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We propose a method to improve the secret key rates of four-state continuous-variable quantum key distribution
by using an optical preamplifier. The modified protocol allows the distribution of higher secret key rates over long
distances. Included in this paper is a detailed investigation of the effects of inserting an optical parametric amplifier
into the output of the quantum channel in the four-state protocol, which will be instructive and meaningful about
the usage of amplifiers in order to achieve the optimal performance of the protocol in a specific scenario.

DOI: 10.1103/PhysRevA.86.022338

I. INTRODUCTION

A major practical application of quantum-information
science is quantum key distribution, which allows two dis-
tant parties to communicate with absolute privacy, even in
the presence of an eavesdropper [1,2]. Continuous-variable
quantum key distribution (CVQKD) by using coherent states
[3] is an alternative to the single-photon-based discrete-
variable quantum key distribution protocol. In this protocol,
information is encoded on quadratures of coherent states,
which are easily generated and measured with remarkable
precision by off-the-shelf telecommunication components.

A CVQKD protocol based on coherent states with Gaussian
modulation was found to be a practical scheme [4,5]. It has
been experimentally demonstrated [3,6] and has been shown
secure against arbitrary collective attacks [7,8], which are
optimal in the asymptotic limit [9]. But this kind of protocol
is limited by its working range, which results from the low
reconciliation efficiency 8 at long working distances. Even
using the best present codes, such as low-density-parity-check
codes [10] or turbo codes [11], or with the help of algebraic
properties of R® [12], one cannot expect to extend the range
of the protocol well over 50 km.

Based on this background, discrete-modulation CVQKD
was introduced to break this 50-km limitation. The four-state
protocol [13] is a typical example, which has been proved
secure against collective attacks and allows the distribution
of secret keys over long distances at very low signal-to-noise
ratio with a high reverse reconciliation efficiency.

In this paper, we continue to improve the performance of
the four-state protocol. Inspired by the discussion in [14],
we propose to insert an optical amplifier at the output of the
quantum channel and inside Bob’s apparatus in the four-state
protocol, and we calculate in detail the resulting secret key
rates, secure against collective attacks. For that purpose,
we will assume that Bob’s apparatus is inaccessible to the
eavesdropper Eve.

The results are attractive, but are different from those of
protocols based on Gaussian modulation with preamplifiers
[14]. We analyze in general the effects introduced by using
the preamplifiers on Alice’s optimal modulation variance, the
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secret key rates, and the working distance. Then strategies
are suggested to optimize the performance of the four-state
protocol.

This paper is organized as follows: In Sec. II, a general
theoretical analysis of the modified four-state protocol is given.
In Sec. III, the results of numerical simulations are provided
to show the effects introduced by optical amplifiers. The
conclusions are drawn in Sec. IV.

II. THE MODIFIED FOUR-STATE PROTOCOL

In the following, we first review the basic notions related
to the four-state protocol and present the assumptions of
our calculations. We then derive the the expressions for
the modified secret key rate when homodyne or heterodyne
detectors are used, and for the case of collective eavesdropping
attacks.

A. Notations and assumptions

The standard prepare-and-measure (PM) description of the
four-state protocol is described as follows:

(a) Alice sends randomly one of the four coherent states
log) = |ae!P*+D7/4y with k € {0,1,2,3} to Bob through the
quantum channel. The channel features a transmission effi-
ciency T and an excess noise €, resulting in a noise variance
at Bob’s input of (1 4 Te€)Ny, where Ny is the shot-noise
variance. The total channel-added noise referred to the channel
input is expressed as xjne = 1/7 +€ — 1.

(b) When Bob receives the modulated coherent states,
he can take either homodyne or heterodyne detection using
a practical detector characterized by its efficiency n and
electronics noise ve;. We can define a detection-added noise
referred to Bob’s input and expressed in shot-noise units which
we denote in general as x; and is given by the expressions
Xbom = [(1 = 1) + vrl/n and xpee = [1 + (1 — 1) + 2val/n
for homodyne and heterodyne detection, respectively. The total
noise referred to the channel input can then be expressed as
Xtot = Xiine + Xn/ T

The PM version of the protocol is equivalent to the
entanglement-based (EB) scheme shown in Fig. 1. In this
scheme, Alice has a pure two-mode entangled state:

|®4) = 3(1%0) o) + [W1)ler) + [¥2)|ea) + [¥3) |et3)),
ey

©2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.86.022338

HENG ZHANG, JIAN FANG, AND GUANGQIANG HE

PHYSICAL REVIEW A 86, 022338 (2012)

