
PHYSICAL REVIEW A 86, 022328 (2012)

Hybrid zero-capacity channels

Sergii Strelchuk
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom

Jonathan Oppenheim
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom,

University College of London, Department of Physics & Astronomy, London, WC1E 6BT, United Kingdom, and
London Interdisciplinary Network for Quantum Science, London, United Kingdom

(Received 5 July 2012; published 24 August 2012)

There are only two known kinds of zero-capacity channels. The first kind produces entangled states that have
positive partial transpose; and the second, states that are cloneable. We consider the family of “hybrid” quantum
channels, which lies in the intersection of the above classes of channels and we investigate its properties. This
study gives rise to explicit examples of the channels which create bound entangled states that have the property of
being cloneable to the arbitrary finite number of parties. Hybrid channels provide an example of highly cloneable
binding entanglement channels for which known superactivation protocols must fail; superactivation is the effect
where two channels, each with zero quantum capacity, have positive capacity when used together. We give two
methods to construct a hybrid channel from any binding entanglement channel. We also find the low-dimensional
counterparts of hybrid states: bipartite qubit states which are extendible and possess two-way keys.
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I. INTRODUCTION

In classical information theory, channels which cannot
convey information are boring. The only such channel which
has this property is the one where there is no correlation
between the input and the output. In contrast, in quantum
information theory, such channels (called zero-capacity chan-
nels) have a very rich and ill-understood structure. There is
a wide and largely unexplored variety of channels which
cannot reliably send quantum information. We do not yet
know how to characterize such channels, and thus far, there
are only two methods known to determine if a channel has
zero capacity. One criterion is if the channel produces states
that have positive partial transpose (PPT) [1,2], in which case
the channel produces states which cannot be distilled into pure
state entanglement [3]. A second criterion is if the channel
produces states which would lead to cloning [4]; i.e., imagine
that the states ψABE are produced by the channel, with A

being the subsystem held by the sender, B the subsystem by
the output of the channel, and E the environment. If the channel
has the structure that any state at B could be recreated at E,
then we know that the channel must have zero capacity because
if arbitrary states could be sent to B, then they would be cloned
at E, which we know to be impossible [5].

We believe that there are other kinds of zero-capacity
channels, for example, the channels which produce an equal
mixture of the Bell states, tensored with separable hiding states
as in [6], although there is no proof of this. However, even if we
restrict our attention to the two classes of known zero-capacity
channels, our current understanding is woefully inadequate.
For example, recently it was shown that the lack of capacity
of these two classes of channels is only the beginning of the
story. Although each class of channel individually has zero
capacity, if they are used jointly, they are able to convey
quantum information to the receiver. It is as if 0 + 0 = 1.
This effect, termed superactivation, was discovered by Smith
and Yard [7] for two zero-capacity quantum channels: One is

the PPT quantum channel which can produce private keys [6].
The second channel is from the class of cloning channels,
i.e., symmetric channels which create states ψABE which are
unchanged after switching B and E. We say that the resulting
reduced state ρAB is 2 extendible, because it has the property
of one of the subsystems being cloneable, i.e., we can make
a copy of B on a second system E (in this case, just the state
ψABE). If we can make k − 1 copies of the state on B, then
we say that the state is k-extendible.

The kinds of cloning channels which can be used in
superactivation have been extended in [8], but it is still an
important open question as to what sorts of channels and what
combinations of them can be superactivated. At the moment,
however, we do not even know whether all channels that
produce PPT bound entangled states can be superactivated.
We make progress in showing the opposite, by focusing our
attention on the special set of channels that produce states
which are both PPT bound entangled and simultaneously
cloneable. Since superactivation using these two classes of
channels requires one channel from each class, channels which
are both PPT and cloneable would only be superactivatable if
a third class of zero-capacity channels existed.

