ [28] complexes.
The total Hamiltonian in this approach (for a zero to-
tal angular momentum) can be expressed via atom-atom
coordinates as

—h? —n?
T+
M Ca—He mMca

H(R,Ry,R3) = 5 P

2
+ ) Vieca(Ri) + Viiene(R3).  (13)
i=1

The corresponding expressions for the 77 and 7, kinetic
operators in terms of the interparticle coordinates, i.e., R; and
R, for the two Ca-He distances and R; for the He-He distance,
are given explicitly in Ref. [20].

Within the DGF framework, the total wave function is
expanded as follows:

O (R, Ry, R3) = Y a¢;(Ry. Ry R3), (14)
J
where
¢j(R1. Ry, R3) = Nl Y Ploi(R)@m(R)1gn(R3),  (15)
PeS;

and the basis is symmetrized by means of the proper P
permutation operator for the R; and R, coordinates. Here,
J denotes a collective index such as j = (I < m;n).

The corresponding normalization constants Ny, are

Nlmn = 2snn (Sllsmm + Slzm)a (16)

expressed in terms of the overlap integrals

Spqg = <¢p|§0q)' (17)

The ¢, functions are chosen to be DGFs centered at the R,
position [29], and the products ¢;¢,, ¢, are included in the basis
set if the corresponding centers verify the triangle requirement

|R1—Rm|< Rn<R1+Rm. (18)

One can calculate probability density functions by integrat-
ing in the corresponding coordinates the squared modulus of
the total wave function given Eq. (14), while it is also possible
to gain further information regarding the structure of the bound
states by means of evaluating the so-called pseudoweights P;k)

defined as
1 = (D | Dy) = Za()dbkmb => PP (19
J
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TABLE I. DMC and DVR calculated energies (cm™!) of the bound states for the two He-Ca
dimers indicated. These energies were obtained using the Ca-He interaction of Ref. [15] (in
parentheses, energies coming from the use of shallower Ca-He potential [14]).

DVR

DMC
Ca-*He —3.2950 £ 0.0007 (—0.362 £ 0.004)
Ca-*He —3.9104 £ 0.0006 (—0.5427 £ 0.0006)

—3.2945(-0.3575)
—3.9107(—0.5450)

These quantities, associated to each basis set function ¢;, can
be employed to estimate the total contribution of the different
kind of triangular structures in the average geometry of any
trimer bound state.

Following previous studies, we have used a DGF-based
approach to investigate the rotating system [25,30,31]. Within
this scheme, the total Hamiltonian is partitioned into a rotation-
less and purely vibrational part, Hyi,, givenin Eq. (13), and into
the rotational part, H;o, corresponding to an asymmetric rigid
rotor [32-34], as Hi,x = Hyip + H;or- Once the J = 0 problem
is solved, the corresponding eigenstates are employed, together
with standard rotational functions expressed in terms of €2 and
M, the projections of J on the body- and space-fixed z axis,
respectively, to build the basis sets which diagonalize the rota-
tional part [30,31]. The reference system to describe the rotat-
ing system including its vibration is chosen to verify the Eckart
conditions [35,36] in a similar way as the one followed in our
previous work on the Ne,-H™ system [28].

C. Quantum Monte Carlo methods

The quantum stochastic simulation employed here has been
used previously (see Refs. [37-39], for instance) and we
therefore present here only a brief outline of it. It is formed by
a pure variational Monte Carlo (VMC) calculation followed
by a diffusion Monte Carlo (DMC) approach. In the VMC
step, the energy is optimized with respect to the parameters of
the trial wave function W7 (R), which in the case of a system
formed by an impurity and N helium atoms can be expressed
as the product of purely nodeless exponential forms [38],

V7 (R) = Yeuge(R)Whe—pe(R). (20)

R = {R;} lNz | is the collective index that brings together the
coordinates R; of the rare-gas particles, while V¢, _y.(R) and
Wye_pe(R) are the Ca-He and the He-He parts of the wave
function, respectively:

N
Wea ne(R) = [ [ ocane(R:), @1)
i=1
j=N—-1k=N
Yhene®) =[] onene(Rj). (22)
j=lk=j+1

