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We analyze the Uhlmann fidelity of a pair of n-mode Gaussian states of the quantum radiation field. This
quantity is shown to be the product of an exponential function depending on the relative average displacement
and a factor fully determined by the symplectic spectrum of the covariance matrix of a specific Gaussian state.
However, it is difficult to handle our general formula unless the Gaussian states commute or at least one of them
is pure. On the contrary, in the simplest cases n = 1 and n = 2, it leads to explicit analytic formulas. Our main
result is a calculable expression of the fidelity of two arbitrary two-mode Gaussian states. This can be applied to
build reliable measures of quantum correlations between modes in various branches of quantum physics.
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I. INTRODUCTION

One of the most important issues in quantum information
is the closeness between input and output states of various
quantum protocols [1]. When the input state is pure, a
natural figure of merit of any protocol is the input-output
quantum-mechanical transition probability. The situation is
more complicated in the mixed-state case. Fortunately, an
appropriate description in such a case could be connected
with a concept introduced long ago by Uhlmann [2]. Let us
consider two arbitrary states, ρ̂ ′ and ρ̂ ′′, of a given quantum
system. When both states are mixed, Uhlmann asserted that a
suitable measure of the likeness between their properties is the
maximal quantum-mechanical transition probability between
their purifications in an enlarged Hilbert space [2,3]. This is
an extended notion of transition probability between quantum
states which is now called fidelity [3] and has the intrinsic
expression [2]

F(ρ̂ ′,ρ̂ ′′) =
[

Tr

(√√
ρ̂ ′′ρ̂ ′√ρ̂ ′′

)]2

. (1.1)

Indeed, when at least one of the quantum states is pure,
the fidelity (1.1) reduces to the familiar overlap between the
states: F(ρ̂ ′,ρ̂ ′′) = Tr(ρ̂ ′ρ̂ ′′). Important properties listed and
discussed in Refs. [2–8] highly recommended fidelity as a
measure of distinguishability of quantum states. Especially
useful is the property put forward in Ref. [4] that fidelity equals
the minimal squared overlap of the probability distributions
for the outcomes of any general measurement. Fidelity-based
metrics such as the Bures metric [2,9] and related ones [5–7]
have proven to be fruitful in quantum optics and quantum
information. For instance, the Bures metric provides insightful
distance-type degrees of entanglement [10,11], nonclassicality
[12], and polarization [13–16]. Moreover, in the framework of
the theory of parameter estimation, Braunstein and Caves [17]
established a distinguishability metric which is proportional
to the Bures distance between neighboring quantum states.
Their findings in Ref. [17] successfully apply in recent
developments of quantum estimation theory, as shown in
the review [18]. Besides being an unavoidable ingredient in
quantum information, fidelity is exploited in various areas of
physics where the concept of quantum transition probability is
essential. For instance, in condensed matter physics, fidelity is

frequently employed as an indicator of criticality in quantum
phase transitions [19,20].

In spite of playing a key role in quantum mechanics due
to its operational meaning, fidelity between mixed states
has a rather limited use so far. This happens because, in
general, Uhlmann’s expression (1.1) is not easy to calcu-
late even on finite-dimensional Hilbert spaces [6,7]. Within
continuous-variable settings, explicit calculations of fidelity
were performed for one-mode Gaussian states (GS’s) in Refs.
[21,22], for some special two-mode GS’s in Refs. [11], or for
commuting two-mode states in Refs. [15,16].

