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Traditional quantum physics solves ground states for a given Hamiltonian, while quantum information science
asks for the existence and construction of certain Hamiltonians for given ground states. In practical situations,
one would be mainly interested in local Hamiltonians with certain interaction patterns, such as nearest-neighbor
interactions on some types of lattices. A necessary condition for a space V to be the ground-state space of some
local Hamiltonian with a given interaction pattern is that the maximally mixed state supported on V is uniquely
determined by its reduced density matrices associated with the given pattern, based on the principle of maximum
entropy. However, it is unclear whether this condition is in general also sufficient. We examine the situations
for the existence of such a local Hamiltonian to have V satisfying the necessary condition mentioned above as
its ground-state space by linking to faces of the convex body of the local reduced states. We further discuss
some methods for constructing the corresponding local Hamiltonians with given interaction patterns, mainly
from physical points of view, including constructions related to perturbation methods, local frustration-free
Hamiltonians, as well as thermodynamical ensembles.
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I. INTRODUCTION

Traditional quantum many-body physics focuses on finding
ground-state energy and the corresponding ground states for
some given Hamiltonians. A naturally occurring Hamiltonian
involves only one- and two-body interactions in most cases.
The new field of quantum information science, however,
focuses more on studying quantum states [1]. Quantum states
are “information carriers” of quantum information upon which
communication is conveyed and computation is implemented.
After years of development, it has become clear that quantum
communication and computation offers the possibility of a
secure and high rate of information transmission and fast
computational solution of certain important problems, which
is at the heart of modern information technology.

One major direction of quantum information science is to
study correlations in many-body quantum systems. Here the
term correlation is used instead of entanglement due to the
fact that a quantum state contains both classical and quantum
correlation, which both contribute to real physical phenomena.
Traditionally, correlation is characterized by correlation func-
tions, which are directly related to experimental measurements
of physical observables. Quantum information science brings
new angles to study correlations from information-scientific
points of view.

An interesting viewpoint on correlation in quantum states
is based on the principle of maximum entropy, which is
advocated by Jaynes in the study on the foundation of statistical
mechanics [2]. The principle says that if an n-particle quantum
state ρ has the maximum entropy among all the n-particle
states with the same k-particle reduced density matrices (k-
RDMs) as those of ρ, then ρ contains no more information than
that contained in its k-RDMs. And such a ρ consistent with
the given k-RDMs is indeed unique. In this sense, ρ contains
no irreducible r-particle correlation for any r > k [3,4].

In the case that ρ is a pure state, ρ is uniquely determined
by its k-RDMs based on the principle of maximum entropy.
It simply means that there does not exist any other state,
pure or mixed, which has the same k-RDMs as those of ρ.
Well-known examples include: almost all three-qubit pure
states are uniquely determined by their 2-RDMs [5], almost
every pure state of many-body quantum systems (with equal
dimensional subsystems) is uniquely determined by its RDMs
of just over half of the parties [3,6], W -type states are uniquely
determined by their 2-RDMs [7], and the only n-particle
pure states which cannot be determined by their (n − 1)-
RDMs are those Greenberger-Horne-Zeilinger (GHZ)-type
states [8].

A many-body Hamiltonian H is k local if H = ∑
i Hi ,

where each term Hi acts nontrivially on, at most, k particles.
In practical situations, one would be mainly interested in k-
local Hamiltonians with certain interaction patterns, such as
nearest-neighbor interactions on some type of lattices. That
is, for a given space V , one would like to know whether V

can be the ground-state space of some k-local Hamiltonian
H = ∑

i Hi , which contains only certain terms of k-particle
interactions, and, if such a k-local Hamiltonian exists, how to
find it.

In this paper, we address this question by starting from a
natural necessary condition for a space V to be the ground-state
space of some local Hamiltonian with a given interaction
pattern. That is, the maximally mixed state supported on V is
uniquely determined by its reduced density matrices associated
with the given interaction pattern, based on the principle
of maximum entropy. This condition builds an interesting
link between correlations of quantum states and ground-state
spaces of local Hamiltonians; unfortunately, it is unclear
whether this condition is in general also sufficient. We examine
the situations for the existence of such a local Hamiltonian to
have V satisfying the necessary condition mentioned above as
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its ground-state space by linking to faces of the convex body of
the local reduced states. We then further discuss some methods
for constructing a corresponding k-local Hamiltonian, mainly
from physical points of view, including constructions related
to perturbation methods, local frustration-free Hamiltonians,
as well as thermodynamical ensembles.

We organize our paper as follows. In Sec. II, we give a
formal definition of local Hamiltonians of a given interaction
pattern and review the convex geometry viewpoint of their
ground-state spaces. In Sec. III, we introduce the concept
of K-correlated subspaces and link it to the correlation of
ground-state spaces of local Hamiltonians and discuss its
meaning in terms of convex geometry. In Sec. IV, we examine
in more detail the situations where a K-correlated subspace
may fail to be the ground-state space of the corresponding
local Hamiltonian of a given interaction pattern, and provide
a perturbation method to construct such a Hamiltonian if
it exists. In Sec. V, we provide another method of finding
the local Hamiltonians of some frustrated systems starting
from some frustration-free systems, which combined with the
perturbation method succeeds in finding the local Hamilto-
nians in certain special cases. For instance, this allows us to
identify Hamiltonians for almost all three-qubit states and the
n-qubit W states with only nearest-neighbor interactions on a
one-dimensional spin chain. In Sec. VI, we provide a general
method of finding the local Hamiltonians from a thermal
ensemble idea. Finally, a summary and discussion is given
in Sec. VII.

II. LOCAL HAMILTONIANS AND CONVEX GEOMETRY

This section discusses the ground-state space properties of
local Hamiltonians. We start from a formal discussion of local
Hamiltonians with given interaction patterns.

Consider an n-particle system. We specify a pattern K,
where each element Kj ∈ K is a subset of {1,2, . . . ,n} with
|Kj | = k (here, |Kj | is the size of Kj ). A Hamiltonian H =∑

i Hi is called K local if each Hi acts nontrivially on, at
most, k particles in some Kj ∈ K. In practice, the choice of
such a pattern K is usually related to certain spatial geometry
considerations, such as nearest-neighbor particles with respect
to some spin lattices.

As an example, the Hamiltonian H of three qubits,

H = J (X1X2 + X2X3) + B(Z1 + Z2 + Z3), (1)

is K local where

K = {{1,2},{2,3}}. (2)

Here, Xj,Yj ,Zj are Pauli X,Y,Z operators, respectively, acting
on the j th qubit.