The set of states which are both 2-extendible and PPT
was shown to be nonempty [9], but the example together
with the proof that this state has the above properties was
complicated and nonintuitive. In our paper, we construct some
simple examples and investigate the overlap between the two
classes of channels. Moreover, we investigate the overlap of a
much broader set of channels that are not merely 2-extendible
but also k-extendible for any k � 2, and we produce an explicit
constructive example of the channels from this set for each k.
We term them hybrid channels. Previously, for k � 3 such
channels were only proven to exist [9], but no examples
were known. Here, we exhibit a method which can produce
an entangling, k-extendible, PPT channel, starting from any
entangling PPT channel.
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It will be easier to talk about quantum channels in terms of
states associated with them by virtue of the Choi-Jamioklowski
(CJ) isomorphism, which imparts the properties of the states
produced by the channel to those of its CJ state.

The problems of characterization of the set of bound entan-
gled states as well as the set of k-extendible states are currently
open. The latter problem is closely related to the problem of
separability of quantum states, as the set of bound entangled
states with PPT and that of extendible states approach the set
of separable states under certain asymptotic conditions. Such
lack of structure in describing both sets makes constructing
hybrid channels interesting and challenging at the same time.

Arguably, one of the strongest tests for separability is the
one introduced by Doherty et al. [9]. There, authors check
for the presence of certain necessary conditions held by all
separable states—the existence of the k-symmetric extensions
with PPT—by solving a semidefinite program. The test itself
consists of a sequence of steps performed in succession: at ith
step we attempt to construct the ith extension of the quantum
state by solving a semidefinite program. If at some step i0

we fail to construct the i0th extension for the original state,
then we conclude that the state is entangled and provide an
entanglement witness for it. This test is known to be complete
in the sense that running it for n rounds as n → ∞ we are
guaranteed that if the state is entangled we will stop after a
finite number of rounds. However, the size of the semidefinite
program grows exponentially with the number of extensions
we want to construct.

Symmetric extendibility appears in numerous other impor-
tant applications. It proved to be a useful tool for analysis of the
protocols that distill a secure key from quantum correlations
[10]. Procedures which increase security in such protocols
inherently depend on the ability to break the symmetric
extension, because failure to do so could result in an adversary
holding one of the extensions thereby compromising the
security of the protocol. At the moment, there exist no criterion
for the bipartite state to be extendible; however, some partial re-
sults that provide sufficient criteria have been discovered [11].

Motivated by the CJ states of different zero-capacity
channels used in the original superactivation scenario, in
Sec. II we introduce a new one-parameter family of so-called
hybrid states, which simultaneously possesses the properties
of the two channels in the superactivation example. The CJ
state of the first channel has PPT and is bound entangled,
and that of the other is 2-extendible, which can be made
to be k-extendible by a simple manipulation. Hybrid states
and hybrid channels get their name for incorporating those
crucial properties of both channels. This family has an entirely
different structure compared to the one introduced in [9],
where the authors provide the numerical example of a
2-extendible entangled state with PPT and give the proof
of existence of the entangled states with PPT which pass
the kth test. We provide a simple and explicit scalable
construction of k-extendible bound entangled states with PPT,
which for any fixed k pass all steps of the separability
test up to (k + 1)st. The proof that our family of states is
entangled as well as the distillation protocol is interesting in
its own right, since we equip parties with such nonentangling
resources as backward unidirectional classical communication
together with a backward 50% erasure channel. Following the

construction, we investigate the properties of these states, and
segregate a family of hybrid states that become more like
separable states in the sense that their degree of extendibility
increases with the dimension, yet they are far from the set of
all separable states. Finally, we show how to make our family
of hybrid states, which are extendible with respect to one of the
subsystems, into hybrid states that are extendible with respect
to both of the subsystems.

In Sec. III we show that hybrid channels constitute examples
of channels which produce bound entangled states which
cannot be activated by any of the known protocols known
to date. Finally, in Sec. IV, we discuss low dimensional hybrid
states that are suitable for generating in the laboratory. We
explore which of the features of bipartite hybrid states remain
when we constrain the dimension of the Hilbert space to be
2 ⊗ 2. It turns out that despite the low dimension, there exist
quantum states which are reminiscent of the hybrid states,
having two seemly antithetical properties of being 2-extendible
and having two-way distillable secret keys. These qubit states
present examples of 2 ⊗ 2 systems which are the analogs
of the hybrid states in the sense that they demonstrate a
relationship between extendibility and the classical key in the
absence of PPT, which is similar to that of extendibility and
bound entanglement. These states, being low dimensional and
therefore more feasible to create in the laboratory, may be of
interest to experimenters seeking to incorporate them into a
variety of key distribution protocols.