Ri = |R;|, Rjx = |R; — Ry| and ¢(-) = exp{—f()}, with
f as the Jastrow functions whose variable and parameters
depend on whether we are considering the Ca-He or the He-He
interactions, respectively:

5 3 2
F(R) = (%) 4 (%) n (%) + piR+ poln(R). (23)

The diffusion equation associated with the Hamiltonian (2),
expressed in Cartesian coordinates, is now solved by con-
sidering Eq. (20) as the trial wave function. The calculation
is performed N, times, and each of these simulations is
called a replica or a walker. The DMC stage relies on
the short-time approximation [40] and now the addition
of weights to the walkers corrects the variational estimate
towards a more realistic expectation value (with the wave
function fixed). The imaginary time evolves a quantity At
on each step. After a large enough number of M steps,
the distribution function stabilizes at its ground state VoW
(“mixed estimator”) [41-43].

IV. RESULTS

A. Numerical details

The employed masses were m(Ca) = 40.07878, m(*He) =
4.0026, and m(®He) = 3.01604 amu. For comparisons, the
conversion factors 1 K = 0.69503877 cm~! and lay =
0.52917726 A have been employed.

TABLE II. L = 0 bound energies (cm™!) obtained by means of DMC, DVR, and DGF calculations for the indicated trimers, using the
Ca-He interaction of Ref. [15]. In parentheses, the corresponding values produced by using the Ca-He potential form of Ref. [14]. The *

signifies § = 0 singlet states.

v DMC DVR DGF

0 —6.6566 = 0.0002 (0.778 & 0.002) —6.6531 (=0.7631) —6.6517 (—0.7633)
Ca-*He,* 1 —5.8313 (—0.3840) —5.8711 (—0.3835)

2 —4.0952 —4.1450

0 —7.9869 = 0.0019 (—1.2242 = 0.009) —7.9868 (—1.2174) —7.9699 (—1.2226)
Ca-*He, 1 —7.3210 (—0.8663) —7.3344 (—0.8916)

2 —5.8831 —5.8932

3 ~3.9920 —4.0140
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FIG. 2. (Color online) L = 0 radial distributions of the Ca-He
and He-He distances for the ground states of the two Ca-"He,
complexes obtained by the three different computational methods
of the present work and using the Ca-He interaction of Ref. [15].
Left panels: bosonic system; right panels: fermionic (singlet) system.
Red points in the He-He distance distributions correspond to DVR
estimations, assuming the independence of probability densities in
Ca-He distances and cosy [18].

In the variational DVR treatment using satellite coordinates,
we have considered 25 points of R in the interval [5,25]ag. For
total angular momenta L = 0 and 1, and for boson as well as
for singlet or triplet fermion systems, up to 31 values, from
0 to 30, of £, and ¢, were accounted for, while 101 points
of a Gauss-Legendre quadrature in the interval [—1,1] were
used to describe the He-He interaction in terms of R;, R,
and cosy = R, - R,. In this way, energy convergence up to
the second decimal figure (cm™') was achieved for ground
vibrational states, or up to the first one for excited states.

With respect to the VMC part, we have used the Powell
method [44] along a total of M =5 x 10° steps to find the
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FIG. 4. (Color online) L = 0 radial distributions of the Ca-He
and He-He distances for the excited states of the two Ca-"He,
complexes obtained through DGF (lines) and DVR (points) methods.
Left panels: bosonic system; right panels: singlet fermionic system.
Ca-He interaction [15] was used.

absolute minimum of the trial wave function W7 in the space
formed by a total of 10 parameters, i.e., five each of He-
impurity and He-He interactions. The number of walkers N,
ranged between 500 and 4000, sampled in their propagation
through a Langevin procedure, with the variance of E, as the
cost function to minimize [38,45]. In the DMC stage of the
calculations, a similar number of steps have been used; as 10 <
At < 300 hartree™!, a total of 5 x 10”7 — 3 x 10® hartree™!
has been considered, which is a time long enough for all of the
quantities to have reached convergence. The branching scheme
for the walkers was that proposed by Blume et al. [46]. For
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FIG. 3. (Color online) Angular distributions for L = 0 states of
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the Ca-*He, complex (left panels) and singlet fermionic Ca-*He,
system (right panels). The upper panels show DMC-DVR results for
the corresponding v = 0 ground levels, while the lower panels depict
DVR results for the excited states. The Ca-He interaction used was
that of Ref. [15].