Note that for any K̃ ⊇ K, a Hamiltonian H that is K local
is also K̃ local. Furthermore, for some k′ � k and a pattern
K′ with |K ′

j | � k′, H is also K′ local if for any Ki ∈ K there
exists some K ′

j ∈ K′ such that Ki ⊆ K′
j . For instance, the

Hamiltonian given in Eq. (1) is also {{1,2},{2,3},{1,3}} local
or {{1,2,3}} local. In practice, we would usually be interested
in the smallest number k and the smallest possible set K such
that H is K local.

Let D be the set of density matrices of n particles. For any
given pattern K, list all of the elements Ki ∈ K as a vector

(K1,K2, . . . ,KM ) in a fixed order, where M is the size of K.
When M = ( n

k ), K contains all of the k-element subset of
{1,2, . . . ,n}. Let γKi

be the k-RDM of particles in Ki ∈ K.
For ρ ∈ D, let

�RK(ρ) = (γK1 ,γK2 , . . . ,γKM
), (3)

which is a vector whose elements are k-RDMs of ρ.
Note a simple fact that the set

DK = { �RK(ρ) | ρ ∈ D} (4)

is a closed convex set. Indeed, it has been known that there is a
natural connection between ground-state spaces and exposed
faces of the convex set DK (see, for instance, [9,10]), which
we briefly review here.

We first recall some notations from convex analysis. For a
convex set C, its dual cone P(C) is

P(C) = {�y | ∀ �x ∈ C,〈�x,�y〉 � 0} . (5)

Let the dual cone of DK be PK. For the vectors �x =
(γ1,γ2, . . . ,γM ) and �y = (H1,H2, . . . ,HM ) with Hermitian
Hj s, 〈�x,�y〉 is defined as

∑M
j=1 Tr(Hjγj ). Any point �H of the

form (H1,H2, . . . ,HM ) defines a K-local Hamiltonian H =∑M
j=1 Hj . Moreover, we have 〈 �RK(ρ), �H 〉 = Tr(ρH ). This

allows us to visualize K-local Hamiltonians as hyperplanes
in the space containing DK. More specifically, let �H be a point
that corresponds to the Hamiltonian H and define a hyperplane
also denoted as H to be

H = {�x | 〈�x, �H 〉 = 0}.
For any convex set C, a subset F is called a face on C if
(1) F is a convex set, and
(2) for any line segment L ⊆ C, if L intersects F at some

point other than the two end points of L, then L ⊆ F [11].
A face F is exposed if there exists some element �y in the

dual cone P(C) such that 〈�x,�y〉 = 0, ∀ �x ∈ F and 〈�x,�y〉 >

0, ∀ �x /∈ F .
Let the set FV be the image in DK for the states supported

on the space V ; that is,

FV = { �RK(σ ) | range(σ ) ⊆ V }. (6)

Then, for any V that is a ground-state space of some K-local
Hamiltonian, FV is an exposed face of DK.

III. K-CORRELATED SPACES

For any n-particle quantum state ρ, define a set AK(ρ)
of n-particle quantum states which have the same array of
k-RDMs as ρ, i.e.,

AK(ρ) = {σ ∈ D | �RK(σ ) = �RK(ρ)}. (7)

Let ρ̃K denote the state of maximum entropy among all the
states in AK(ρ), i.e.,

ρ̃K = argmax {S(σ ) | σ ∈ AK(ρ)}, (8)

where the von Neumann entropy S(ρ) = − Tr(ρ log2 ρ). Note
that ρ̃K is indeed unique.
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Based on the principle of maximum entropy, ρ̃K contains
no more information than is contained in the reduced density
matrices γKi

s. Therefore, if ρ = ρ̃K, then ρ is the state
containing no more information than is contained in the
reduced density matrices γKi

s. In other words, ρ can be
determined without ambiguity from γKi

s. In this sense, we
say that the state ρ is uniquely determined by γKi

s, and call it
K correlated. That is, an n-particle state ρ is calledK correlated
if ρ = ρ̃K.

As an example for K-correlated states, consider the three-
qubit state

ρc = 1
2 (|000〉〈000| + |111〉〈111|). (9)

For K = {{1,2},{2,3}}, it is straightforward to check that
among all the three-qubit states with the same 2-RDMs for
particles {1,2} and {2,3}, ρc has the maximum entropy. So ρc

is K correlated. On the other hand, the three-qubit GHZ state

|GHZ〉 = 1√
2

(|000〉 + |111〉) (10)

has the same 2-RDMs for particles {1,2} and {2,3} as ρc, but
ρc has a larger von Neumann entropy than that of |GHZ〉.
Therefore, |GHZ〉 is not K correlated.

Note that similar to the case of K-local Hamiltonians, for
any K̃ ⊇ K, a state ρ that is K correlated is also K̃ correlated.
Furthermore, for some k′ > k and a pattern K′ with |K ′

j | = k′,
ρ is also K′ correlated if for any Ki ∈ K there exists some
K ′

j ∈ K′ such that Ki ⊆ K′
j . In practice, for a given ρ, we

usually would like to find the smallest possible number k and
the smallest possible set K such that ρ is K correlated.

For a space V , if the maximally mixed state ρV supported
on V is K correlated, then we call the space K correlated. The
following simple observation then links the ground-state space
of K-local Hamiltonians and K-correlated space.

Observation 1. If V is the ground-state space of some K-
local Hamiltonian, then V is K correlated.

This is because for any state ρ supported on V , Tr(ρH )
equals the ground energy. Then obviously the maximally
mixed state ρV supported on V has the maximum entropy
among all states in AK(ρ).

In the case of pure states, that is, where V is one-
dimensional, Observation 1 states that a necessary condition
for a pure state |ψ〉 to be a unique ground state of someK-local
Hamiltonian is that |ψ〉 is uniquely determined by its k-RDMs
of particles in all Kj ∈ K.

As a simple example, consider the one-dimensional space
V which is spanned by the three-qubit GHZ state, given by
Eq. (10). Because ρV is not K correlated as discussed in a
previous example, there does not exist a K-local Hamiltonian
whose unique ground state is |GHZ〉.

Observation 1 tells us that in order to find the desired K-
local Hamiltonian for a given space V , first of all V must be
K correlated. Therefore a K-correlated space is then a natural
starting point for talking about the general problem of “from
ground states to local Hamiltonians.”

One would then wonder whether the necessary condition
of K correlatedness for a space V being a ground-state space
of some K-local Hamiltonian is also sufficient, which indeed
gives rise to the main question we will discuss in this paper,
as stated below.

Main Question: Given a K-correlated space V , does there
exist a K-local Hamiltonian which has V as its ground-
state space, and, if yes, then how can we construct such a
Hamiltonian?

Unfortunately, this question seems difficult to answer
in general. In seeking a better understanding, we start by
examining a helpful property of K-correlated spaces, given
by the following observation.