II. BOUND ENTANGLED K -EXTENDIBLE STATES

In this section we construct a family of states which have
PPT and are k extendible by a particular composition of the
states, each with one of the two properties. Depending on
which state we take as a starting point for our construction we
get two different families with both properties.

In the first case we start with the CJ state of the erasure
channel. Then we modify it by replacing the singlet by the CJ
state of the binding entanglement channel, which is a bound
entangled state with PPT, to obtain the state which retains the
property of being k extendible and in addition becomes PPT.
In the second case we start with the CJ state of a particular
binding entanglement channel and further replace part of the
former with the CJ states of the erasure channel. Again, we
obtain a bound entangled state with PPT.

We will further consider two quantum channels. The first
one, denoted as Nφ , is a channel which produces bound
entangled states φAB with maximally mixed reductions. Its
CJ state is PPT. The second channel is the erasure channel
N p

e (ρ) = pρ + (1 − p)|e〉〈e|, which with probability p faith-
fully transmits the input state to the receiver and with proba-
bility 1 − p outputs a flag signaling that erasure took place.

In the Secs. II A and II B, we show two ways to construct
the state with the properties above. Then in Sec. II C, we
study the properties of these families, and in Sec. II D, we
provide the way for a more flexible construction that admits
extensions on both of the parties.

A. Mixing erasure-like states

We turn to constructing the k-extendible states that have the
form similar to that of the erasure channel. Consider the CJ

022328-2



HYBRID ZERO-CAPACITY CHANNELS PHYSICAL REVIEW A 86, 022328 (2012)

state of the N
1
k

e :

θAB
+ = 1

k
�AB

+ + k − 1

k
1A ⊗ σB, (1)

where σB = |e〉〈e| is the erasure flag. Now, we construct
the higher-dimensional analog of θAB

+ , inserting instead
of the maximally entangled state any bipartite bound entangled
state with PPT φAB and TrAφAB = 1B , TrBφAB = 1A, where
the subsystems AB are trivially extended to the larger Hilbert
space AA′BB ′:

ρABA′B ′ = 1

k
φAA′BB ′ + k − 1

k
1AA′ ⊗ σBB ′

. (2)

The quantum channel, whose CJ state has the form of ρABA′B ′
,

is an erasure-like channel in the sense that applying it with
probability 1

k
results in Alice and Bob sharing a bound

entangled state φAA′BB ′
, which has PPT, and the other half

of the time Bob receives the erasure flag σBB ′
(encoded in

subspace B
′
), orthogonal to the support of the φAA′BB ′

. The
following lemma shows that the state (2) has indeed the desired
properties, being a constructive example of a bound entangled
state with PPT, which is extendible to arbitrary many parties:

Lemma 1. The state ρABA′B ′
defined in Eq. (2) is k

extendible with respect to the subsystem BB ′, has PPT, and is
bound entangled.

Proof. To show that the state is k extendible, we first
construct a 2-extension of ρAA′BB ′

with respect to the BB ′
subsystem:

ρAA′BB ′EE′ = 1
2ρAA′BB ′ ⊗ σEE′ + 1

2ρAA′EE′ ⊗ σBB ′
. (3)

Noting that TrBB ′ρAA′BB ′ = 1AA′
, we have ρAA′BB ′ ∼=

TrBB ′ρAA′BB ′EE′ ∼= TrEE′ρAA′BB ′EE′
, where the corresponding

reductions denote different subsystems isomorphic to each
other. Therefore, the state is 2 extendible. In the same way we
construct the k extension of Eq. (2):

ρAA′BB ′ = 1

k

k∑
i=1

ρAA′BiB
′
i ⊗ σBB ′\BiB

′
i , (4)

where BB ′ = B1B
′
1 . . . BkB

′
k , and BB ′\BiB

′
i denotes the

exclusion of BiB
′
i from BB ′.