In what follows, we concentrate on the GS’s of continuous-
variable systems, which are important for both quantum optics
and quantum information processing [23]. From the exper-
imental side, they are quite accessible and were effectively
obtained with light, Bose-Einstein condensates, trapped ions,
and Josephson junctions. On the other hand, the GS’s of the
quantum radiation field are important resources in several
quantum information protocols [24,25]. In particular, from the
theoretical point of view, the two-mode GS’s are a perfect
test bed for studying entanglement [11] or other kinds of
correlations between the two modes [26,27]. Therefore, an
exact analytic formula for the fidelity of an arbitrary pair
of two-mode GS’s is highly desirable, and its derivation
constitutes a main goal of the present paper. Let us mention
that we have previously derived the fidelity between two-
mode symmetric and squeezed thermal states and used it in
evaluating a Gaussian degree of entanglement defined with
the Bures metric [11]. Nevertheless, an explicit formula of the
fidelity between arbitrary two-mode GS’s was not yet found.
We acknowledge, however, Ref. [28] as a useful prospect for
the multimode Gaussian case.

In order to study the fidelity of two GS’s, we find it
convenient to introduce the operators:

Â := ρ̂ ′ρ̂ ′′, B̂ :=
√

ρ̂ ′′ρ̂ ′√ρ̂ ′′, Ĉ :=
√

ρ̂ ′√ρ̂ ′′, (1.2)

with the properties B̂ = Ĉ†Ĉ and Tr(Â) = Tr(B̂) � 0. When
this trace is strictly positive, Tr(Â) > 0, then a state

ρ̂B := [Tr(B̂)]−1B̂ (1.3)
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exists, so that the fidelity (1.1) reads

F(ρ̂ ′,ρ̂ ′′) = Tr(Â)[Tr(
√

ρ̂B)]2. (1.4)

Equation (1.4) is the starting point of our explicit evaluation
of the fidelity between two-mode GS’s.

From now on, we assume that ρ̂ ′ and ρ̂ ′′ are multimode
GS’s. The plan of the paper is as follows. In Sec. II we recall the
phase-space description of the GS’s and mention Williamson’s
theorem, which is at the heart of our method. Some useful
properties of the product of two Hilbert-Schmidt Gaussian
operators are collected in Sec. III. Based on the composition
rules of such a product, we then proceed in Sec. IV to derive
the fidelity (1.4) of a pair of multimode GS’s. We express the
second factor in the formula (1.4) in terms of the symplectic
eigenvalues of the covariance matrix (CM) of the GS ρ̂B .
We develop our treatment in the multimode framework as far
as possible. Then we restrict ourselves to the workable case
of two commuting multimode GS’s. In Sec. V, the general
expression of the fidelity of two GS’s enables us to retrieve a
previous explicit formula for one-mode states, in agreement
with Refs. [21,22]. Then we reach the main goal of this work:
We provide a versatile and workable formula for the fidelity
between two-mode GS’s. An interesting application of the
two-mode formula concludes Sec. V. The final section deals
with a discussion of our analytic results and their potential use
in studying quantum correlations between modes.

II. PHASE-SPACE DESCRIPTION OF
THE GAUSSIAN STATES

An n-mode Hilbert-Schmidt operator F̂ is defined by its
Weyl expansion:

F̂ = 1

(2π )n

∫
d2nu f (u) D̂(−u), (2.1)

where u is a vector in the Euclidian space R2n, the weight
function f (u) is square-integrable over R2n, and D̂(u) is an
n-mode Weyl displacement operator:

D̂(u) :=
n⊗

j=1

D̂j ((u)j ). (2.2)

Let q̂j and p̂j be the canonical quadrature operators of the j th
field mode, and qj and pj their eigenvalues. In Eq. (2.2), (u)j
denotes a vector in R2 whose components are precisely qj

and pj :

(u)j :=
(

u2j−1

u2j

)
=

(
qj

pj

)
(j = 1,2, . . . ,n). (2.3)

Further, D̂j ((u)j ) is the corresponding single-mode Weyl
displacement operator:

D̂j ((u)j ) := exp[−i(qj p̂j − pj q̂j )]. (2.4)

Recall the standard matrix J of the symplectic form onR2n,
which is block-diagonal and skew-symmetric:

J :=
n⊕

k=1

Jk, Jk :=
(

0 1
−1 0

)
(k = 1,2, . . . ,n). (2.5)

Two properties of the Weyl operators (2.2) are useful:
(1) Composition law:

