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Witnessing nonclassicality of a quantum oscillator state by coupling it to a qubit
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We propose a witness operation for the nonclassical character of a harmonic oscillator state. The method does
not require state reconstruction. For all harmonic oscillator states that are classical, a bound is established for the
evolution of a qubit which is coupled to the oscillator. Any violation of the bound can be rigorously attributed to
the nonclassical character of the initial oscillator state.

DOI: 10.1103/PhysRevA.86.022341 PACS number(s): 03.65.Wj, 42.50.Dv, 03.67.−a

I. INTRODUCTION

Quantum mechanics is fundamentally different from classi-
cal mechanics. Interference of probability amplitudes, super-
position of states, uncertainty relations between canonically
conjugate variables, etc., are essential quantum phenomena
that are not present within the classical theory. If a state of
a system exhibits any such intrinsically quantum feature, the
state is called nonclassical [1].

For a given physical system, quantitatively categorizing the
states into classical and nonclassical is usually challenging.
In this article, we are interested in categorizing the states of
a harmonic oscillator. Any harmonic oscillator state can be
written in the coherent state diagonal representation [2,3]:

ρ =
∫

d2α P (α)|α〉〈α|, (1)

where |α〉 is a coherent state. Within the fundamental limits
imposed by the uncertainty relation between the position and
the momentum, a coherent state corresponds as closely as
possible to a classical harmonic oscillator of a definite complex
amplitude. For this reason, a coherent state can be considered
to be classical. A natural definition of classicality based on
this observation was introduced by Glauber [3]. He proposed
that if P (α) is a valid probability measure, the state ρ can be
thought of as a statistical mixture of various classical states
and thus is classical itself. On the other hand, if P (α) is not a
valid probability measure, the state ρ is nonclassical. We will
adopt this definition of nonclassicality of a harmonic oscillator
state.

There are many ways of checking whether the P distri-
bution corresponding to a given oscillator state fails to be
a valid probability measure. For example, one can perform
a complete state tomography to find out what ρ is [4,5].
Knowing the state, one can then derive the P distribution.
Such an approach, although possible in principle, is difficult
to carry out in practice because the inverse relation connecting
the distribution to the state involves an integral with an
exponentially diverging factor [6]:

P (α) = e|α|2

π2

∫
d2γ e|γ |2〈−γ |ρ|γ 〉e−γα∗+γ ∗α. (2)

Because of the diverging term, any experimental error gets
exponentially enhanced [7]. For this reason, instead of
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performing a full state tomography, one generally looks
for nonclassicality witnesses that signify P as an invalid
probability measure. Some of these witnesses are antibunching
[8], sub-Poissonian statistics [9,10], quadrature squeezing
[11], slower decay of the characteristic function of the rotated
quadrature distribution than the characteristic function of the
ground state [12], negative Wigner distribution of the oscillator
state [5], violation of Bochner’s criterion for the existence of
a valid positive semidefinite characteristic function of the P

distribution [12,13], etc.

II. WITNESSING NONCLASSICALITY THROUGH
A QUBIT COUPLED TO THE OSCILLATOR

In this article, we propose another observable signature of
nonclassicality of an oscillator state. We longitudinally couple
the oscillator to a qubit with the joint Hamiltonian given by

H = h̄
ω0

2
σz + h̄ωa†a + h̄ωβ(a + a†)σz, (3)

where ω0 and ω are the qubit and oscillator frequencies and β

is a dimensionless, constant coupling parameter. The oscillator
operators, a and a†, are the annihilation and creation operators,
respectively, and the qubit operator, σz, is a Pauli matrix. This
Hamiltonian is different from the Rabi Hamiltonian where the
qubit-oscillator coupling is through σx .

Because of the qubit-oscillator interaction, it is possible
to learn about the initial state of the oscillator by following
the evolution of the qubit. The method of reconstructing an
arbitrary oscillator state by looking into the dynamics of an
interacting few level system was proposed in Ref. [14]. Later,
using an interacting qubit, the method of state reconstruction
was developed in areas of cavity QED [15–22], circuit QED
[23,24], trapped ions [25,26], and nanomechanical resonators
[27,28].