To show that ρAA′BB ′
has PPT it suffices to show that each

of the summands has PPT. The state φAA′BB ′
has PPT by

definition, and the second summand of ρAA′BB ′
represents a

separable state, hence it has PPT.
Finally, we need to show that the state ρABA′B ′

is bound
entangled. Consider two parties Alice and Bob each holding
subsystems AA′ and BB ′ and communicating over a classical
channel from Bob to Alice. Bob performs a measurement
M = {M0,M1} with M0 = 1 − |e〉〈e| and M1 = |e〉〈e| on B ′,
where |e〉 is the erasure flag, and Bob tells Alice the outcome of
the measurement over the classical channel from Bob to Alice.
When M1 is measured, they abort the protocol. Otherwise, they
know that they share φAA′BB ′

, which is bound entangled. Given
that parties cannot create entanglement using a backward
classical communication channel alone, this shows that the
original state is entangled. �

For the state (2) to be useful in the protocols requiring
entanglement distillation from the shared quantum state, e.g.

proving to a third party that they indeed share the state which
has some bound entanglement, Alice and Bob need an addi-
tional resource, because a classical communication channel
from Alice to Bob is insufficient to distill entanglement from
the bound entangled state. One might think that equipping
the parties with some auxiliary communication resource may
be of some help, but clearly this must be a resource with
which the parties are incapable of creating entanglement, but
only can distill it from their shared state. As we show below,
there exists a special class of bound entangled states with PPT
and auxiliary communication resource in the form of the 50%
erasure channel from Bob to Alice, which enables the parties
to distill pure-state entanglement from their shared state.

To overcome the limitation, we consider quantum states
which contain d bits of secrecy. They are called private dits
(pdits) or twisted ebits and have the generic form [6]

γ (d) = UP AB
+ ⊗ σA

′
B

′
U †, (5)

where U = ∑d−1
i,j=0 |ij 〉〈ij |AB ⊗ Uij is a controlled unitary

operation termed twisting (with arbitrary unitaries Uij ); P AB
+

is the projector onto a d-dimensional maximally entangled
state �AB

+ = 1√
d

∑d−1
i=0 |ii〉AB ; and σA

′
B

′
is an arbitrary state

called the “shield” subsystem of dimension d ′, because its
presence protects private correlations. In the case when d = 2
we will call it a private bit (pbit). Parties that have A and
B subsystems of a pdit (known as the “key”) can extract
log2 d ebits by performing U † if one of them possesses the
shield A′B ′ in its entirety. However, when the shield is split
between the two parties, it can be impossible to perform the
untwisting using only local operations, and there exist states
which are arbitrarily close to pdits, yet no ebits can be produced
from them, as they have PPT. For the purposes of our task we
construct pbit to be of a particular form [6]:

γ
(d)
±

AA′BB ′
= p

2

(
�AB

± ⊗ τA′B ′
1 + �AB

∓ ⊗ τA′B ′
2

)
+ (1 − p)ωAB

sep ⊗ τA′B ′
2 . (6)

Here p ∈ ( 1
4 , 1

3 ), and τA′B ′
1 = 1

2k (ρs + ρa)⊗k and τA′B ′
2 = ρ⊗k

s

denote Werner hiding states with ρs = 2
d2+d

Ps and ρa =
2

d2−d
Pa with Ps,Pa denoting projectors on symmetric and

asymmetric subspaces, respectively [12], and

ωAB
sep = 1

2 (|01〉〈01| + |10〉〈10|)AB. (7)

Our construction works equally well with γ
(d)
± , and for

definiteness, we pick γ
(d)
+ . This results in the state

ρAA′BB ′
+ = 1

k
γ

(d)
+

AA′BB ′
+ k − 1

k
1AA′ ⊗ σBB ′

. (8)

It is easily seen that ρAAB ′B ′
+ has all the properties of state

(2) according to Lemma 1. Having introduced the state, we
also allow backward quantum communication between the
parties in the form of the 50% erasure channel from Bob to
Alice denoted as N 0.5

e,B→A. These auxiliary resources alone
are not sufficient to distill entanglement, since the quantum
and classical capacity of the erasure channel are zero, and
one cannot create entanglement using local operations and
classical communication. This will not be the case, however,
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if we allow for the forward classical communication from
Alice to Bob. To distill entanglement from the quantum state,
Alice and Bob perform the following three-step protocol on
the state ρAA′BB ′

+ :
(1) Bob measures M on the B ′ subsystem and sends the

classical outcome to Alice. If he gets outcome M1, then they
abort the protocol. Otherwise, they proceed to step 2.