FIG. 5. (Color online) DMC normalized distributions of different
magnitudes corresponding to the ground state of the Ca-*He, (left
panels) and Ca->He, (S = 0, right panels) species obtained using the
Ca-He interaction of Ref. [15] (solid lines) or that of Ref. [14] (dashed
lines).
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TABLE III. Geometrical quantities for the ground level of the indicated species estimated through the DMC distributions of Fig. 5; see text.
They depend on the Ca-He interaction used: first entry is that of Ref. [15]; second one is the interaction of Ref. [14]. d is the distance from Ca

to the center of mass of He,.

Ri=R () Rs (A) d (A) y (deg) weight (%)
57,72 10.0, 11.7 27,42 123, 109 57, 63
Ca-*He,* 57,72 46,49 52,6.8 48, 40 43, 37
5.6,7.0 42,42 52,57 44, 35 63,73
Ca-*He, 5.6,7.0 958,113 2.7,4.1 122, 108 37,27

a fixed N,, we have fitted the energy to a simple straight
line, E = m x At + n, which tends to n when At — 0. The
couples (N,,,n) have been extrapolated, in turn, to the function
y = a + b/N,,. The parameter we are interested in is @, which
is the value of the energy when the number of walkers tends
to infinity. The errors presented in Tables I and II correspond
to the error associated with the fitting of a. All of the shown
geometry distributions belong to the calculations with N,, =
4000 and At = 300 hartree .

For the DGF calculation, 32 Gaussian functions with
centers between 4 ag and 35 ag, with a distance of 1ay between
consecutive DGFs, were chosen for the He-He distances (R3),
whereas for the two He-Ca distances (R; and R;) and given
the difference between the position of the corresponding
interparticle potentials (see Fig. 1), the center of the first DGF
was taken at 8 ag. With this choice, a total number of 9181
¢; basis functions in the expansion of Eq. (14) was taken into
account. A numerical grid of 5000 points between 0.5 a¢ and
47 ay were considered for the numerical integrations.

B. Ca-He dimers

In Table I, we present energies of the bound levels found
through DMC and DVR calculations for the Ca-*He and
Ca-*He dimers. At each entry, the first row corresponds to
the results obtained using the Ca-He interaction of Ref. [15],
while the second row shows the values achieved [18] when
using the form of Ref. [14] for representing that dimer.
As can be seen, both methods lead to identical results for
each potential considered. The values produced by the Ca-He
interaction [15], —4.740 K and —5.626 K for the lighter and
heavier helium isotope, respectively, agree with those reported
in Ref. [16]. As expected, when considering the less deep
Ca-He potential of Ref. [14], the energies of the two isotopes
become almost one order of magnitude less bound.

C. L = S = 0 Ca-He, trimers

For nonrotating (L = 0) boson and singlet (total nuclear
spin S = 0) fermion Ca-He, systems, we list in Table II
the energies associated with bound levels when the Ca-He
interaction of Ref. [15], or in parentheses that of Ref. [13],
are used. No triplet fermionic bound states were found at
L = 0. Indeed, the three methodologies yield essentially the
same results, which thus provide a good level of reliability
for the present methods. They are measured with respect to
the total dissociation, i.e., the Ca+He+He asymptotic limit,
and are below the energy of the corresponding Ca-He dimer.
When using the Ca-He interaction of Kleinekathofer [15],

three bound-state levels are supported by the fermionic system,
while the bosonic one supports four bound levels, with the last
one being close to the dissociation limit. The energies of v = 0
ground levels are nearly two times those of the Ca-He species,
according to an independent particle (IP) model [18,47], in
such a way that the concerted He rotations around Ca roughly
compensate the He-He interaction. The next two bound levels,
v =1 and 2, correspond in the two systems to pure bending
excitations, as will be shown below, while the bosonic v = 3
level describes a mixed stretching-bending excitation. Apart
from the mass effect, bosonic and singlet fermionic nonrotating
species are very similar, as their spatial wave functions should
be totally symmetric, and the corresponding energies do not
differ too much. The present results are completely different
from those of Gou and Li [16] who report four bound levels
for the fermionic complex, although three of them were above
the Ca-*He+He dissociation limit, and 31 bound levels for the
bosonic complex (the first one was below the global minimum
of the PES, as already mentioned, and up to 27 levels above
the corresponding dissociation limit).