D̂(u) D̂(v) = exp

(
− i

2
uT Jv

)
D̂(u + v); (2.6)

(2) Orthonormalization relation:

Tr[D̂†(u)D̂(v)] = (2π )nδ(2n)(u − v). (2.7)

For instance, the latter yields the scalar product of two Hilbert-
Schmidt n-mode operators (2.1),

Tr(F̂ †Ĝ) = 1

(2π )n

∫
d2nuf ∗(u) g(u), (2.8)

as well as the trace-formula for a weight function,

f (u) = Tr[D̂(u)F̂ ]. (2.9)

Note the value f (0) = Tr (F̂ ) and that an operator (2.1) is
self-adjoint iff f ∗(−u) = f (u).

We focus on multimode Hilbert-Schmidt Gaussian opera-
tors (HSGO’s). By definition, the weight function (2.9) of such
an operator is a shifted Gaussian,

f (u) = f (0) exp
(− 1

2uTFu − iξT u
)
, (2.10)

with a complex shift vector ξ ∈ C2n and a symmetric matrix
F ∈ M2n(C) whose real part is positive definite: F + F∗ > 0.
This implies that the square matrix F is invertible, so that the
Gaussian weight function (2.10) is integrable [29]:

∫
d2nu exp

(
−1

2
uTFu − iξT u

)

= (2π )n[det(F)]−
1
2 exp

(
−1

2
ξTF−1ξ

)
,

(Re{[det(F)]
1
2 } > 0). (2.11)

A special example of an HSGO is the density operator ρ̂ of
an n-mode GS, which is positive and of unit trace: Tr(ρ̂) = 1.
Its weight function (2.9), called the characteristic function (CF)
of the state, is fully determined by the first- and second-order
moments of all the quadrature operators:

χ (u) = exp
[− 1

2uTV u − i (〈u〉ρ̂)T u
]
. (2.12)

In Eq. (2.12), V ∈ M2n(R) denotes the symmetric CM of the
GS ρ̂. It fulfills the concise Robertson-Schrödinger uncertainty
relation,

ζ †
(
V + i

2
J

)
ζ � 0 (ζ ∈ C2n), (2.13)

as a necessary and sufficient condition [30,31]. Therefore,
the CM V is positive definite, V > 0, and, according to
Williamson’s theorem [32], is congruent via a symplectic
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matrix S ∈ Sp(2n,R) to a diagonal matrix:

V = ST

⎛
⎝ n⊕

j=1

κj Ij

⎞
⎠ S : det(V) =

n∏
j=1

(κj )2 ;

V + i

2
J = ST

⎡
⎣ n⊕

j=1

(
κj Ij + i

2
Jj

)⎤
⎦ S :

det

(
V + i

2
J

)
=

n∏
j=1

[
(κj )2 − 1

4

]
. (2.14)

In Eqs. (2.14), the positive numbers κj (j = 1,2, . . . ,n) are
the symplectic eigenvalues of the CMV [33], and all the single-
mode matrices Ij are equal to the 2 × 2 identity matrix. As a
consequence, the n-mode Robertson-Schrödinger uncertainty
relation (2.13) is equivalent to the inequalities κj � 1

2 (j =
1,2, . . . ,n).

III. PRODUCT OF TWO HILBERT-SCHMIDT
GAUSSIAN OPERATORS

We consider the product F̂ = F̂ ′F̂ ′′ of two n-mode HSGO’s
whose weight functions f ′(u) and f ′′(u) are Gaussians,
Eq. (2.10). Making use of Eqs. (2.6), (2.7), and (2.11), one
finds that the weight function (2.9) of the product F̂ has
the same form. Although we do not list the corresponding
composition rules [34] here, we just stress that the real part of
the resulting symmetric matrixF ∈ M2n(C) is positive definite
in two special cases we are interested in:

(1) Both factors F̂ ′ and F̂ ′′ are self-adjoint.
(2) The factors are adjoints to one another: F̂ ′ = (F̂ ′′)†.