(2) Bob uses N 0.5
e,B→A to send the B ′ subsystem to Alice,

with probability 1
k

he succeeds.
(3) Alice performs the untwisting operation, correctly

identifying �AB
± . She then performs one of the correction

operations {σz,1} to ensure that the final state is �AB
+ .

At the end of the protocol, with probability ps = 1
8k

, Alice
and Bob share a maximally entangled state �AB

+ .

B. Mixing pbit-like states

This time we construct the hybrid states by starting from
the construction of the PPT pbit (6). Then we substitute the CJ

states of the erasure channels N
1
k

e , k � 2:

eAB
+ = 1

k
�AB

+ + k − 1

k
1A ⊗ σB, (9)

eAB
− = 1

k
�AB

− + k − 1

k
1A ⊗ σB, (10)

instead of the subsystems that contain the singlet to ensure k

extendibility. The resulting state has the form

ηAA′BB ′
α = p

2

{
[α�AB

+ + (1 − α)1A ⊗ σB] ⊗ τA′B ′
1

+ [α�AB
− + (1 − α)1A ⊗ σB] ⊗ τA′B ′

2

}
+ α(1 − p)ωAB

sep ⊗ τA′B ′
2 , (11)

where α = 1
k
, and ωAB

sep is the same as in Eq. (7). State (11)
together with (2) represents an explicit example of bound
entangled states which pass the hierarchy of the separability
criteria introduced by Doherty et al. [9] up to any given level.
We prove that this state has the same properties as (2) in the
following lemma.

Lemma 2. The state ηAA′BB ′
α is k extendible with respect to

Bob’s subsystem (BB ′), has PPT, and is bound entangled.
Proof. The state (11) is k extendible because each eAB

±
is k extendible by construction and ωAB

sep is separable, hence
extendible to an arbitrary number of parties.

To see that the state has PPT we notice that by simple
regrouping of the terms we can write it as

ηAA′BB ′ = αγ AA′BB ′
+ + (1 − α) ζsep, (12)

where γ AA′BB ′
+ is the same as in Eq. (6), which has PPT,

and the remaining summands are separable, hence arbitrarily
extendible.

To show that the state is bound entangled, it is sufficient
to repeat the proof of Lemma 1, with the only difference that
Bob performs a measurement M = {M0,M1} on B. �

We will henceforth refer to both families of introduced
k-extendible states as k-hybrid states.

C. Properties of k-hybrid states

One question of interest is to investigate the bounds on the
distance to the set of separable states when the state becomes
highly extendible, especially if its extendibility depends on
the dimension. In particular, we are interested in how far our
family of k-hybrid states can be from the set of all separable
states when k is large.

Setting k = �f (n)
, where f (n) is the function of the
sublinear growth, the state (11) provides the the family of states
that are f (n)-hybrid, with vanishing amount of entanglement
on a single-copy level in the limit of large n. The tensor product
(ηAA′BB ′

�f (n)
 )⊗n is an f (n)-hybrid state, which is very far from the
set SEP of separable states.

Lemma 3. Consider the function of sublinear growth f (n) =
o(n), and the state (ηAA′BB ′

�f (n)
 )⊗n. Then

(a) min
σ∈SEP

∥∥ηAA′BB′
�f(n)
 − σ

∥∥
1 � ps

�f(n)
 , ps ∈
(

1

32
,

1

28

)
.

(b) min
σ (n)∈SEP

∥∥(
ηAA′BB ′

�f (n)

)⊗n − σ (n)

∥∥
1 → 1, as n → ∞.

Proof. The lower bound in (a) follows from the observation
that using the protocol described after Lemma 1, Alice and
Bob can distill the amount of entanglement which equals the
lower bound for all values of ps in the range. The latter ensures
that the state has PPT.