In Fig. 2, we depict distributions in the Ca-He and He-He
distances of the v = 0 ground states corresponding to the
nonrotating (L = 0) Ca-*He, and Ca-*He, (S = 0) complexes.
They were obtained using the Kleinekathofer Ca-He potential
form [15]. As it occurred for the calculated energies, all three
methods employed here yield almost identical results, which
again provides some proof of numerical reliability. For Ca-He
distances, bosonic and singlet fermionic distributions peak at
~6 A, although the latter slightly extends to longer distances.
The distributions of He-He distances are clearly broader, and
the bosonic one peaks at ~6 A, while the fermionic does at
~10 A, denoting an acute isosceles, almost equilateral,
equilibrium configuration for the former complex and an
obtuse isosceles arrangement for the latter.

TABLE 1V. Contribution of the different triangle geometries
included in the DGF basis set to the average structure of the ground
state for the Ca-*He, and Ca-*He, systems according to the DGF
calculation. Ca-He interaction is of Ref. [15].

Triangle Ca-*He, Ca-*He,
Equilateral 9% 6%
Isosceles A 33% 28%
Isosceles B 8% 8%
Quasilinear A 13% 22%
Quasilinear B 0% 0%
Scalene 37% 36%
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TABLE V. L = 1 DVR vibrational energies (cm™") for the different systems studied using the Ca-He potential of Ref. [15] (first entry)
or that of Ref. [14] (second entry). The symmetry quantum numbers ¢, k are included for each system. The * represents S = 0 singlet states;

the ** represents S = 1 triplet states.

Ca-*He, Ca-*He,* Ca-3He,**
v (e=—-1,k =+1) (e=—-1,k =+1) (e=—-1,k =-1)
0 —7.7344, — 1.042 —6.2781, — 0.5639 —6.3243, — 0.5517
1 —6.6287, - - - —4.9673, - - - —5.4143, - --
2 —4.8468, - - - —3.6508, - - -

Angular distributions in terms of cosy for the states reported
in Table II are shown in Fig. 3. They were obtained through
DMC (v = 0 states) and DVR (ground and excited vibrational
states) procedures using the Ca-He interaction of Ref. [15].
Again, both results, for v = 0 (upper panels), are in excellent
agreement, even better for fermions than for bosons. The latter
present a preference for small angles, while the former are
almost isotropic. As already mentioned, the DVR distributions
of excited states (lower panels) show clear nodal structures for
v = 1 and 2 in both species, and together with the correspond-
ing DGF-DVR distributions in the Ca-He distances shown in
the upper panels of Fig. 4, which are almost identical to those
of the ground states shown by Fig. 2, denote that these states
correspond to bending excitations. The bosonic v = 3 state, in
turn, results from a mixed bending-stretching excitation; see
left lower panel of Fig. 3 and left upper panel of Fig. 4.

The lower panels of Fig. 4 display DGF-DVR distributions
in the He-He distances for excited states of the bosonic
complex (left panel) and the singlet fermionic one (right
panel). We like to note that these DVR results are approximate
in that they were obtained in the frame of the IP model, i.e., by
assuming the independence of the (exact) DVR distributions
in Ca-He distances and in cosy. Hence, in spite of the fact
that the IP approach is able to best describe essentially the
maxima and minima of the exact DGF distributions, we
clearly see that it also behaves correctly for the ground and
first excited states of bosons and fermions, while worsening
as the excitation increases.