Hence, in both above-mentioned cases, the product F̂ is itself
an n-mode HSGO. In the first case, F̂ is not self-adjoint, unless
the two factors commute. In the second one, F̂ is a positive
operator, proportional to the density operator of a GS whose
CM is precisely F ∈ M2n(R).

We further investigate the product Â := ρ̂ ′ρ̂ ′′ of two n-
mode GS’s. First, making use of Eqs. (2.8)–(2.11), we get its
trace:

Tr (Â) = [det(V ′ + V ′′)]−
1
2

× exp
[− 1

2 (δ〈u〉)T (V ′ + V ′′)−1δ〈u〉] > 0. (3.1)

We have introduced above the relative average n-mode
displacement δ〈u〉 := 〈u〉ρ̂ ′ − 〈u〉ρ̂ ′′ .

Other properties of the product operator Â are found by
evaluating its weight function (2.9) via Eq. (2.1) used for
both its factors ρ̂ ′ and ρ̂ ′′. After finally performing a routine
integral of the type (2.11) we are left with the Gaussian
weight function fA(u), Eq. (2.10), which is determined by
the following composition rules:

FA = − i

2
J +

(
V ′′ + i

2
J

)
(V ′ + V ′′)−1

(
V ′ + i

2
J

)
,

(3.2)

ξA = 〈u〉ρ̂ ′ −
(
V ′ − i

2
J

)
(V ′ + V ′′)−1δ〈u〉.

Similarly, we employ the Hilbert-Schmidt scalar product (2.8)
in conjunction with the Gaussian integral (2.11) in order to get

the formula

Tr(Â2) = [Tr (Â)]22−n[det(FA)]−
1
2 . (3.3)

An essential nontrivial step is that the determinant of the matrix
FA, Eq. (3.2), always factors as follows:

det (FA) = det
[
(JV ′) (JV ′′) − 1

4I
]

det(V ′ + V ′′)
. (3.4)

The determinant (3.4) easily emerges when arranging the
matrix FA in a product form. On the other hand, Eq. (3.2)
implies the identity

det

(
FA + i

2
J

)
= det

(
V ′ + i

2 J
)

det
(
V ′′ + i

2 J
)

det(V ′ + V ′′)
. (3.5)

Both the above determinants (3.4) and (3.5) are manifestly
symmetric with respect to the GS’s ρ̂ ′ and ρ̂ ′′.

We exploit the composition rules (3.1) and (3.2) in three
special situations. First, when the GS’s coincide, ρ̂ ′ = ρ̂ ′′ =:
ρ̂, then FA = VB =: VA. Hence, Eqs. (3.1) and (3.2) read
respectively:

Tr(ρ̂2) = 2−n[det(V)]−
1
2 � 1 ; (3.6)

VA = 1
2

(
V − 1

4JV−1J
)
, ξA = 〈u〉ρ̂ . (3.7)

Second, Eqs. (3.6), (3.7), and (2.14) enable us to write down
two conditions, both of them necessary and sufficient in order
that an n-mode GS σ̂ is pure. They are expressed in terms of
its CM V , as follows:

(1) Scalar condition:

Tr(σ̂ 2) = 1 ⇐⇒ det(V) = 2−2n

⇐⇒ κj = 1
2 (j = 1,2, . . . ,n). (3.8)

(2) Matrix condition:

VA = V ⇐⇒ (JV)2 = − 1
4 I. (3.9)

Third, the square root
√

ρ̂ of a given n-mode GS ρ̂ with the
CF (2.12) is proportional to an equally displaced n-mode GS:
its CM Ṽ determines the proportionality factor

Tr(
√

ρ̂) = 4

√
det(2Ṽ) (3.10)

and satisfies Eq. (3.7):

V = 1
2

(
Ṽ − 1

4J Ṽ−1J
)
. (3.11)

Accordingly, its symplectic eigenvalues κ̃j are determined by
those of the CM V , hereafter denoted κj :