Bob
Alice Eve (" EPR ™
“““““““““““““““ 3
’ \ V
| Quantum channel E FOV
E (ﬁ: B i Homodyne detector
> 0 - >
E E - +\ y
| 1 F v
3 E Heterodyne detector
5 = j+
! memory | -
y
& J

FIG. 1. (Color online) Entanglement-based scheme for the four-state protocol with homodyne or heterodyne detection. The quantum

channel is controlled by Eve.

where the states

|wk Zel(l+2k)1n7'r/4|¢ ) (2)

are orthogonal non-Gaussian states. The state |¢,,) is written
as follows:

|pe) = jzz i(— 1" \/kaﬂ +k), G
where
oo = Le @ [cosh(@?) =+ cos(@?)], @
M3 =1e® *[sinh(a?) < sin(a?)].

The EB version of the four-state protocol can be described as
follows:

(a) Alice prepares the entangled state |®4) of variance
V =1+ Vy, where V4 = 2a? is the modulation variance of
Alice in the PM scheme. Then she performs the projective mea-
surements |y ) (Y| (k = 0,1,2,3) on her half, thus preparing
the coherent state o) when her measurement gives the result
k. This modulated state is sent to Bob through the quantum
channel.

(b) Bob’s detector is modeled by a beam splitter with
transmission 7, and its electronic noise v, is modeled by
an Einstein-Podolsky-Rosen (EPR) state of variance v. For
homodyne detection, v = 1 + v /(1 — 1), and for heterodyne
detection, v = 1 4+ 2ve; /(1 — 7).

After the quantum transmission phase of the communica-
tion has ended, the signal of the modulated and measured
value encodes the bit of the raw key. Bob and Alice share
correlated strings of bits. By reverse reconciliation and privacy
amplification, they can achieve a secret key.

B. Secret key rates for the four-state protocol

Under the assumptions that we have described above, we
want to calculate the secret key rates for the four-state protocol
with homodyne and heterodyne detection, for the case of

collective eavesdropping attacks. When Alice and Bob use

reverse reconciliation and the reconciliation efficiency is 8,
the secret key rate is

Kp=BI(x:y)— Sy : E), )]

where I (x : y) is the Shannon mutual information between Al-

ice and Bob, and S4(y : E) is the quantum mutual information
between Bob and Eve in the four-state protocol.

The Shannon mutual information 7(x : y) between Alice

and Bob is considered for homodyne and heterodyne detection.
For the homodyne detection case, Shannon’s equation is used:

V =+ Xtot
I(x:y) = 7 logy 77— (6)
1+ Xtot
and for the heterodyne detection case
V + Xt
I(x:y)=log, ———. @)
£ L+ Xeot

According to the fact that the Holevo information between
Eve and Bob’s classical variable S(y : E) is maximized when
the state psp shared by Alice and Bob is Gaussian [15,16].
Hence, S4(y : E) can be bounded from above by a function of
the covariance matrix y4p of pap:

V]IZ \/TZ;;O‘Z (8)
YAB = ,
VT Zio. TV + i)l
where  Zy = 20[2()?/2 -2 A3/2 -2 )L3/2 -2
)»3/ : 1/ 2) reflects the correlatlon between mode A and mode

01 0 -
the same form as in the Gaussian modulation scheme, where
Z4 would be replaced by the correlation of a two-mode
squeezed vacuum Zg = v Vj + 2V,. Note that when Vj, is
small enough, Z, is very close to Zg, as shown in Fig. 2. For
V4 < 0.5, Z4 and Z; are almost indistinguishable, meaning
that in this region, the quantum mutual information between

B, ]12 = [1 O], and o, = [1 0 ] This covariance matrix has
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FIG. 2. (Color online) Comparison of the correlation Z, (dashed lines) for the four-state protocol protocol and Z (full lines) for the
Gaussian modulation protocol as a function of V. (a) For large values of V4. (b) For small values of V4.