More indications regarding the overall geometry of the
bound states of the title system can be gleaned from
the probability densities shown in Fig. 5. In particular, we
have fitted the distributions of the He-He distance, R3, for
the ground states of both Ca-*He, and Ca-*He, complexes
(middle panels of Fig. 5) to two asymmetric Gaussian
functions. Values of the distance d between the Ca atom
and the center of mass of the cluster and of the average
value of the y angle have been calculated considering two
possibilities for R3: the location of the two Gaussian functions
employed in such fitting, whose contribution to the overall
probability density is shown in the last column of Table III.
Values obtained with the Ca-He potential of Refs. [15]
and [14], respectively, are shown separately in each entry of
the table. Taking Rj3 as the most probable value for the He-He
distance, the maximum with the largest weight, estimates of d
and the y angle in the case of Ca-3He, are ~3 A and ~120°,
respectively, for the He-Ca potential from Kleinekathofer [15].
For the potential from Lovallo et al. [14], these values become
~4 A and 110°, respectively. Results obtained in the case

of the Ca-*He, system are slightly different, however, with
the d distances increasing up to 5.2-5.7 A for potentials from
Refs. [15] and [14], respectively, and the y angle taking values
of 44° or 35° depending on the employed potential. These are
indications that for the bosonic cluster, the Ca atom stays
outside the helium atoms, which in turn tend to pack closer to
each other, whereas Ca gets closer to the half distance of the
helium atoms when these are 3He, a feature which constitutes
a signature of solvation. This scenario is common for both
Ca-He interactions, although more pronounced in the case of
the potential of Lovallo-Klobukowski [14] than for that of
Kleinekathofer [15].

These geometrical considerations can be further analyzed
by means of the pseudoweights defined in Eq. (19) within the
context of the DGF method. The analysis of the contribution of
the different triangular arrangements existing in the basis set
defined by the ¢; functions of the DGF calculation is shown
for the ground state of the Ca-*He, and Ca->He, systems in
Table IV. In the table, isosceles A corresponds to those
isosceles triangles in which both He-Ca distances are equal
(R1 = R, # R3), whereas isosceles B refers to those arrange-
ments in which the smallest He-Ca distance is equal to the
He-He distance (R; = R3 # R»). Analogously, quasilinear A
corresponds to those almost linear structures in which the Ca
atom is located in between the two He atoms (R; + R, ~ R3),
whereas by quasilinear B we refer to those arrangements in
which the Ca atom is at one of the extremes of the almost
linear structure formed by the three atoms (R + Rz ~ R).

Results from Table IV indicate that for both isotopic
variants, the most favorable structure of the system consists of
scalene triangles. However, the noticeable contribution from
the isosceles A and quasilinear A families should be interpreted
as due to the important role played by those configurations
with the Ca atom showing to locate itself in between both He
atoms, on and off the coordinate He-He. This result seems
to be consistent with the interpretation made above in terms
of the strict maximum peaks observed for the probability
densities of Fig. 2. In that figure, nevertheless, the broad
maximum for the He-He distance could be due to the apparent
elongation on the He-He distance with respect to the He-Ca
separation, which is found when the system evolves from the
isosceles A to the quasilinear A configuration. In this sense,
the larger contribution from the latter structures to the overall
geometry of the ground state of Ca-*He, than for the *He case
could be compatible with the shift of the maximum to larger
distances in the probability density function of the former
system (see left bottom panel of Fig. 2). These estimates are
nevertheless far from being definitive since the classification
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FIG. 6. (Color online) DVR radial Ca-He distributions (upper
panels) and angular distributions (lower panels) of the v = 0 ground
vibrational states for the indicated S, L combinations. B: bosonic
system; F: fermionic system. Left panels: Ca-He interaction from
Ref. [15]; right panels: that from Ref. [14].

of the basis functions of the DGF calculation into the different
geometrical families is subject to some arbitrariness in the
comparison of the different sizes of the triangle. In addition,
for the description of the overall structure, the quantitative
presence of each type of triangle in the basis set depends on a
ratio generated by the acceptance procedure to include or not
include the corresponding ¢; functions.

As already mentioned, besides the scalene type, which turns
out to be the most abundant geometry for both isotopic variants,
those isosceles triangles with the Ca atom in between the two
He atoms play a significant role in the overall structure of the
ground bound state. In particular, those isosceles in which the
cosy is negative, meaning that the calcium atom approaches
the He-He axis and which eventually may become quasilinear
A, imply a contribution of ~12% to the overall geometry in the
case of “He and ~13% for *He. If we add these values to the
contribution shown for the quasilinear A type in Table IV, we
can conclude that the transition between these kinds of linear
structures and the isosceles A type is playing a more important
role for the fermionic case than in the bosonic cluster.