Observation 2. For a K-correlated space V and any state ρ

supported on V , any state σ in AK(ρ) is also supported on V .
To see why this is the case, denote the range of ρ by

range(ρ), which is the space spanned by all of the eigenstates
of ρ with nonzero eigenvalues. Since V is K correlated,
we know that the maximally mixed state ρV supported on
V satisfies ρ̃V ,K = ρV . Therefore, range(ρ̂) ⊆ range(ρV ) for
any ρ̂ ∈ AK(ρV ). Now for any ρ supported on V , we have
range(ρ) ⊆ range(ρV ). Consequently, for any σ ∈ AK(ρ), we
have range(σ ) ⊆ range(ρV ), meaning that σ is also supported
on V . Note that for this argument, there are indeed some subtle
points that need to be clarified. We then include a complete
proof of this observation in the Appendix.

Next, we build a connection between K-correlated spaces
and faces of the convex setDK, which is given by the following
observation.

Observation 3. For a K-correlated space V , FV is a face of
the convex set DK.

To show that this observation holds, first note that it is
obvious that FV is a convex set. Then for two states ρ0 and
ρ1, let L be a line segment in DK with end points �RK(ρ0)
and �RK(ρ1). If L intersects FV at a point (1 − p) �RK(ρ0) +
p �RK(ρ1) for some p ∈ (0,1), then ∃σ is supported on V such
that (1 − p)ρ0 + pρ1 ∈ AK(σ ). When V is K correlated, we
have

range[(1 − p)ρ0 + pρ1] ⊆ V,

and therefore both range(ρj ) are spaces of V . It then follows
that the entire line segment L is in FV .

Note that it is straightforward to show that the reverse of
this observation is also true. That is, for any face FV of DK, V
is K correlated.

Observation 3 characterizes the image FV in DK of a K-
correlated space V as a face of the convex setDK. And we know
that ground-state spaces of K-local Hamiltonians correspond
to exposed faces of DK. Therefore, the question of whether
a K-local Hamiltonian exists to have the given K-correlated
space as its ground-state space then becomes the determination
of whether the corresponding face FV is exposed in DK. We
examine this question further in the next section.

IV. NONEXPOSED FACES

We know that for a general convex set C, there do exist
nonexposed faces. An example is shown in Fig. 1. However, for
a given interaction pattern K, the geometry of DK is in general
difficult to analyze. Indeed, we know that for local Hamiltonian
problems of practical interest, even with the existence of a
quantum computer, the membership of DK is very difficult to
determine [12].

Here we just try to get a bit further to analyze an artificial
example. We consider a two-qubit system. In this case, instead
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FIG. 1. (Color online) The convex set of points given by [x =
Tr(ρH1), y = Tr(ρH2)]. The convex set is the union of two half disks
on the left and right and a rectangle in the middle. Points A,B,C,D

are by definition faces of this convex set, yet for each point there is
no line that touches the convex set only at the point.

of only requiring a K-local Hamiltonian, we want a K-local
Hamiltonian of a certain type. More precisely, we want a one-
body Hamiltonian H which can only have local terms of H1

and H2, as given below:

H1 = X2 + 1
2 (I + Z1), H2 = Y2. (11)

Now, for any given two-qubit state |ψ〉 which can be
uniquely determined by its mean values on H1 and H2, we
wonder whether there exists a Hamiltonian Hψ = αH1 + βH2

that has |ψ〉 as its unique ground state. Note that in this case,
such a |ψ〉 is a natural analog of a K-correlated state and
it corresponds to an extreme point of the two-dimensional
convex set given by all points of [x = Tr(ρH1), y = Tr(ρH2)],
where ρ is any two-qubit quantum state. This convex set is
shown in Fig. 1.

What we can see from Fig. 1 is that there are four
nonexposed extreme points A,B,C,D [with coordinates
(0,1), (1,1), (1, − 1), (0, − 1)]. If we denote |0y〉,|1y〉 the
eigenstates of Y with eigenvalues ±1, respectively, then these
four nonexposed extreme points correspond to quantum states
|0〉|0y〉,|1〉|0y〉,|1〉|1y〉,|0〉|1y〉, respectively. For each of these
four states, apparently it cannot be a unique ground state of any
kind of Hamiltonian with terms of H1 and H2 only, as |0〉|0y〉
must always be degenerate with |1〉|0y〉, and |0〉|1y〉 must be
degenerate with |1〉|1y〉.

This example is somewhat artificial as one can certainly find
a one-body Hamiltonian which has, for instance, |0〉|0y〉 as its
unique ground state if we do not restrict on the terms of H1 and
H2 only. However, it is unclear whether such a relaxation to
allow any K-local terms is enough to remove all nonexposed
faces in general. The answer would require deeper physical
insight beyond a general geometric analysis of these restricted
kinds of Hamiltonians. On the other hand, in practice, there
might also be physical situations which restrict the form of
the terms appearing in a K-local Hamiltonian (e.g., symmetry
restrictions), where a nonexposed face situation might possibly
arise.

In practice, for a given K-correlated space V , we may
circumvent the “existence analysis” and nevertheless go ahead

H W

H U

F V

F W

DK

FIG. 2. (Color online) HW is a line that touches the convex set
DK at the top line segment FW , while HU goes through point FV , but
does not contain points in FW \ FV .

and try to construct the corresponding K-local Hamiltonian.
The geometric viewpoint of exposed and nonexposed faces
does give some clue of how to do that. We then discuss a
method of perturbation of finding a K-local Hamiltonian H

for a given K-correlated space V based on this geometric
point of view, in case there indeed exists such an H .

An illustration of the idea is given in Fig. 2. For a given
K-correlated space V , our goal is to find some K-local
Hamiltonian H such that the ground space of H is exactly
V . As we have already mentioned, this is equivalent to finding
some point �H in PK such that H

⋂
DK = FV , where H is the

hyperplane defined by �H . As FV is a face of DK, we can find
a hyperplane that contains FV . Let this hyperplane be HW and
a corresponding point in PK be �HW , where W is the ground
space of the corresponding Hamiltonian HW . We know that
W is also K correlated, as HW is a K-local Hamiltonian. If
W equals V , then we are done. Otherwise, one sees that the
intersection of hyperplane HW and DK is exactly the face FW .
Moreover, FV is a face of FW .