To prove (b) we apply the result from [13], where the authors
derived the following lower bound for the trace distance from
separable states to states which are bound entangled and have
PPT:

min
σ (n)∈SEP

∥∥(
ηABA′B ′

�f (n)

)⊗n − σ (n)

∥∥
1 � 1 − rn, (13)

rn = (6ε−1 + 1)(δn + 2d n
n+n2 ) + ε′, where d is the dimension

of the underlying Hilbert space of ηABA′B ′
�f (n)
 , which does

not increase with f (n). The terms δn,ε
′ indicate the speed

of convergence of the values obtained by the process of
tomography on σ (n) and (ηABA′B ′

�f (n)
 )⊗n accordingly. They arise
as a result of the application the law of large numbers
while performing the typical state tomography, and we can
assume them to be δn = A

n
and ε′ = B

n
for some constants

A,B. Lastly, ‖ηAA′BB ′
�f (n)
 − σ‖1 � ps

�f (n)
 = ε is taken from the
f (n)-extendibility condition that is present in the statement of
Lemma 3. Putting everything together, we get

lim
n→∞ rn = lim

n→∞

[
[6f (n) + 1]

(
A

n
+ 2dn

n + n2

)
+ B

n

]
= 0.

(14)

�
The result of Lemma 3 can be seen from a different perspec-

tive: by performing the task of entanglement distillation using
an expanded class of operations. If instead of just allowing
local operations and classical communication, we allow
nonentangling maps, we will be able to distill from ηABA′B ′

�f (n)
 the
amount of entanglement that vanishes as n → ∞. However,
the total distillable entanglement of the state (ηABA′B ′

�f (n)
 )⊗n

increases under nonentangling maps as O(nε) for some ε > 0,
thereby increasing the distance from the set of all separable
states. Each individual state in the tensor product has an ever
smaller amount of entanglement which decreases sublinearly
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as n increases; yet the entanglement of the tensor product
increases (also sublinearly). This is not the case if we allow a
super linearly vanishing amount of entanglement on the single-
copy level as n increases. One may think that by letting the state
be �f (n)
 cloneable, as f (n) increases with n, yet having ten-
sor product far from the set of separable states contradicts the
complete hierarchy of separability criteria of [9] in the sense
that the constructed state is highly cloneable yet far from the set
of separable states. This is not the case, because for every finite
n, we simultaneously fix f (n), and for some t > 0 we will fail
to construct the symmetric extension of the state ηAA′BB ′

�f (n)
 to
f (n) + t parties, thereby showing that it is entangled.

D. Fully extendible states beyond CJ states of
the erasure channel

Previously we were working with the states, which were
only extendible on one of the parties that possesses the state.
Here we look on the bound entangled states with PPT, which
are equally extendible on both parties. We will see that they are
obtained by a slight modification of the previous constructions,
symmetrizing them in a suitable way. To achieve this, we
replace the bound entangled state φAA′BB ′

in

ρAA′BB ′ = 1

k
φAA′BB ′ + k − 1

k
1AA′ ⊗ σBB ′

(15)

by a state which belongs to the class IBE of bound entangled
states, which are invariant with respect to the exchange of the
subsystems.

The following lemma provides a way to take a rather
generic bipartite bound entangled state and turn it into a highly
extendible state on both parties, which turns out to be K hybrid,
where K = 1

2k(k − 1).
Lemma 4. Let ρAB ∈ IBE . Then the state

ζ A = 1

K

k∑
i,j=1,i<j

ρAiAj ⊗ σ A\AiAj (16)

is K hybrid with the reduced state ζAiAj = TrA\AiAj
(ζ A),

where A = A1 . . . Ak , and σ A\AiAj is the separable state.
Proof. Fix i0,j0: Ai0 = A, Aj0 = B. From the permutation

invariance of ρAB we have TrAρAB = TrBρAB . This fact and
the overall compositional symmetry of Eq. (16) shows that ∀j :
j �= j0: ζAB = ζAj B = TrA\{Aj ,B}(ζ A). Similarly, ∀ i : i �= i0:
ζAB = ζAAi = TrA\{A,Ai }(ζ

A). To show that ζAB is bound
entangled, Bob performs measurement M as in the proof of
Lemma 1 on his share of state σ , and communicates the result
back to Alice. Now parties share the state ρAB with probability
1
K

, which is bound entangled. �
The result of Lemma 4 can be directly generalized to the

multipartite case.
One could generate examples of permutationally invariant

states from the general bipartite bound entangled states—not
necessarily permutationally invariant—symmetrizing them
with respect to the additional subsystems, as illustrated in the
example below.