D. L=1,8 =0,1 trimers

We have also investigated rotationally excited L = 1 states
through DVR calculations. Three bound states were obtained

I(V'L' <L) x }<va(cosy)Di/vz(cosy)lcos(y/Z)|pL/,,/(cosy)D£/,3,(cosy))|

where D are the corresponding angular distributions and
cosy-dependent phases p = £1 have been imposed taking
advantage of the clear nodal structure exhibited by the
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for bosons and triplet fermions, while the singlet fermionic
complex only supports two bound levels. The associated
energies are listed in Table V, where the corresponding ¢, k
symmetry quantum numbers for each system are also included.
Note that the L = 1 triplet fermionic ground state presents
a higher binding energy than the singlet when the Ca-He
potential of Ref. [15] is used, while for that of Ref. [14], the
situation is the reverse. For v = 0 ground vibrational states,
and for the combinations S = 0, 1 and L = 0, 1 of bosonic and
fermionic Ca-He, complexes, we display DVR radial Ca-He
distributions in the upper panels of Fig. 6. As can be seen, the
distributions for the bosonic system, and those of the fermionic
one, are independent of the rotational or of the spin state.
Additionally, the associated angular distributions are shown in
the lower panels of that figure: it is worth mentioning that for
the bosons, as well as for singlet fermions, the distributions
are more peaked near small angles for rotationally excited
states, L = 1, than those corresponding to L =0, i.e., the
rotational excitation enhances the tendency of He atoms to
pack themselves closer to each other, leaving outside the Ca
impurity. The scenario for the L = 1 triplet fermionic system
is just the reverse: the *He atoms tend to locate in a collinear
He-Ca-He arrangement, which is a signature of the onset of
solvation.

In addition, we have also investigated the case of the rotating
bosonic system by means of the DGF approach described
in Sec. III B. For the Kleinekathofer Ca-He potential, the
values of the rovibrational energies are —7.7320, —6.6077,
and —5.1124 cm™ !, respectively, and for the PES of Ref. [14],
only a bound state of energy —0.9940 cm~! is observed.
The states selected from the DGF calculation for such a
comparison are those corresponding to | 2 | = 1 with the
closest proximity in energy with respect to the DVR results.
No further consideration regarding the possible symmetry of
those states have been taken into account, given the different
description employed in the DVR and the DGF calculations.
The agreement between both sets of data is nevertheless quite
satisfactory.

Simulated absorption spectrum

A more precise evaluation of the difference between the
two Ca-He interactions [14,15] can be achieved through the
corresponding absorption spectra. For the bosonic complex,
taking into account ground (L = 0) and first excited (L = 1)
rotational states, instead of using Eq. (7) we have resorted to
simulating the spectra as the allowed lines of intensity,

2
’

(24)

cosy distributions for vibrationally excited states. These
distributions, for the main states involved, are shown in the
lower panels of Fig. 7, depending on the Ca-He interaction
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TABLE VI. Simulated absorption microwave spectrum of the
Ca-*He, system. Photon energies (cm~') and intensity of lines
(arbitrary units) depending on the Ca-He interaction used: columns
2-3, Ref. [15]; columns 4-5, Ref. [14].

hw 1 hw 1
Roo 0.26 0.6035 0.1754 0.688
Py 0.41 8.67(—2) 0.1757 5.01(—2)
R 0.69 0.2798
Py 0.75 0.1528
Pyt 0.85 0.2578
R» 1.04 0.2647
Ry 1.36 3.20(—3)
Py, 1.85 3.93(—4)
Ri» 2.48 9.90( —4)
Pi3? 2.64 291(—2)
Ry, 3.15 5.80(—4)
Py 3.74 2.65(—2)

2These lines are less reliable.