Now we wish to find a perturbation K-local Hamiltonian
HU which can “split” the energy of states supported on V

and those supported on W \ V , where the Hamiltonian H =
tHW + HU can have V as its exact ground-state space for
large-enough t . We show that the following conditions for HU

are sufficient:
(1) FV is in the kernel of HU .
(2) 〈 �RK(ρ), �HU 〉 > 0 for all �RK(ρ) ∈ FW \ FV .
Once there exists an HU that satisfies these two conditions,

we can show that the Hamiltonian H = tHW + HU can have V

as its exact ground-state space for large enough t . Let U be the
kernel of HU . Denote λ,μ as the smallest positive eigenvalue
of HW and HU , respectively, and ω = ‖HU‖ as the operator
norm of HU . For any n-particle state |ψ〉, write it as

∑3
j=1 |ψj 〉

such that |ψ1〉 ∈ U ∩ W , |ψ2〉 ∈ W ∩ U⊥, and |ψ3〉 ∈ W⊥.
Therefore, we have

〈ψ |(tHW + HU )|ψ〉
= t〈ψ3|HW |ψ3〉 + (〈ψ2| + 〈ψ3|)HU (|ψ2〉 + |ψ3〉)
� (tλ − ω)‖ψ3‖2 − 2ω‖ψ2‖‖ψ3‖ + μ‖ψ2‖2.
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The above equation is non-negative if ‖ψ3‖ = 0. Otherwise, it
is a quadratic function and is positive for large-enough t . This
means that the ground space of tHW + HU is W ∩ U = V .

In general, we do not know whether such an HU does exist.
However, as we will show in Sec. V, in practical situations,
this method of perturbation can indeed help us find a K-local
H for a given K-correlated space V , in case there indeed exists
such an H . On the other hand, if one fails to find such an HU ,
then this indicates the existence of a nonexposed face.

Finally, we mention another direct application of the
geometric viewpoint of K-correlated spaces, given by the
following observation.

Observation 4. The nontrivial intersection of two K-
correlated spaces V1 and V2 is K correlated. Furthermore, for
two spaces V1 and V2 which are ground-state spaces of the
K-local Hamiltonians H1 and H2, respectively, the nontrivial
intersection of V1 and V2 is a ground space of some other
K-local Hamiltonian.

To show why this is true, simply note that the intersection
of two faces FV1 and FV2 of DK is another face FV , where
V = V1 ∩ V2. And because FV is the intersection of two faces,
one can use the method of perturbation to find the K-local
Hamiltonian for FV , in which the existence of HU is ready
to verify. Indeed, the Hamiltonian which has V as its exact
ground-state space can be simply chosen as H1 + H2.

V. FROM FRUSTRATION-FREE TO FRUSTRATED
SYSTEMS

In this section, we discuss a method of finding a corre-
sponding K-local Hamiltonian for some given K-correlated
spaces, which is related to local frustration-free Hamiltonians.
This will allow us to find the desired Hamiltonians for some
spaces whose correlation patterns are well known, including
the three-qubit pure states (the topic of Sec.V A), and the
n-qubit W -type states (the topic of Sec.V B).

Given a space V and a pattern K, let ρV be the maximally
mixed state of V , and denote ρV (Ki) as the k-RDMs of ρV for
particles in Ki ∈ K. Let VKi

= range (ρV (Ki)). If

V =
⋂

Ki∈K
VKi

⊗ IK̄i
, (12)

where K̄i = {1,2, . . . ,n} \ Ki , then V is the ground-state space
of the K-local Hamiltonian

H =
∑
Ki∈K

HKi
, (13)

where HKi
is the projection onto the kernel of ρV (Ki).

The Hamiltonian H is known to be frustration free, as the
ground-state space V of H is also the ground-state space of
each term in the summation. That is, VKi

is the ground-state
space of HKi

. We call this kind of K-local Hamitonian K
frustration free (K-FF). By Observation 1, we know that the
ground-state space VK of a K-FF Hamiltonian must be K
correlated.

Although in general whether a space V is the ground-state
space of a K-FF Hamiltonian could be difficult to analyze;
that is, Eq. (12) is not easy to check for large systems. At
least in principle, this provides a way of characterizing these
kind of spaces as well as finding the corresponding K-FF

Hamiltonians. This can then be used as a starting point to find
a K-local Hamiltonian for a space V ′ ⊂ V that is known to
be K correlated, using the perturbation method discussed in
Sec. II. The idea is, we choose the unperturbed Hamiltonian
H0 as the K-FF Hamiltonian H , then we will need to find a
K-local Hamiltonian H1 such that the null space of H1 contains
V ′, and for any state |φ〉 ∈ V − V ′, 〈φ|H1|φ〉 > 0. Then, for
large-enough t , the K-local Hamiltonian tH0 + H1 will have
V ′ as its ground-state space.

To demonstrate the application of these methods, we
consider two examples. Our first example is the case of three
qubits that we will discuss in Sec. V A. And the second
example are those W -type states that we will discuss in
Sec. V B.

A. The three-qubit case

It is well known that almost all three-qubit pure states are
uniquely determined by their 2-RDMs, except those states
which are local unitary (LU) equivalent to GHZ-type states
α|000〉 + β|111〉 [5]. That is, almost all three-qubit pure states
are K′ correlated for

K′ = {{1,2},{2,3},{1,3}}. (14)

Here we will then find the K′-local Hamiltonian H for all
three-qubit states, starting from aK′-FF Hamiltonian and using
the perturbation method, except for those states which are LU
equivalent to GHZ-type states. Indeed, our method finds some
K-local Hamiltonians for these states, where

K = {{1,2},{2,3}} ⊂ K′. (15)

This means that indeed all three-qubit pure states are uniquely
determined by their 2-RDMs of particles {1,2} and {2,3},
except for those states which are LU equivalent to GHZ-type
states. In other words, only two out of the three 2-RDMs
are enough to uniquely determine these states, which is an
improvement of the results given in [5].

Note that one of the standard forms for a three-qubit pure
state up to LU transformation is [13]

|ψ〉123 = λ0|000〉 + λ1|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉,
(16)

where λ1 is complex, and λ0,λ2,λ3,λ4 are real.
We start from constructing a K-FF Hamiltonian HK for

K = {{1,2},{2,3}}, which contains |ψ〉123 as a ground state.
Define the space S as

S = [range(γ{1,2}) ⊗ I{3}] ∩ [I{1} ⊗ range(γ{2,3})], (17)

where γ{i,j} is the 2-RDM of |ψ〉123 of particles {i,j}.
It is straightforward to show that S is always two dimen-

sional for any entangled |ψ〉123. That is, |ψ〉123 cannot be
written as a product of a single- and a two-qubit state. In this
case, one always has

|ψ ′〉123 = |1〉 ⊗ (λ2|0〉 + λ4|1〉) ⊗ (λ3|0〉 + λ4|1〉) ∈ S. (18)

That is, S always contains a product state |ψ ′〉123 (see [14]).
We can then choose a K-FF Hamiltonian

H0 = H{1,2} + H{2,3}, (19)
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where H{i,j} is the projection onto the kernel of γ{i,j}. Then S
is the ground-state space of H0, which is two dimensional and
spanned by |ψ〉123 and |ψ ′〉123.