κ̃j = κj +
√

(κj )2 − 1
4 (j = 1,2, . . . ,n). (3.12)

IV. FIDELITY OF TWO MULTIMODE GAUSSIAN STATES

We successively apply Eqs. (3.10), (2.14), and (3.12) to
the GS ρ̂B , Eq. (1.3), for getting a general expression of the

022340-3



PAULINA MARIAN AND TUDOR A. MARIAN PHYSICAL REVIEW A 86, 022340 (2012)

fidelity (1.4):

F(ρ̂ ′,ρ̂ ′′) = Tr(ρ̂ ′ ρ̂ ′′)

×2n

n∏
j=1

{
(κB)j +

√
[(κB)j ]2 − 1

4

}
. (4.1)

In Eq. (4.1), the set { (κB)j , (j = 1,2, . . . ,n)} is the sym-
plectic spectrum of the CM VB of the n-mode GS ρ̂B . Some
expected properties of the fidelity can be read in the above
expression. For instance, let us note the inequalities

F(ρ̂ ′,ρ̂ ′′) � Tr(ρ̂ ′ρ̂ ′′) > 0, (4.2)

with saturation of the first one when at least one of the GS’s ρ̂ ′
and ρ̂ ′′ is pure. The second inequality is displayed by Eq. (3.1):
the Hilbert-Schmidt scalar product of any pair of n-mode GS’s
is strictly positive. Another property of the fidelity (4.1) is its
symplectic invariance:

F(Û (S)ρ̂ ′Û †(S), Û (S)ρ̂ ′′Û †(S)) = F(ρ̂ ′,ρ̂ ′′), (4.3)

where S ∈ Sp(2n,R) and Û (S) are the unitary operators of the
metaplectic representation on the Hilbert space of the n-mode
states.

There is a special case when the multimode fidelity (4.1)
can be readily evaluated, namely, that of commuting GS’s. As
a prototype of such states, we mention the n-mode thermal
states. We concentrate on a pair of commuting n-mode GS’s,
ρ̂ ′ and ρ̂ ′′, whose CM’s V ′ and V ′′ have the symplectic
spectra {κ ′

j } and {κ ′′
j }, respectively. The commutation relation

[ρ̂ ′, ρ̂ ′′] = 0̂ implies, via the resulting equality VB = FA,
that the diagonalizable matrices JV ′ and JV ′′ commute, so
that they have a complete system of common eigenvectors.
Since the matrix JVB has the same eigenvectors, we find the
composition law of the symplectic eigenvalues:

(κB)j = κ ′
j κ

′′
j + 1

4

κ ′
j + κ ′′

j

(j = 1,2, . . . ,n). (4.4)

Accordingly, the fidelity formula (4.1) simplifies to

F(ρ̂ ′,ρ̂ ′′) =
n∏

j=1

2

(κ ′
j + κ ′′

j )2

×
{

κ ′
j κ

′′
j + 1

4
+

√[
(κ ′

j )2 − 1

4

] [
(κ ′′

j )2 − 1

4

]}
.

(4.5)

Equation (4.5) displays two additional properties of the fidelity,
namely, its symmetry,F(ρ̂ ′′,ρ̂ ′) = F(ρ̂ ′,ρ̂ ′′), and the saturable
inequality

F(ρ̂ ′,ρ̂ ′′) � 1 : F(ρ̂ ′,ρ̂ ′′) = 1 iff ρ̂ ′′ = ρ̂ ′. (4.6)

We come back to the general case of two noncommuting
n-mode GS’s: Writing an explicit formula of their fidelity (4.1)
seems to be a hard task. Indeed, evaluation of the CM VB of the
n-mode GS ρ̂B , Eq. (1.3), requires a three-time application of
the composition rule (3.2); therefore the CM VB ∈ M2n(R) has
a complicated structure. However, we succeeded to calculate
its symplectic invariants det (VB) and det(VB + i