Example. Let μAB be a bipartite bound entangled
state. Then the state μ̃AA′BB ′ = 1

2 [|10〉〈10|A′B ′ ⊗ μAB +
|01〉〈01|A′B ′ ⊗ (FμABF )], where F is a flip operator, belongs

to the set IAB . Take Ai0 = A, Aj0 = B, and consider the state

ζAB = TrA\AA′BB ′

⎛
⎝ 1

K

k∑
i,j=1,i<j

μ̃AiA
′
iAj A

′
j ⊗ σ A\AiAj

⎞
⎠ ,

(17)

where K = 1
2k(k − 1). To see that this is a bound entangled

K-hybrid state, Alice and Bob perform the protocol as in the
proof of Lemma 4, followed by the projective measurement on
a classical register A′B ′. Depending on the outcome of their
measurements, they will share either μAB or FμABF , which
is bound entangled.

III. NONTRIVIAL ZERO-CAPACITY CHANNELS WITH
NO KNOWN SUPERACTIVATION PROTOCOL

The channels whose CJ states are k hybrid provide an
interesting case of zero-capacity channels, whose quantum
capacity cannot be superactivated. The latter effect, originally
discovered in [7] and later generalized in [8], consists of having
two channels N1 and N2 which are too noisy to transmit
quantum information when used individually but when used
together have positive capacity. The first channel in the setup
produces bound entangled states with PPT, and another one
produces certain 2-extendible states. More formally, superac-
tivation is concisely described by the following relations that
must be simultaneously satisfied:

Q(N1) = 0,

Q(N2) = 0, (18)

Q(N1 ⊗ N2) > 0.

Consider a channel NH whose CJ state is k hybrid of the form
(8). The output of the channel is a PPT bound entangled state
which at the same time is k extendible. Such a channel retains
the characteristic properties of the pdit channel Nγ (d) [8]. Also,
this is the first known channel whose CJ state belongs to the set
of PPT states, which are simultaneously k-extendible states.
One can view this channel as the erasure channel which erases
the input state with probability 1 − 1

k
. Previously, one could

only construct a channel that is binding entangled and whose
CJ state belongs to the set of PPT 2-extendible states [9]. It
turns out thatNH cannot be activated using any of the channels
that were previously instrumental in all of the protocols for
superactivation up to date.

Lemma 5. Consider NH which produces states of the form
(8). Then the following conditions must be simultaneously
satisfied

Q(NH ) = 0,

Q(NH ⊗ Nγ (d) ) = 0, (19)

Q
(
NH ⊗ N p

e

) = 0, p ∈ [
1
2 ,1

)
.

Proof. The first equality follows directly from its membership
in the intersection of the set of two zero-capacity
channels. Taking N1 = NH ⊗ Nγ (d) results in a channel
that produces PPT states, hence, Q(N1) = 0. Similarly,
N2 = NH ⊗ N p

e could be represented as another erasure
channel with probability of erasure larger than p. Therefore,
Q(N2) = 0. �
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This curious case of hybrid channels leaves the question of
superactivation of such class of channels open. This means that
if they can be activated in principle, the activating channel will
belong to a completely new class of zero-capacity channels,
dissimilar to all zero-capacity channels we know now.

IV. LOW-DIMENSIONAL ANALOG OF HYBRID STATES

All the constructions of the hybrid states pose a challenge
to implement in the laboratory, because they require a high-
dimensional Hilbert space to exist. It is also known that in
2 ⊗ 2 dimensions hybrid states as we know them cannot exist
[2]. We find a low-dimensional analog to the hybrid states,
which turns out to be 2 extendible and key distillable with
the two-way communication. The existence of such an analog
can be easily seen in the dimensions where there exist hybrid
states, as each 2-hybrid state gives rise to extendible state with
classical key. It is easy to see that such states exist in higher
dimensions, as follows from the constructions of the k-hybrid
states. Using the state (2), one can construct the 4 ⊗ 5 state
which contains a key and is k extendible:

ρAA′BB ′
min = 1

k
γ AA′BB ′

min + k − 1

k
1AA′ ⊗ σBB ′

, (20)

where γ AA′BB ′
min is the 4 ⊗ 4 pbit with the smallest possible

dimensions of the shield recently introduced in [14], and σBB ′

is the erasure flag. The authors in [9] exhibit a 3 ⊗ 3 state
which achieves the same goal, although there is no known
distillation protocol to obtain a key.