Now we need to find a perturbation K′-local Hamiltonian
H1 such that for large-enough t , the K′-local Hamiltonian
tH0 + H1 has |ψ〉123 as its unique ground state. First, define

|φ〉123 = λ1|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉
= |1〉 ⊗ (λ1|00〉 + λ2|01〉 + λ3|10〉 + λ4|11〉)
= |1〉 ⊗ |ψ̃〉23. (20)

For the generic case, |φ〉123 is linear independent of |ψ ′〉123,
which means

λ1λ4 �= λ2λ3. (21)

Now define

η =123 〈ψ ′|φ〉123 = λ1λ2λ3 + λ2
2λ4 + λ2

3λ4 + λ3
4, (22)

and choose

|ξ 〉123 = |ψ ′〉123 − η∗|ψ〉123. (23)

Note that

123〈ψ |ξ 〉123 = 0, (24)

and |ξ 〉123 has a form

|ξ 〉123 = α|000〉 + β|1〉 ⊗ |ξ̃〉23, (25)

where |ξ̃〉23 is a pure state of particles {2,3} which is linear
independent of |ψ̃〉23 according to Eq. (21).

We can then choose a two-particle Hermitian operator
H ′

{2,3} acting on particles {2,3} such that |00〉23 and |ψ̃〉23

span the kernel of H ′
{2,3}, hence 23〈ξ̃ |H |ξ̃〉23 = r �= 0. So the

perturbation Hamiltonian H1 can just be chosen as H1 = H ′
{2,3}

if r > 0 or H1 = −H ′
{2,3} if r < 0. Then, for large-enough t ,

tH0 + H1 has |ψ〉123 as its unique ground state.
For the case in which |φ〉123 is linear dependent of |ψ ′〉123,

which in general means

λ1λ4 = λ2λ3, (26)

we can also find H1, unless |φ〉123 is LU equivalent to the
GHZ-type state. Note that Eq. (26) indicates that λ1 is real.

We can rewrite |ψ〉123 as

|ψ〉123 = λ0|000〉 + λxy |1xy〉, (27)

where

|x〉 = x0|0〉 + x1|1〉, |y〉 = y0|0〉 + y1|1〉, (28)

with x0,x1,y0,y1 real, x2
0 + x2

1 = 1, and y2
0 + y2

1 = 1.
We know that |1xy〉 is also in the ground-state space of H0,

so the ground-state space of H0 is actually spanned by two
orthogonal product states, |000〉 and |1xy〉.

In general, when |ψ〉123 is not LU equivalent to the GHZ-
type state, we have

〈0|x〉 �= 0 or 〈0|y〉 �= 0. (29)

Without loss of generality, we assume 〈0|y〉 �= 0, that is,
y0 �= 0.

Now we need to find some Hamiltonian H1 to “split” |000〉
and |1xy〉 such that for large-enough t , the ground state of

tH0 + H1 could be uniquely |ψ123〉, based on the perturbation
method. We show this is always possible. Let

D1 =
(

λxy

λ0
0

0 λ0
λxy

)
, M2 =

(
x0 x1

x1 −x0

)
, M3 =

(
y0 y1

y1 −y0

)
.

Then we have

X1D1 ⊗ M2 ⊗ M3|ψ123〉 = |ψ123〉, (30)

which gives

X1D1 ⊗ M2 ⊗ I3|ψ123〉 = I1 ⊗ I2 ⊗ M3|ψ123〉, (31)

where Ij is the identity operator acting on the j th particle.
Now we can choose a two-particle operator,

H ′
1 = X1D1 ⊗ M2 ⊗ I3 − I1 ⊗ I2 ⊗ M3. (32)

Then, |ψ123〉 is in the kernel of H ′
1, and 〈000|H ′

1|000〉 �= 0.
Let |ψ⊥〉123 =λxy |000〉−λ0|1xy〉, and 123〈ψ⊥|H ′

1|ψ⊥〉123 =
r �= 0; then the perturbation Hamiltonian H1 can just be chosen
as H1 = H ′

1 if r > 0 or H1 = −H ′
1 if r < 0. Then, for large-

enough t , tH0 + H1 has |ψ〉123 as its unique ground state.
A similar procedure works if 〈0|y〉 = 0 but 〈0|x〉 �= 0.

The procedure will fail to result in having |ψ〉123 as the
unique ground state tH0 + H1 for any t if both 〈0|x〉 �= 0 and
〈0|y〉 �= 0. In that case, one will have 123〈ψ⊥|H ′

1|ψ⊥〉123 = 0.
And using a properly chosen t , one can have |ψ〉123 as the
nondegenerate first excited state tH0 + H1 [15].

To summarize, we have found the K-local Hamiltonian for
all three-qubit pure states for K = {{1,2},{2,3}}, except for
those states which are LU equivalent to GHZ-type states. By
Observation 1, our result also shows that all three-qubit pure
states are uniquely determined by their 2-RDMs of particles
{1,2} and {2,3}, except for those states which are LU equivalent
to GHZ-type states.

B. The W -type states

In this section, we discuss the n-qubit W -type states
|W (n)〉type,

|W (n)〉type =
n∑

i=1

as |ri〉, (33)

where ri is the n-bit strings with the ith coordinate 1 and all
the other coordinates 0, ai �= 0 and

∑n
i=1 |ai |2 = 1.

It is known that |W (n)〉type is uniquely determine by its

2-RDM [7]. Furthermore, any n − 1 out of the ( n
2 ) 2-RDMs is

sufficient to uniquely determine |W (n)〉type, so we can actually
put the n qubit on a one-dimensional chain and consider only
the 2-RDMs of all the nearest-neighbor pairs. More precisely,
let

K = {{1,2}, . . . ,{n − 1,n}}. (34)

Then, the W -type states are K correlated.
Here we discuss how to find theK-local Hamiltonian whose

unique ground state is a given W -type state. We start from the
three-qubit case. In Sec. V A, we have already solved this
problem for all three-qubit pure states. Here we reexamine the
W state case so that we understand how to generalize it to the
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general n-qubit case. We start from the fact that the three-qubit
W -type state can be written as

|W (3)〉type = a1|001〉 + a2|010〉 + a3|100〉, (35)

and observe that

[I{1} ⊗ range(γ{2,3})] ∩ [range(γ{1,2}) ⊗ I{3}]
= span{|W 〉type,|000〉}, (36)

and

〈000|W (3)〉type = 0. (37)

We can first choose a K-FF Hamiltonian

H0 = H{1,2} + H{2,3} (38)

for K = {{1,2},{2,3}}. Here, H{i,j} is the projection onto
the kernel of γ{i,j}. Then, {|W (3)〉t ,|000〉} spans the two-
dimensional ground-state space of H0.