2J ). Indeed,
taking advantage once again of Eqs. (2.8) and (2.11), we find

a formula which is similar to Eq. (3.3):

Tr(B̂2) = [Tr (B̂)]22−n[det(VB)]−
1
2 . (4.7)

Their comparison gives, via Eq. (1.2), the expression (3.4):

det (VB) = det
[
(JV ′) (JV ′′) − 1

4I
]

det(V ′ + V ′′)
� 2−2n. (4.8)

On the other hand, a rather involved calculation makes use of
Eqs. (3.2) and (3.11) to yield the determinant

det

(
VB + i

2
J

)
= det

(
V ′ + i

2 J
)

det
(
V ′′ + i

2 J
)

det(V ′ + V ′′)
, (4.9)

which coincides with the non-negative determinant (3.5).
When at least one of the GS’s ρ̂ ′ and ρ̂ ′′, say ρ̂ ′, is pure,

then insertion of the appropriate conditions (3.8) and (3.9) into
Eq. (4.8) leads to the equality det (VB) = 2−2n, showing that
the GS ρ̂B is also pure.

For later convenience, let us introduce the following
notations:


 : = det(V ′ + V ′′) � 1,

� : = 22n det

[
(JV ′) (JV ′′) − 1

4
I

]
� 
, (4.10)

� : = 22n det

(
V ′ + i

2
J

)
det

(
V ′′ + i

2
J

)
� 0.

The inequality 
 � 1 originates in the feature of the positive
definite matrix V̌ := 1

2 (V ′ + V ′′) of being the CM of a n-mode
GS determined up to its average displacement. Let us remark
that our main results in this section are the explicit expressions
of the symplectic invariants (4.8) and (4.9) for GS’s with any
n. However, only for one- and two-mode states are these
invariants sufficient to get analytic formulas for the fidelity
via Eq. (4.1).

V. EXPLICIT RESULTS

A. One-mode Gaussian states

For the sake of completeness we begin with the one-mode
case. The symplectic spectrum of the CM VB consists of a
single eigenvalue:

κB = 1

2

√
�



+ 1.

According to Eqs. (3.2) and (4.10), the fidelity (4.1) reads

F(ρ̂ ′,ρ̂ ′′) = exp
[− 1

2 (δ〈u〉)T (V ′ + V ′′)−1δ〈u〉]
×(

√

 + � −

√
�)−1. (5.1)

The symmetric formula (5.1) was derived and analyzed
gradually long ago in Refs. [22]. In addition, by using the
structure of the one-mode GS’s, which are displaced squeezed
thermal states [35], we succeeded in proving explicitly in the
present work the property (4.6) of their fidelity (5.1).

B. Two-mode Gaussian states

The CM VB has two symplectic eigenvalues: (κB)1 and
(κB)2. Their squares are the roots of a monic quadratic binomial
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whose coefficients are expressed in terms of the determinants
(4.10). A straightforward calculation exploiting Eqs. (3.2) and
(4.1) leads to the symmetric formula:

F(ρ̂ ′,ρ̂ ′′) = exp
[− 1

2 (δ〈u〉)T (V ′ + V ′′)−1δ〈u〉]
×

[
(
√

� +
√

�) −
√

(
√

� +
√

�)2 − 


]−1

.

(5.2)

Previous results reported in Refs. [11] for special states
(squeezed thermal and symmetric) are seen to be particular
cases of Eq. (5.2).

The determinants (4.10) of 4 × 4 matrices occurring in Eq.
(5.2) are easily computable. As a salient example, we evaluate
them for a pair of undisplaced two-mode GS’s whose CM’s
V ′ and V ′′ are both in an unscaled standard form. This means

that they are partitioned into 2 × 2 diagonal submatrices of the
type

V =
(

b1I C
C b2I

)
: I =

(
1 0
0 1

)
, C =

(
c 0
0 d

)
. (5.3)

Here b1 � 1
2 , b2 � 1

2 , c � |d|. A matrix (5.3) has two sym-
plectic invariants:

det(V) = (b1b2 − c2)(b1b2 − d2) > 0,

det

(
V + i

2
J

)
= det(V) − 1

4

(
b2

1 + b2
2 + 2cd

) + 1

16
� 0.