From the above considerations it is not possible to construct
2 ⊗ 2 states which achieve the goal, because for the systems
on Hm ⊗ Hn, where mn � 6, having PPT implies separability
of the state [2]. Therefore, if we lift the requirement for the
bipartite state to have PPT, it turns out that it is possible to
have a bipartite 2 ⊗ 2 state that is 2-extendible and has a two-
way key (denoted as K↔). The latter means that if parties
possess many copies of the state, they are able to distill the key
using a bidirectional classical communication channel. The
existence of such states is not at all obvious and even to a
certain extent paradoxical, since it passes the second test from
the separability hierarchy and yet contains a two-way key.

Here we show the existence of states ρAB ∈ B(H2 ⊗ H2)
that are extendible and for which K↔(ρAB) > 0. We turn to the
class of Bell-diagonal states for which necessary and sufficient
conditions for extendibility have recently been discovered
[10]. More formally, let

ρAB = λ1�
+ + λ2�

− + λ3�
+ + λ4�

−, (21)

where
∑4

i=1 λi = 1, and �±,�± are Bell states. Put α1 =
λ1 − λ2 − λ3 + λ4, α2 = √

2(λ1 − λ4), and α3 = √
2(λ2 −

λ3). Then, ρAB is extendible if and only if any of the following
inequalities are satisfied [10]:

4α1
(
α2

2 − α2
3

) − (
α2

2 − α2
3

)2 − 4α2
1

(
α2

2 + α2
3

)
� 0, (22)

α2
2 − α2

3 − 2
√

2α1|α2| � 0, (23)

α2
3 − α2

2 + 2
√

2α1|α3| � 0. (24)

For the states expressed in the Bell basis there also exists a
sufficient condition for the distillation of key using single-copy

FIG. 1. (Color online) Extendible bipartite qubits with two-way
key.

measurements plus classical two-way processing protocols,
expressed in terms of {λi}4

i=1 [15]. It states that by sharing
many copies of the state ρAB , one can distill a secret key if
and only if

(λmax − λmin)2 > (1 − λmax − λmin)(λmax + λmin), (25)

where λmax = maxi λi , and λmin = mini λi .
Observation. Systems of inequalities (22)–(24) and (25)

are simultaneously satisfiable. The state (21) with eigenvalues
satisfying these systems of inequalities are 2-extendible with
K↔(ρAB) > 0.

The plot in Fig. 1 describes the triples of eigenvalues
(λ1,λ2,λ3) which are compatible with both systems of inequal-
ities.

V. CONCLUSIONS

We show an explicit construction of the entangled states
with PPT which are k extendible for any fixed k, and explored
their properties. In particular, we showed the existence of
highly extendible states which are far from the set of separable
states. We provided a simple way to distill entanglement when
the parties share a hybrid state, which is based on pbits, by
giving them a set of nonentangling resources in the form of
backward classical channels and backward erasure channels,
which has zero capacity.

The method used to construct hybrid states was inspired by
the superactivation phenomenon. The corresponding hybrid
channel has zero quantum capacity, and it enables the parties
to share a hybrid state extendible to any parties. An important
open problem is to find another zero-capacity channel which
when used jointly with the hybrid channel will superactivate
its capacity. It is evident that if such a channel exists, it must
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neither come from the set of channels which produce bound
entangled states with PPT, nor the set of channels whose
CJ states are symmetrically extendible. Any such channel
must be qualitatively different from all of the zero-capacity
channels known to date, and thus help us to better understand
the phenomenon of superactivation. Moreover, this problem is
intimately related to the hard long-standing open question of
the existence of the bound entanglement with negative partial
transpose (NPT), which resists the numerous attempts to solve
it. Can it be that the CJ states of the new class of zero-capacity

channels which are potent to superactivating the capacity of the
hybrid channel are examples of the elusive bound entangled
states with NPT?
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