It was shown by Tufarelli et al. that, by using a Hamiltonian
that is similar to Eq. (3), one can reconstruct the entire state
of the oscillator [28]. This state reconstruction method is ex-
perimentally extremely challenging as it requires a predefined,
deterministic modulation of the coupling strength in time. Also
in the reconstruction procedure, it is necessary to be able to
change the amplitude of modulation in different experimental
runs. In the present article, we propose a different method of
witnessing the oscillator state nonclassicality through the qubit
dynamics that can be carried out using a constant coupling
parameter, β.
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We assume that the qubit and the oscillator states are
initially separable and their joint state is given by

ρqo = ρq ⊗ ρo,

=
(

z(0) w(0)
w∗(0) 1 − z(0)

)
⊗

∫
d2α P (α)|α〉〈α|. (4)

The oscillator state, ρo, is the state whose nonclassicality we
want to investigate. The rows and columns of the qubit state
are defined in the basis |+〉 and |−〉, where σz|±〉 = ±|±〉.
The parameters, z and w, defining the matrix elements of the
qubit are related to the expectation values of the Pauli matrices:
z = (〈σz〉 + 1)/2; w = (〈σx〉 − i〈σy〉)/2.

Using the Hamiltonian, Eq. (3), the time evolution of the
joint state, ρqo, can be found. The qubit state can be evaluated
by tracing over the oscillator degrees of freedom from the time
evolved joint qubit-oscillator state:

ρq(t) = Tro{e−iH t/h̄ρqoe
iHt/h̄}. (5)

The diagonal terms of the qubit density matrix, written in the
σz eigenbasis, do not change in time, i.e., z(t) = z(0). This
is because σz is a constant of motion: [σz,H ] = 0. For the
off-diagonal terms, we find

w(t) = e−iω0t g(t)w(0), (6)

where g(t) depends only on the oscillator degrees of freedom
and is defined as

g(t) = Tro{e−iH+t/h̄ρoe
iH−t/h̄},

=
∫

d2α P (α)Tro{e−iH+t/h̄|α〉〈α|eiH−t/h̄}, (7)

where

H± = h̄ω[a†a ± β(a + a†)]. (8)

The H± operators correspond to the Hamiltonians of displaced
harmonic oscillators. So, one can evaluate g(t) analytically to
get

g(t) = e−8β2 sin2( ωt
2 )

∫
d2α P (α)e−4iβ(αe−iωt/2+α∗eiωt/2) sin ωt

2 ,

= e−8β2 sin2( ωt
2 )

∫
d2α P (α) f (α,t), (9)

= e−8β2 sin2( ωt
2 )

W (t), (10)

where we have defined

f (α,t) = e−4iβ(αe−iωt/2+α∗eiωt/2) sin ωt
2 , (11)

and

W (t) =
∫

d2α P (α) f (α,t). (12)

If we look at the absolute value of the function g(t), we get
from Eq. (9)

|g(t)| = e−8β
2 sin2( ωt

2 )
∣∣∣∣
∫

d2α P (α) f (α,t)

∣∣∣∣ ,
� e−8β

2 sin2( ωt
2 )

∫
d2α |P (α) f (α,t)|. (13)

If P (α) is a valid probability measure, we can write

|P (α) f (α,t)| = P (α)|f (α,t)|. (14)

Putting Eq. (14) in Eq. (13) and using the fact that |f (α,t)| = 1
and

∫
d2α P (α) = 1, we get

|g(t)| � e−8β2 sin2( ωt
2 )

∫
d2α P (α),

= e−8β2 sin2( ωt
2 )

. (15)

Using this upper bound for g(t) in the expression for the off
diagonal element of the qubit density matrix, Eq. (6), we get

|W (t)| ≡ e8β2 sin2( ωt
2 )

∣∣∣∣ w(t)

w(0)

∣∣∣∣ � 1. (16)

Note that w(t) and thus |W (t)| can be experimentally measured
by measuring the expectation value of the qubit observables,
σx and σy , as a function of time.