We can then choose

H1 = −Z1 − Z2 − Z3. (39)

For a large-enough t , |W (3)〉type is the unique ground state of
tH0 + H1.

Now we take a look at the special case where a1 = a2 = a3,
in which |W (3)〉type becomes the three-qubit W state |W (3)〉,
where

|W (3)〉 = 1√
3

(|001〉 + |010〉 + |100〉) . (40)

Now the K-FF Hamiltonian H0 given in Eq. (38) has a two-
dimensional ground-state space spanned by {|W (3)〉,|000〉}.

Note that now both H{1,2} and H{2,3} are projections onto
the space spanned by

|α〉 = |11〉, |β〉 = 1√
2

(|01〉 − |10〉), (41)

thus H{1,2} can be written as

H{1,2} = pα|α〉〈α| + pβ |β〉〈β|, (42)

where pα,pβ > 0.
In terms of Pauli operators, H{1,2} has a form

H{1,2} = − pα(X1X2 + Y1Y2)

+ (pβ − pα)Z1Z2 − pβ(Z1 + Z2). (43)

And a similar form holds for H{2,3}.
This form of H{i,j} can be generalized to the n-qubit case.

To see this, note that⋂
i

range(γ{i,i+1}) ⊗ I{i,i+1} = {|W (n)〉,|00...0〉}. (44)

Now we can choose H0 = ∑
i H{i,i+1},

H{i,i+1} = −pα(XiXi+1 + YiYi+1)

+ (pβ − pα)ZiZi+1 − pβ(Zi + Zi+1), (45)

and H1 = −∑
i Zi . Then for a large-enough t , the K-local

Hamiltonian HK = tH0 + H1 has the n-qubit W state |W (n)〉
as its unique ground state.

If we take a periodic boundary condition instead of a chain,
that is, choose

K′ = {{1,2},{2,3}, . . . ,{n − 1,n},{n,1}}, (46)

then for a small enough ε, the K′-local Hamiltonian Hw of
which |W (n)〉 is a unique ground state can be written as

Hw = −
∑
i,i+1

[
pαXiXi+1 + pαYiYi+1 + (pα − pβ)ZiZi+1

]
−

∑
i

(2β − ε)Zi. (47)

Actually, Hw has a recognized physical meaning, as it is
a famous spin model called the “Heisenberg XXZ model,”
where we also have a term of the external magnetic field,
which is given by the second sum term in Hw. This model is
extensively studied in the literature; for instance, see [16] and
references therein.

Note that our results are consistent with those obtained
in [17], where a special case pα = pβ is considered, so Hw is
reduced to a Heisenberg XX chain in a transversal magnetic
field. We observe that although for different values of pα

and pβ , the ground state could be all uniquely |W (n)〉, the
Hamiltonians Hw do have different spectrums, and hence are
different Hamiltonians.

VI. HAMILTONIANS FROM THERMODYNAMICAL
ENSEMBLES

In this section, we discuss a general method to determine
whether a given state space V is K correlated; if so, we find
the K-local Hamiltonian such that its ground-state space is V .
Our approach is based on the viewpoint of thermodynamical
ensembles.

For a given space V , we introduce

ρ(p) = p
I

D
+ (1 − p)ρV , (48)

where I is the identity operator acting on the Hilbert space H
of the n-particle system with a finite dimension D, and ρV is
the maximally mixed state of V . Obviously, ρ(0) = ρV .

As the state ρ(p) is of full rank for p ∈ [1,0), ρ̃K(p), as
given by Eq. (8), can be written in an exponential form [4]

ρ̃K(p) = exp[−H̃K(p)]

Tr exp[−H̃K(p)]
, (49)

where �RK(ρ̃K(p)) = �RK(ρ(p)), and the Hermitian operator
H̃K(p) is K local. And, indeed, such an exponential form is
unique [18].

The key observation here is that ρ̃K(p) can be viewed
as a thermal equilibrium state corresponding to the K-local
Hamiltonian HK(p): we can define β(p)HK(p) = H̃K(p) with
β(p), which is a positive constant that is inversely proportional
to temperature.

Note that the maximally mixed state ρV of V is an equal
weight mixture of orthonormal pure states, which span V . As
ρV is K correlated, we have

lim
p→0

ρ̃K(p) = ρV , (50)

according to the continuity principle given in [4,18]. Equa-
tion (50) then implies that ρV is the equal weight mixture of
the ground states of HK(0), and the corresponding temperature
goes to 0, i.e., limp→0 β(p) = +∞.
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Note that the continuity principle discussed in [4,18] is an
argument, not a rigorous proof. And this method definitely fails
for those K-correlated spaces, which is similar to point A in
Fig. 1. However, this viewpoint of the thermal equilibrium
ensemble gives a good physical intuition to understand
Observation 1.

One numerical method to find H̃K(p) for p ∈ [1,0) can be
developed based on the discussion in [19]. The idea is that
if the continuity principle is valid, then when p is arbitrarily
close to one, the ground-state space of H̃K(p) will be also
arbitrarily close to V .

As an example to test our numerical method, consider the
following four-qubit state:

|ψ1〉 = 1
2 (|0000〉 + |0101〉 + |1000〉 + |1110〉). (51)

Our numerical method shows that there exists a Hamilto-
nian containing only one- and two-particle interaction terms,
such that |ψ1〉 is the unique ground state. This Hamiltonian
can be given by p = 0.0001; that is,

H̃ (0.0001) = −3.2390Z4 + 4.2001X3X4 + 4.2001Y3Y4

− 3.2390Z3 − 0.5912Z3Z4 − 6.4827X2X4

− 6.4827X2X3 + 6.4827Y2Y4 + 6.4827Y2Y3

+ 6.7571Z2 + 1.5227Z2Z4 + 1.5227Z2Z3

− 4.2950X1 − 2.4012X1Z4 − 2.4012X1Z3

− 8.8603X1Z2 + 4.5280Z1Z4 − 4.5280Z1Z3,

and one can readily check that |ψ1〉 is the unique ground
state of H̃ (0.0001). By Observation 1, |ψ1〉 is then K(ψ1)
correlated for

K(ψ1) = {{1,2},{2,3},{1,3},{3,4},{2,4},{1,4}}. (52)

This method also allows us to determine whether a given
space V is K correlated or not. If the method returns a
K-local Hamiltonian H (p) with p sufficiently small, whose
ground-state space is larger than V , then V is not K correlated.
Otherwise, it returns exactly V .