Bob and Eve is very similar in these two protocols. Hence one
has S4(y : E) =~ Sg(y : E).
Based on this consequence, we will give the expression for

Sa(y : E):
M1 Ay —1 A —1
e =6(H=0) ro(251) - o(25)

Ay — 1
of5)

where G(x) = (x + 1)log,(x + 1) — x log, x. The symplectic
eigenvalues A , are given by

(10)

1
Ao = \/E(A + VA2 —4B),

C =
het [T(V + xo)?

and A and B are given in Eq. (11).

Now let us consider the reconciliation efficiency S in
Eq. (5). The reconciliation scheme presented in [13] per-
forms indeed much better at low signal-to-noise ratio (SNR)
Rgs/n(lower than 1) than reconciliation schemes used for a
Gaussian modulation. By using the scheme, one can have
a reconciliation efficiency greater than 80% for all SNRs
below 1. So we can take § = 0.8 in our analysis only if
the working region of V, is small enough [V4 = Rg/n(1 +
Xto0)]-

So far, we have obtained the value for the secret key rate
K g of the four-state protocol. Next we will consider the case
which takes into account the use of amplifiers to enhance the
performance of the four-state protocol.

_ AXE A+ BA 1420l VVB + T(V + xine)] + 2T Z3 D — (v + ﬁxhet>2
b Cl - s . < b

where
A=V TV + pine)’ — 2T Z3,
1D
B = (TV*+ TV — TZ})".
The symplectic eigenvalues A3 4 are given by
1
Azgq = \/E(C ++/C2—4D), (12)
where for the homodyne case,
C AXhom + V\/E + T(V + Xline)
hom = )
T(V + Xtor)
B (13)
Vv B Xhom
Dioyy = /B Y5 Xom
TV ~+ X))
and for the heterodyne case,
(14
TV + X))

C. Adding an amplifier to the protocol

In the practical case Bob’s detection apparatus has inherent
imperfections that degrade the secret key rates; inspired by the
discussion in [14], we will use optical parametric amplifiers
in the four-state protocol to compensate for the detectors’
imperfections. In the following, models for two types of optical
amplifiers are provided first. This allows us to determine
the modified secret key rates of the system when an optical
amplifier is placed at the input of Bob’s apparatus.

1. Models for optical amplifiers

Here we consider two typical amplifiers: an ideal phase-
sensitive amplifier and a practical phase-insensitive amplifier,
which have been studied extensively [17].
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Phase-sensitive amplifier. The phase-sensitive amplifier
(PSA) is a degenerate optical parametric amplifier that ideally
permits noiseless amplification of a chosen quadrature. Its
behavior can be described by a transformation matrix ¥ 754:

0
YPSA — [a/g L:| , (15)

NG

where g > 1 is the gain of the amplification.

Phase-insensitive amplifier. The phase-insensitive amplifier
(PIA) is a nondegenerate optical parametric amplifier, which
amplifies both quadratures symmetrically, but the amplifica-
tion process is associated with a fundamental excess noise that
arises from the coupling of the signal input to the internal
modes of the amplifier [17,18]. This type of amplifier can be
modeled as a noiseless amplifier that applies the appropriate
gain factor to each input mode and uses an EPR state of
variance N, one-half of which is entering the amplifier’s
second input port, to model the amplifier’s inherent noise.

Its behavior can also be described by matrices. Y /4
describes the transform of a PIA, and is written as

YP1A=[\/§H2 \,g—loz]
Vg_laz \/g]IZ

¥ describes the EPR state of variance Nused to model the
amplifier’s inherent noise, and is expressed as

N _ NHZ VNZ_le
LA Vv NI, '

(16)

a7

2. Modified secret key rate

Now we derive the modified secret key rates when an
optical amplifier is employed in the system. As we discussed
in Sec. II B, the four-state protocol can be very close to the
Gaussian-modulation-based CVQKD protocol when V, is
very small, so the results derived in the CVQKD protocol
with Gaussian modulation can also be applied in the four-state
protocol. Here we can easily get the modified secret key rates
using similar methods to that developed in [14].

Two promising cases, homodyne detection combined with
a phase-sensitive amplifier placed at the output of the quantum
channel, and heterodyne detection combined with a phase-
insensitive amplifier placed at the output of the quantum
channel, are considered in this paper. All effects introduced by
an optical amplifier on the secret key rates are totally described
by the modified parameters xpom and xhe. We now give the
modified parameters for these two cases.

Homodyne detection and phase-sensitive amplifier case. In
this case, the usage of a phase-sensitive amplifier is equivalent

to modifying xpom into Xh’;ﬁf, which is written as

PSA __ (I —=n)+ ve
hom gn

Heterodyne detection and phase-insensitive amplifier case.