Inequality (16) is the main result of the paper and we call it
the nonclassicality witness inequality (NCWI). The inequality
states that if the oscillator state is such that the associated P

distribution is a proper probability measure implying Eq. (14)
to be correct, |W (t)| is always bounded from above by unity.
Thus, if |W (t)| > 1, we know for sure that the initial oscillator
state, ρ0, is nonclassical.

Two remarks are in order at this point. First, it can be
shown that W (t) is related to the characteristic function of the
P distribution [29]. This suggests that Eq. (16) is related to
the criterion for observing nonclassicality through measuring
the probability distribution of rotated quadratures [12]. The
second remark is just that a violation of the NCWI is only
a sufficient but not a necessary condition for determining
whether a state is nonclassical, i.e., a state can be nonclassical
and still not violate the witness inequality (see the examples
of Fock states, vacuum subtracted thermal states, and
Schrödinger cat states in the next section).

III. EXAMPLES

To illustrate the above statements, we calculate |W (t)| for
various initial oscillator states.

Coherent state. The P distribution for a coherent state,
say |α0〉, is Pcoh(α) = δ2(α − α0). Corresponding to Pcoh(α),
we have |Wcoh(t)| = 1. Thus no coherent state ever violates
the NCWI. This is required for consistency because by our
definition a coherent state is considered to be a classical state.

Thermal state. For a thermal state with mean excitation
number n̄, the P distribution is given by

Pth(α) = 1

πn̄
exp (−|α|2/n̄). (17)

We see that Pth(α) is a Gaussian probability distribution and
thus a thermal state with arbitrary n̄ can be considered classical.
Using Pth(α), we get

|Wth(t)| = e−16n̄β2 sin2( ωt
2 )

. (18)

In agreement with our intuition that a thermal state is a classical
state, we see that |Wth(t)| is always less than one and thus never
violates the NCWI.

Fock state. The P distribution for a Fock state, |N〉, is

PN (α) = exp (αα∗)

N !

(
∂2N

∂αN∂α∗N
δ2(α)

)
. (19)
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FIG. 1. (Color online) Function |WN (t)| for β = 0.5 and various
values of N . We clearly see that |WN (t)| violates the NCWI indicating
that Fock states are nonclassical states.

Because PN (α) for N > 0 involves derivatives of the delta
function and is more singular than the delta function itself, each
Fock state, except the ground state, is nonclassical. Calculating
WN (t) using PN (α), we get

|WN (t)| =
∣∣∣∣LN

(
16β2 sin2 ωt

2

)∣∣∣∣, (20)

where LN (x) is a Laguerre polynomial.
In Fig. 1, we plot |WN (t)| for various values of N and for a

given constant coupling strength, β = 0.5. Noting that |WN (t)|
is a periodic function, we plot |WN (t)| only for a single period.
We see from the figure that for some Fock states, e.g., for
N = 1 and 10, the NCWI is violated. This agrees with the
nonclassical nature of these Fock states. On the other hand,
it is important to note that, for any given coupling strength,
not all Fock states will violate the NCWI. For example, in
Fig. 1, no violation is shown by |W0(t)| and |W15(t)|. However,
this result does not suggest that some Fock states are classical.
This point is further examined in the following examples of
vacuum subtracted thermal state and superposition of classical
states. By looking at the asymptotic expression of a Laguerre
polynomial for large N [30], it can be shown that for a given
coupling strength, β, the NCWI will not be violated for highly
excited Fock states.