As an example, consider the following state:

|ψ2〉 = 1
2 (|0000〉 + |1011〉 + |1101〉 + |1110〉). (53)

Our numerical method shows that there does not exist a
Hamiltonian containing only one- and two-particle interaction
terms, such that |ψ2〉 is the unique ground state. Indeed, the
state

|ψ ′
2〉 = 1

2 (−|0000〉 + |1011〉 + |1101〉 + |1110〉) (54)

has the same K projection as that of |ψ2〉.
One would expect that our numerical method cannot be

efficient in general. Indeed, even in practice, the Hamiltonians
that we are interested in mainly involve only one- and
two-particle interaction terms associated with certain lattice
geometry; the complexity of our numerical method grows
superexponential with the system size n. Therefore, for each
special case considered, one usually needs to combine this
method with some other techniques.

Here we introduce a method of subsystems to reduce the
complexity of the above numerical method for some specific
cases, based on the discussion of frustration-free systems given
in Sec. V. That is, in some cases, we can start from a K-FF

Hamiltonian and look at the subsystems of each term of the K-
FF Hamiltonian. The advantage of this method of subsystems
is that one can reduce the total dimension of the Hilbert space
that one needs to calculate the K-local Hamiltonians by using
some frustration-free properties of the quantum space V .

Recall that a K-FF Hamiltonian is K local. Denote P (Ki)
as the power set of Ki for each Ki ∈ K. We then define

K′ =
⋃

i

K′
i , (55)

where each K′
i is a subset of P (Ki). In practice, we will be

interested in some pattern K′ with |K ′
j | = k′ for K ′

j ∈ K′,
where k′ < k. In other words, the K-FF Hamiltonian contains
k-particle interactions, but the K′-local Hamiltonian that we
want to find contains only k′ < k-particle interactions.

The following observation provides a method of finding a
K′-local Hamiltonian for the ground-state space V of a K-FF
Hamiltonian.

Observation 5. Given a space V , which is the ground-
state space of a K-FF Hamiltonian, if for any Ki ∈ K,
range[ρV (Ki)] is K′

i correlated, then V is K′ correlated.
To see how this observation works, for each Ki ,

range[ρV (Ki)] is K′
i correlated, so one can find a K′

i-local
Hamiltonian HK′

i
which has range[ρV (Ki)] as its ground-state

space. However, these spaces of range[ρV (Ki)] determine V ,
i.e.,

⋂
i range[ρV (Ki)] = V , so the Hamiltonian

∑
i HK′

i
has

V as its ground-state space.
As an example, consider the state |ψ1〉 given in Eq. (51). It

is straightforward to show that |ψ1〉 is the unique ground state
of a K-FF Hamiltonian for K = {{1,2,3},{2,3,4}}. However,
this will give us a nonpractical Hamiltonian, which involves
three-particle interactions.

Note that the space V{1,2,3} = range[|ψ1〉〈ψ1|({1,2,3})] is
spanned by

V{1,2,3} = span{|000〉 + |110〉 + |111〉, |010〉}, (56)

and the space V{2,3,4} = ker[|ψ1〉〈ψ1|({2,3,4})]⊥ is spanned by

V{2,3,4} = span{|000〉 + |101〉, |000〉 + |110〉}. (57)

We can now use our numerical method to further show
that V{1,2,3} is {{1,2},{2,3},{1,3}} correlated, and V{2,3,4} is
{{2,3},{3,4},{2,4}} correlated. Therefore, by Observation 5,
|ψ1〉 is K′(ψ1) correlated for

K′(ψ1) = {{1,2},{2,3},{1,3},{3,4},{2,4}}. (58)

In this example, we use the method of subsystems to reduce
the calculation in our algorithm for a n = 4 state to two
n = 3 spaces. One could expect that for a larger system with
ground-state space of some local frustration-free Hamiltonians
involving at most k-particle interactions, this method of
subsystems may further reduce the calculation in our numerical
method from a large n to some small number k. Moreover,
recalling Eq. (52), we actually have K′(ψ1) ⊂ K(ψ1), so the
result obtained by this method of subsystems gives a slightly
simpler interaction pattern of the Hamiltonian.

Finally, as a remark, note that the reverse of Observation
5 is not true, as the space V{1,3,4} = range[|ψ1〉〈ψ1|({1,3,4})],
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spanned by

V{1,3,4} = span{|000〉 + |100〉, |001〉 + |110〉}, (59)

is not {{1,2},{3,4},{1,4}} correlated.

VII. CONCLUSION AND DISCUSSION

In this paper, we raised an interesting question regarding
“from ground states to local Hamiltonians.” That is, for a given
space V , one would like to know whether V can be the ground-
state space of some k-local Hamiltonian H = ∑

i Hi , which
contains only certain terms of k-particle interactions, and, if
such a k-local Hamiltonian exists, how to find it. As a starting
point, it turns out that a natural necessary condition for a space
V to be the ground-state space of some local Hamiltonian
with a given interaction pattern is that the maximally mixed
state supported on V is uniquely determined by its reduced
density matrices associated with the given pattern based on
the principle of maximum entropy. This simple observation
builds an interesting link between correlations of quantum
states and the ground-state space of local Hamiltonians.

We have introduced the concept of K-correlated spaces and
explained its physical and geometric meaning. By introducing
the concept of K-local Hamiltonians, which describe local
Hamiltonians with given interaction patterns in a more formal
way, the necessary condition that a space V is the ground-state
space of some K-local Hamiltonian is that V is K correlated.
However, thisK correlatedness of a space V does not guarantee
that V can be the exact ground-state space of some K-local
Hamiltonian. To understand why this necessary condition
may not be sufficient and when this problem could possibly
happen, we link the spaces satisfying this necessary condition
to faces of the convex body of the local reduced states. Based
on this understanding of convex geometry, we then further
discuss some methods for constructing the corresponding
K-local Hamiltonians, mainly from physical points of view,
including constructions related to perturbation methods, local
frustration-free Hamiltonians, as well as thermodynamical
ensembles.

The perturbation method, combined with the method
based on the frustration-free systems, allows us to identify
the K-local Hamiltonians for all three-qubit states for K =
{{1,2},{2,3}}, except those states which are LU equivalent to
GHZ-type states. In other words, all of the extreme points
on the corresponding convex body are exposed in this case.
Our result then shows that only two out of the three 2-RDMs
are enough to uniquely determine a three-qubit pure state
unless the state is LU equivalent to a GHZ-type state, which
is an improvement of the result given in [5]. We also find
the XX-type Hamiltonians for W states, which are identified
in [16] from other methods.

The method based on an idea of thermal ensembles
provides an alternative and a more physical understanding
of the relationship between K-correlated spaces and K-local
Hamiltonians, as well as a numerical method of finding such
a K-local Hamiltonian. This numerical method is based on
the continuity principle discussed in [4,18,19]. And combined
with a method of subsystems which is related to local
frustration-free Hamiltonians, the computational cost may be
reduced for some special physical systems.

One would think the direct way of dealing with the problem
of finding the K-local Hamiltonian for a given K-correlated
space is through a general algorithmic viewpoint. Indeed,
this problem can be straightforwardly formulated in terms
of a semidefinite programming [20], which can be used to
numerically solve this problem.