(5.4)

We denote b′
1, b

′
2, c

′, d ′ and b′′
1, b

′′
2, c

′′, d ′′ the standard-form
parameters of the CM’s V ′ and V ′′, respectively. Then,
Eqs. (4.10), (5.3), and (5.4) allow us to factor both determinants

 and � and to visualize the symplectic invariant �:


 = [(b′
1 + b′′

1)(b′
2 + b′′

2) − (c′ + c′′)2][(b′
1 + b′′

1)(b′
2 + b′′

2) − (d ′ + d ′′)2];

� = 16
{
[b′

1b
′
2 − (d ′)2][b′′

1b
′′
2 − (c′′)2] + 1

4 (b′
1b

′′
1 + b′

2b
′′
2 + 2d ′c′′) + 1

16

}{
[b′

1b
′
2 − (c′)2][b′′

1b
′′
2 − (d ′′)2]

+ 1
4 (b′

1b
′′
1 + b′

2b
′′
2 + 2c′d ′′) + 1

16

}
;

� = 16
{

det(V ′) − 1
4 [(b′

1)2 + (b′
2)2 + 2c′d ′] + 1

16

}{
det(V ′′) − 1

4 [(b′′
1)2 + (b′′

2)2 + 2c′′d ′′] + 1
16

}
. (5.5)

We are left to substitute formulas (5.5) into Eq. (5.2) written
for undisplaced two-mode GS’s.

VI. CONCLUSIONS

To sum up, in this work we have tackled a long-standing
problem in quantum information with continuous variables:
the Uhlmann fidelity of two multimode GS’s. Our simple
phase-space approach led to the important formulas (3.3)–
(3.5) and (4.7)–(4.9), which are valid for any number of
modes and could be useful for future research. However, we
stress that an analytic result for n-mode GS’s seems hard
to be found when n � 3 : indeed, one then needs to solve
a higher-degree characteristic equation that cannot be easily
obtained.

While in the single-mode case an explicit formula was
found many years ago, we derived here a computable analytic
expression in the two-mode case, Eq. (5.2). We expect that
this formula will open a productive research in quantifying

bipartite quantum correlations (entanglement and discord) in
the Gaussian scenario. An example at hand is the already
performed evaluation of a degree of entanglement for some
important classes of GS’s (squeezed thermal states, symmetric
states) in Refs. [11]. The analysis of an arbitrary two-mode
GS requires our present result. Use of fidelity in evaluating the
Gaussian geometric discord defined with the Bures metric is
currently one of our main interests. Note also that fidelity in
mixed-state estimation or reconstruction could be a potential
important tool. It appears that applications of the fidelity
to the emerging field of quantum information and to other
interesting areas of quantum physics are far from being
exhausted.
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[8] I. Bengtsson and K. Życzkowski, Geometry of Quantum States:
An Introduction to Quantum Entanglement (Cambridge Univer-
sity Press, Cambridge, England, 2006).

[9] D. Bures, Trans. Am. Math. Soc. 135, 199 (1969).
[10] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys.

Rev. Lett. 78, 2275 (1997).
[11] Paulina Marian, T. A. Marian, and H. Scutaru, Phys. Rev. A

68, 062309 (2003) for squeezed thermal states; Paulina Marian
and T. A. Marian, ibid. 77, 062319 (2008) for symmetric states;
Eur. Phys. J. Special Topics 160, 281 (2008) also for symmetric
states.

[12] Paulina Marian, T. A. Marian, and H. Scutaru, Phys. Rev. Lett.
88, 153601 (2002).

[13] A. B. Klimov, L. L. Sánchez-Soto, E. C. Yustas, J. Söderholm,
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