Vacuum subtracted thermal state. We now consider the state

ρ ′
th =

∞∑
N=1

2−N |N〉〈N |. (21)

The above state corresponds to a thermal state with unit mean
excitation number and from which the vacuum state has been
discarded. The P distribution for this state is

P ′
th(α) = 2

π
exp (−|α|2) − δ2(α). (22)

We see that P
′
th(α) has a negative measure at α = 0 [3]. This

implies that ρ ′
th is a nonclassical state. Corresponding to P

′
th(α),

we have

|W ′
th(t)| = ∣∣2e−16β2 sin2( ωt

2 ) − 1
∣∣. (23)

Although P
′
th(α) corresponds to a nonclassical state, we see

that |W ′
th(t)| is always less than one and never violates the

witness inequality. This illustrates the fact that violation of the
NCWI is not a necessary but only a sufficient condition for
determining nonclassicality [31].
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FIG. 2. (Color online) Function |Wsc(t)| for β = 0.5 and various
values of α0. For some values of α0, |Wsc(t)| violates the NCWI. This
indicates the nonclassical nature of these Schrödinger cat states.

Superposition of classical states. Even though a coherent
state is considered to be classical, a state consisting of a
superposition of coherent states might exhibit nonclassicality.
To understand this, let us examine the Schrödinger cat state
which consists of an equal superposition of two coherent states,
one being the negative of the other:

|�sc(α0)〉 = |α0〉 + |−α0〉√
2
(
1 + e−2α2

0
) . (24)

For simplicity, we have taken α0 to be real. The P distribution
corresponding to |�sc(α0)〉 is [1]

Psc(α) = N 2
[
δ2(α − α0) + δ2(α + α0) + e(|α|2−α2

0)

× (eα0∂α∗ e−α0∂α + e−α0∂α∗ eα0∂α )δ2(α)
]
, (25)

where 1/N 2 = 2(1 + e−2α2
0 ). We see that for α0 	= 0, Psc(α)

contains infinitely high order derivatives of the delta function.
This clearly suggests that a Schrödinger cat state is a
nonclassical state if α0 	= 0.

For the Schrödinger cat state, Wsc(t) can be calculated
analytically to get

|Wsc(t)| = N 2

∣∣∣∣ cos (4βα0 sin ωt)

+ e−2α2
0 cosh

(
8βα0 sin2 ωt

2

)∣∣∣∣. (26)

In Fig. 2, we plot Wsc(t) for β = 0.5 and for various values
of α0. It is clear that the NCWI is violated for α0 = 1 and 2.
This confirms the nonclassical nature of these states. On the
other hand, for any given value of β, we notice that not all
Schrödinger cat states violate the NCWI. This is evident from
the plots corresponding to α0 = 0 and 5.

IV. CONCLUDING REMARKS

In this article, we use Glauber’s criterion for nonclassicality,
which is the failure of an oscillator’s coherent state P distri-
bution to behave as a valid classical probability distribution.
We demonstrate a witness operation for nonclassicality of
this type. We show that one can imprint a signature of
nonclassicality onto the dynamics of an interacting qubit. The
result is that all classical initial states of the oscillator lead
to a fixed qubit bound, given in Eq. (16). In other words,
the qubit operator’s time evolution, expressed via |W (t)|,
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must remain bounded from above if the oscillator’s initial
state was classical. A violation of the bound is a direct
indication of the nonclassical nature of the initial oscillator
state. The method does not require state reconstruction, and
monitoring of the qubit can be confined to a single period of
the oscillator. A number of examples are presented to illustrate
the behavior of the bound, and confirm intuitive expectation
in special cases. This strategy for witnessing nonclassicality
is well suited for physical systems where strong longitudinal
coupling can be achieved between a qubit and a single mode of
an oscillator [32,33]. Because of the unavoidable interaction
of the qubit-oscillator system with its environment in any

experiment, it is important to take into account the effect
of noises on the evolution of |W (t)|. Under the Markovian
approximation of system-environment interaction, one expects
|W (t)| to decrease exponentially in time and this decay can be
compensated for if it is experimentally possible to obtain the
exponential decay constants [28].
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