However, in general, finding a K-local Hamiltonian with a
given K-correlated space V as its exact ground-state space is a
very hard problem. Theoretically, none of these methods could
work if some K-correlated spaces have a similar property as
the point A in Fig. 1. So it is highly desired to find a theoretical
characterization of those K-correlated spaces that cannot be
the ground-state space of any K-local Hamiltonian, or find a
proof to show that suchK-correlated spaces do not really exist.

Also, even if such a K-local Hamiltonian does exist for
a K-correlated space, it is expected that all of the methods
and algorithms we have discussed here are not efficient for
the general case. Indeed, one can only expect that each
method works well in certain special cases, as those examples
discussed. Future work will be toward identifying better
methods and algorithms for special situations, especially
for K-correlated spaces which are of interest to quantum
information processing, for instance those resource states for
one-way quantum computing [21]. On the other hand, one
would also like to develop methods to identify whether a
space is K correlated, even without finding the corresponding
K-local Hamiltonian.

We hope our work sheds light on the study of the relation-
ship between correlations of quantum states and ground-state
spaces of local Hamiltonians, and thus further link the research
in both quantum information science and many-body physics.
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APPENDIX: PROOF OF OBSERVATION 1

To prove the equivalences in Observation 1, we need the
following two lemma:

Lemma 1. If range(ρ1) � range(ρ0), then there exists x� ∈
(0,1) such that

S((1 − x�)ρ0 + x�ρ1) > S(ρ0).

Proof. For simplicity, let ρx = (1 − x)ρ0 + xρ1. A direct
calculation gives

S(ρx) − S(ρ0) = x(S(ρ1) − S(ρ0) + S(ρ1‖ρx))

+ (1 − x) S(ρ0‖ρx).

The assumption, range(ρ1) � range(ρ0), implies that S(ρ1‖ρx)
can be made arbitrarily large by choosing x close to 0.
Therefore, we can find a x� ∈ (0,1) satisfying S(ρ1‖ρx� ) >

S(ρ0) − S(ρ1). As both terms of the above equation are positive
for x�, we have S(ρx� ) > S(ρ0).
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Lemma 2. For any quantum state ρ, range(ρ) ⊆ range(ρ̃k).
Proof. If range(ρ) � range(ρ̃k), then Lemma 1 guarantees

that there is some number p ∈ (0,1), such that (1 − p)ρ̃k + pρ

will have larger entropy than ρ̃k has. This is a contradiction to
the definition of ρ̃k .

We are now ready to show Observation 1. We will need to
show that if V = range(ρV ), where ρV isK correlated, then for
any σ supported on V , any σ ′ ∈ AK(σ ) is also supported on V .

As range(σ ) ⊆ range(ρ), we can write ρ = (1 − ε)σ ′′ + εσ

for some small number ε, and range(σ ′′) ⊆ V . Introduce a
new state

ρ̂ = (1 − ε)σ ′′ + εσ ′. (A1)

It is obvious that ρ̂ ∈ AK(ρ), therefore range(ρ̂) ⊆ range(ρ) by
Lemma 2, and range(σ ′) ⊆ range(ρ̂) ⊆ range(ρ) = V , where
the first inclusion follows from Eq. (A1).

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, Cambridge, UK,
2000).

[2] E. T. Jaynes, Phys. Rev. 106, 620 (1957).
[3] N. Linden and W. K. Wootters, Phys. Rev. Lett. 89, 277906

(2002).
[4] D. L. Zhou, Phys. Rev. Lett. 101, 180505 (2008).
[5] N. Linden, S. Popescu, and W. K. Wootters, Phys. Rev. Lett. 89,

207901 (2002).
[6] N. S. Jones and N. Linden, Phys. Rev. A 71, 012324

(2005).
[7] P. Parashar and S. Rana, Phys. Rev. A 80, 012319 (2009).
[8] S. N. Walck and D. W. Lyons, Phys. Rev. Lett. 100, 050501

(2008).
[9] F. F. Verstraete and J. I. Cirac, Phys. Rev. B 73, 094423

(2006).
[10] M. Fannes, B. Nachtergaele, and R. F. Werner, Commun. Math.

Phys. 144, 443 (1992).

[11] R. T. Rockafellar, Convex Analysis (Princeton University Press,
Princeton, NJ, 1996).

[12] Y. K. Liu, Proc. RANDOM, 438 (2006).
[13] A. Acin, A. Andrianov, E. Jane, and R.Tarrach, J. Phys. A: Math.

Gen. 34, 6725 (2001).
[14] J. Chen, X. Chen, R. Duan, Z. Ji, and B. Zeng, Phys. Rev. A 83,

050301 (2011), arXiv:1004.3787 [quant-ph].
[15] J. Chen, Z. Ji, Z. Wei, and B. Zeng, Phys. Rev. A 85, 040303

(2012).
[16] T. Koma and B. Nachtergaele, Adv. Theor. Math. Phys. 2, 533

(1998).
[17] D. Bruß, N. Datta, A. Ekert, L. C. Kwek, and C. Macchiavello,

Phys. Rev. A 72, 014301 (2005).
[18] D. L. Zhou, Phys. Rev. A 80, 022113 (2009).
[19] D. L. Zhou, arXiv:0909.3700.
[20] S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge

University Press, Cambridge, UK, 2004).
[21] D. Gross and J. Eisert, Phys. Rev. Lett. 98, 220503 (2007).

022339-10

http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1103/PhysRevLett.89.277906
http://dx.doi.org/10.1103/PhysRevLett.89.277906
http://dx.doi.org/10.1103/PhysRevLett.101.180505
http://dx.doi.org/10.1103/PhysRevLett.89.207901
http://dx.doi.org/10.1103/PhysRevLett.89.207901
http://dx.doi.org/10.1103/PhysRevA.71.012324
http://dx.doi.org/10.1103/PhysRevA.71.012324
http://dx.doi.org/10.1103/PhysRevA.80.012319
http://dx.doi.org/10.1103/PhysRevLett.100.050501
http://dx.doi.org/10.1103/PhysRevLett.100.050501
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1088/0305-4470/34/35/301
http://dx.doi.org/10.1088/0305-4470/34/35/301
http://arXiv.org/abs/1004.3787
http://dx.doi.org/10.1103/PhysRevA.83.050301
http://dx.doi.org/10.1103/PhysRevA.85.040303
http://dx.doi.org/10.1103/PhysRevA.85.040303
http://dx.doi.org/10.1103/PhysRevA.72.014301
http://dx.doi.org/10.1103/PhysRevA.80.022113
http://arXiv.org/abs/0909.3700
http://dx.doi.org/10.1103/PhysRevLett.98.220503