As above, xhe is modified to x,2/#, which is written as

(18)

1 1— 20 + N(g — 1
XA = + (1 —=n)+2vg+ N(g )Tl' (19)
&n
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FIG. 3. (Color online) Heterodyne detection with a practical
detector, e = 0.01, g = 1.

If we substitute 254 for yhom in Eq. (13), the modified
secret key rate Kr with homodyne detection is obtained.
Similarly, we can get the the modified secret key rate Kg
with heterodyne detection as long as xhe is replaced by x,2/4
in Eq. (14).

III. RESULTS AND DISCUSSION

In this section, we apply the results derived in Sec. I1C2
to a practical system. In particular, we calculate the secret
key rate as a function of the distance for fiber-optical
implementation of the four-state protocol, for collective eaves-
dropping attacks in the configuration of heterodyne detection
with a phase-insensitive amplifier placed at the output of
the quantum channel. Similar results are obtained in the
configuration of homodyne detection with a phase-sensitive
amplifier.

The parameters included in the equations that will affect
the value of Ky include the variance of Alice’s modulation

107

Secret key rate (bit/pulse)

IL
10 0.2 025 03 0.35 0.4 045 0.55

FIG. 4. (Color online) Heterodyne detection with a practical
detector, € = 0.01, d = 50 km.
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FIG. 5. (Color online) Heterodyne detection with a practical
detector, d = 80 km, g = 1.

Va; the transmission efficiency T and excess noise € of the
quantum channel; the efficiency n and electronic noise v
of Bob’s detector; the gain g and inherent noise N of the
amplifier. The parameters 7 and v, are fixed in all simulations
to the values n = 0.6 and ve = 0.05 (in shot-noise units),
which are standard in experiments. The gain of the amplifier g
takes values 1, 3, and 20. (Note that when g = 1, 214 = ypes
thus the case g = 1 is equivalent to having no amplifier. It is
better to make a comparison between results after the addition
of the amplifier and the original setting.) We set the noise
N of the phase-insensitive amplifier to the realistic value 1.5
(in shot-noise units, referred to the input). Furthermore, the
channel transmission efficiency is T = 107%4/1° where a =
0.2 dB/km is the loss coefficient of the optical fibers, and d is
the length of the channel.

In the remaining part of this section, numerical simulations
are employed to reveal how the parameters V4, €, and g affect
the secret key rate K.

Secret key rate (bit/pulse)

1 0’ L L L L L L L
60 80 100 120

Distance (km)
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A. The optimal V4

The variation of Alice’s modulation V4 is an important
parameter in the PM version of the protocol. In the general
case, we need to scan V4 within a legitimate region to find an
optimal V4 to maximize the secret key rate Ky for a specific
scenario. However, we notice that the optimal V4 in the four-
state protocol does not depend on the features of the quantum
channel, i.e., T and €, and the gain g of the amplifier. This is
shownin Figs. 3,4, and 5. There exists a global optimal V4 that
makes K p achieve the maximum value in different scenarios.

In Fig. 3, the parameters g and € are fixed to legitimate
values. When the distance d increases, the numerical areas of
V4 that make K p achieve maximum are gradually compressed.
Fortunately, these optimal numerical areas of V4 have a public
interval in which we can choose a public optimal V4. In this
case, we can let V4 equal 0.3.

In our modified protocol, optical amplifiers are used in the
system to enhance the performance of the protocol. Use of
different gains of the amplifiers has few effects on the optimal
numerical areas of V,. This is shown in Fig. 4, where we
observe that in the limit of large amplification gain, the optimal
numerical areas of V4 are compressed very little.

Excess noise € of the quantum channel is possible in the
environment of a practical experiment. So considering how
the fluctuation of excess noise € affects the optimal V4 would
be very meaningful. From the results shown in Fig. 5, the
optimal regions of V4 are compressed a lot when excess noise €
increases. However, the the optimal regions of V4 have a public
symmetric point located at V4 = 0.3. So a public optimal V4
can be obtained as 0.3 regardless of the fluctuation of excess
noise.

From the above analysis, we can obtain a global optimal
value of V,4 to maximize the secret key rate K . This will help
to simplify the experimental demonstrations. In the remaining
part, we will treat V4 as a constant in our analysis.