considered. In the lower right panel of that figure, the modeled
dipole moment p = cos(y/2) is also depicted. The upper
panels of Fig. 7 display the radial Ca-He distance distributions
and support the modeling of the dipole moment considered (see
above), leading to transitions between states of the bending
mode. The state (L = 0, v = 3), depicted in Figs. 3 and 4
but not here, constitutes an exception as it clearly shows
a mixed stretching-bending excitation. Hence, intensities of
lines corresponding to transitions involving this state become
less reliable. The results for the main L’ = L + 1 transitions
are listed in Table VI and are in part displayed in Fig 8.
The notation R,, corresponds to transitions (L = 1,v") <«
(L = 0,v), while P,,, denotes a transition (L = 0,v") < (L =
1,v). As can be seen, the resulting spectra belong to the
microwaves region. Owing to the different triatomic states
produced by the use of one or the other interaction, it is evident

0.6 : — : 0.6 — —
L=0,v=0
L=0,v=1
L L=1,v=0 ] N 1
0.4 L=0.v=2 04
L=1v=1 A
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02t | 1 o2} _
I
9 {
£ o L4 \ 0 \ .\,\,
g 3 15 18 3 6 9 12 15 18
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3 ' ' ' LL=COS(}/2)
8 21 . 2F _
o

cosy cosy

FIG. 7. (Color online) Radial (upper panels) and angular (lower
panels) distributions for the main bosonic states involved in dipole
transitions. Left panels: Ca-He interaction from Ref. [15]; right
panels: that of Ref. [14]. In the right lower panel, the dipole moment
has been also included.
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FIG. 8. (Color online) Simulated absorption microwave spectrum

of the Ca-*He, system. The black lines (green points) on the left

correspond to the only two transitions appearing when the Ca-He

interaction of Ref. [14] is used. The resting lines correspond to the
spectrum produced by using the Ca-He interaction of Ref. [15].

that the Kleinekathofer potential [15] gives rise to a richer
spectrum than that coming from the Lovallo-Klobukowski
one [14], with the latter presenting just a couple of lines
(Roo and Pp;) almost degenerate in energy. The interaction
of Ref. [15], in turn, separates these two lines by a measurable
amount of 0.15 cm™!, although the respective intensities
are very similar. Also, noticeable additional R and P lines
are provided by this potential, extending up to the Py; one
at3.74 cm~!.

V. CONCLUDING REMARKS

We have investigated the weakly bound states of bosonic
Ca-*He, and fermionic Ca-*He, triatomic complexes using
three different methods (DMC, DGF, and DVR) and the same
potential recently employed by Gou and Li [16] consisting
of the addition of He-He [19] and Ca-He [15] interactions.
Bound energies and corresponding spatial distributions were
presented and discussed. In the nonrotating L = 0 scenario,
the triplet fermionic system does not exist, and only four
(three) bosonic (singlet fermionic) vibrational bound states
were found. The present results, which are essentially the same
independent of the method we applied, substantially differ
from those reported in Ref. [16], a difference which we have
not been able to explain. We have further considered a different
Ca-He [14] interaction, maintaining the pairwise description
of the potential with the same He-He interaction [19], and
compared the results with those obtained by the use of that
of Ref. [15]. For both potentials, in the ground L = v =0
state, bosonic He atoms show a propensity to pack closer to
each other, leaving outside the Ca atom, whereas fermionic
He atoms explore near collinear He-Ca-He arrangements, a
feature which may constitute a signature of a solvation process.
This scenario is found to be more pronounced in the case
of the potential of Lovallo-Klobukowski [14] than that of
Kleinekathofer [15].

For L=1, the bosonic system, as well as the triplet fermionic
one, presents three bound levels, and the singlet fermionic
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complex supports two bound states when the Ca-He interaction
of Ref. [15] is used, while each of these species presents only
one bound level employing the Ca-He potential of Ref. [14].
The corresponding ground vibrational states show that inde-
pendent of the mass and the interaction used, the packing of
He atoms at S = 0 is favored by rotational excitation. On the
contrary, in the ground vibrational state of the triplet fermionic
complex, the He atoms tend to solvate the Ca impurity.

Although both potentials give rise to similar geometrical
considerations for ground rovibrational states, simulated
absorption spectra in the microwaves region clearly
discriminate between them, thereby being helpful to
determine their relative feasibility for realistically representing
the required interaction forces.
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