B. Using amplifiers with caution

Now we consider the performance of the four-state protocol
after using an optical amplifier inserted at the output of the

0.5

enhanced region

Improvement ratio

degenerative region————>

-1 L L L L I I
60 80 100 120
Distance (km)

140 160

FIG. 6. (Color online) Heterodyne detection with an inserted PIA, € = 0.005, V4, = 0.3. (a) Secret key rate for g = 1 (full line), and g = 20

(dashed line). (b) Improvement ratio after inserting a PIA.
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channel. Here we investigate the configuration of heterodyne
detection with a phase-ingensitive amplifier.

If the secret key rate K is too small, it will be meaningless
for practical use. So here we consider only the scenarios in
which Kp > 10~7 bit/pulse. First, we calculate the secret
key rate Ky as a function of distance d in the following
scenario: V4 = 0.3, € = 0.005, and g = 1,20. The results
are shown in Fig. 6. The curves in Fig. 6(a) are very
close to each other; an equivalent curve is used to illustrate
results in Fig. 6(b), where the improvement ratio is defined
as

Kr(d)|g=20 — Kr(d)] o=
Kr(d)|g=1

There are two points marked in the subgraphs. In Fig. 6(a),
point Q is the intersection point of two curves, whose
coordinates are written as (Qy,0Q,). In Fig. 6(b), the point
on the curve whose vertical coordinate equals O is denoted as
point P, which is located at (P,,0). Here point Q and point
P have the same meaning, and Q, = P,. We observe that the
inserted optical amplifier may not work for the whole distance.
There is an enhanced region and a degenerative region. If
the length of the fiber d is smaller than P, about 140 km,
the usage of the amplifier does enhance the performance
of the protocol in terms of secret key rates to some extent.
However, if d goes beyond P,, things take a sudden turn
and become worse rapidly. So the position of the point P
is very important. We want to enlarge the enhanced region
and compress the degenerative region by controlling certain
parameters.

Next we will investigate the movement of the point Q (P).
The excess noise of the quantum channel € and gain of the
amplifier will affect the location of point P.

First, when € is fixed to 0.005, the gain of the amplifier
varies from a small value to infinity, but the variation of the
abscissa of P is not obvious, which is shown Fig. 7. When
g = 0o, P, reaches its lowest value in this specific scenario.
We define this value as the critical distance. When the gain
of the amplifier is fixed, the fluctuation of the excess noise

Improvement ratio = 20)

Improvement ratio

- s s s s ‘
0 20 40 60 80 100 120 140 160

Distance (km)

FIG. 7. (Color online) Heterodyne detection with an inserted PIA,
€ =0.005, V, =0.3.
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FIG. 8. (Color online) Heterodyne detection with an inserted PIA,
g=20,V,=0.3.

leads to a large change in the location of P (see Fig. 8). So
it is important to find the relationship between excess noise
and critical distance when g approaches infinity. From the
simulation data, we fitted the curve, and obtained an analytical
function:

y = Ae ™" + y, 21)

where A =298.22, t = 0.00561, and yy = 16.76. The raw
data and fitted curve are shown in Fig. 9. We name this curve
the critical line.

The region below the critical line is the enhanced region in
which using an optical amplifier does improve the performance
of the protocol in terms of secret key rates. And the larger gain
of the amplification is, the larger is the improvement ratio.
The region above the curve is the degenerative region. The

240,

220

200

Critical distance (km)
N A o ®
o o o o

-
o
o

o]
o

60 . . . . . . .
2 3 4 5 6 7 8 9 10

Excess noise x 10~

FIG. 9. (Color online) The critical distance as a function of excess
noise €, g = 0o, V, = 0.3.
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usage of an optical amplifier may lead to a worse performance
compared with not using an amplifier.

IV. CONCLUSION

In this paper, we analyze the four-state protocol modified
by optical preamplifiers inserted at the output of the quantum
channel. We find that the modified protocol achieves higher
secret key rates over long distances compared with the original
protocol in specific scenarios. A critical line is given to separate
enhanced and degenerative regions, which will be instructive
and meaningful for experiments. In the enhanced region, the
usage of amplifiers enhances the performance of the protocol
to some extent. However, if working in the degenerative region,

PHYSICAL REVIEW A 86, 022338 (2012)

use of amplifiers leads to a negative effect, which should be
avoided.
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