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Singlet-state creation and universal quantum computation in NMR using a genetic algorithm
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The experimental implementation of a quantum algorithm requires the decomposition of unitary operators.
Here we treat unitary-operator decomposition as an optimization problem, and use a genetic algorithm—a
global-optimization method inspired by nature’s evolutionary process—for operator decomposition. We apply
this method to NMR quantum information processing, and find a probabilistic way of performing universal
quantum computation using global hard pulses. We also demonstrate the efficient creation of the singlet state (a
special type of Bell state) directly from thermal equilibrium, using an optimum sequence of pulses.
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I. INTRODUCTION

Quantum computation (QC) may possibly be the most
remarkable practical application of quantum mechanics [1].
Quantum information processing (QIP) promises, through
control of a large quantum system, to perform any quantum
algorithm. It holds promise for the efficient solution of some
of the difficult problems in computer science, such as integer
factorization [2], database search [3], and quantum simulation,
which are intractable on any present or future conventional
computer [4–7].

The genetic algorithm (GA) is a stochastic global-search
method based on the dynamics of natural biological evolution
[8]. It was proposed by Holland in 1975 [9]. The GA operates
on a population of solutions of a specific problem by encoding
the solutions in a simple chromosomelike data structure,
and applies recombination operators. At each generation, a
new population is created by breeding individuals (selected
according to their fitness value) using operations borrowed
from natural genetics. This process leads to the evolution of
individuals and generates populations that are better suited to
their environment. GAs are attractive in engineering design
and applications because they are easy to use and are more
likely to find the globally optimal solution compared to many
other design approaches [10].

Genetic-algorithm optimization has found applications
in various fields of physics, such as molecular geometry
optimization [11], the prediction of ultrahigh-pressure phases
of ice [12], optimization of silicon clusters [13], and deter-
mination of best-fit potential parameters for a reactive force
field [14].

Long-lasting coherences and high-fidelity controls make
nuclear magnetic resonance (NMR) an ideal technique for
quantum information processing. They have allowed NMR
QIP to experimentally implement several quantum compu-
tation algorithms, such as the Deutsch-Jozsa algorithm [15],
Grover’s database-search algorithm [3], Shor’s factorization
algorithm [2], preparation of the three-qubit GHZ state [16],
dense coding [17], and quantum teleportation [18]. NMR QIP
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is also well suited for testing basic principles of quantum
mechanics [19,20].

The decomposition of a unitary operator as a sequence of
experimentally preferable operators is the main task in the
experimental implementation of a quantum algorithm. There
are several proposals for such decomposition in NMR QIP,
such as SMPs (strongly modulated pulses) by Cory et al. [21],
GRAPE (gradient ascent pulse engineering) by Khaneja et al.
[22], and the algorithmic approach by Ajoy et al. [23]. Here we
investigate the use of a genetic algorithm for direct numerical
optimization of pulse sequences, and devise a probabilistic
method for performing universal quantum computation using
hard pulses. GA optimization, being a global-search algorithm,
yields unitary decompositions that are more general, and
hence can be applied to any spin system with different
values of J couplings and chemical shifts [24]. We also
investigate quantum state preparation using GA optimization.
For performing nonunitary transformations, we have included
pulsed-field gradients (PFGs) [25] in GA optimization. We
demonstrate hard-pulse unitary decomposition for preparation
of the pseudopure state (PPS) and long-lived singlet state
(LLSS) (along with the other three Bell states) directly from
thermal equilibrium in a two-qubit homonuclear NMR system.
Section II of this paper describes the optimization procedure
and Sec. III outlines the experimental implementations.

II. GENETIC ALGORITHM FOR NMR
PULSE-SEQUENCE GENERATION

In the liquid-state NMR, the system Hamiltonian is com-
posed of the interactions of nuclear spins with the external
magnetic field and with each other. By combining that with
external radio frequency (rf) pulses (with specific frequency,
amplitude, and phase), one can simulate any preferred effective
Hamiltonian [26]. Hence the unitary-operator decomposition
problem in NMR can be treated as an optimization problem
that gives optimal values of pulse parameters and delay
durations. Optimality is determined here by a proper fitness
function, which depends on the target Hamiltonian or the target
state.

We have performed pulse-sequence optimization using GA
for quantum logic gates (operator optimization) and quantum
state preparation (state-to-state optimization) [21]. State-to-
state optimization converges faster than operator optimization
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(there can be many operators which can perform the same state-
to-state transfer). In the discussion given below, single-qubit
rotation (SQR) pulses and two-qubit controlled-NOT (CNOT)
gates are operator optimizations, whereas creation of the PPS
and Bell states are state-to-state optimizations.

A. Representation scheme

The representation scheme is the method used for encoding
the solution of the problem in individuals undergoing genetic
evolution. Designing a good genetic representation that is
expressive and evolvable is a hard problem in evolutionary
computation [8]. Constructing an appropriate representation
scheme is the first step in genetic algorithm optimization.

In our representation scheme, we have selected the gene
to be a combination of (i) an array of pulses that we apply
simultaneously on each channel with arbitrary amplitudes θ

and phases φ, and (ii) arbitrary delays d between the pulses. It
can be easily shown that the repeated application of the above
gene forms the most general pulse sequence in NMR. Let an
individual representing a valid solution have m genes, and let
n be the number of channels or spins. Then the individual can
be described as a matrix of size (n + 1) × 2m, as shown in
Eq. (1):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ11 φ11 . . θm1 φm1

θ12 φ12 . . θm2 φm2

. . . . . .

. . . . . .

θ1n φ1n . . θmn φmn

d1 0 . . d1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

This matrix has to be optimized, according to the optimality
condition expressed by the fitness function (Sec. II B).

To begin with, we guess the number of genes m as a number
that depends on the complexity of the problem to be solved.
If the fidelity, i.e., the fitness of the best individual in the
population, calculated using the fitness function crosses a
cutoff value of, say, >99%, then the optimization program
tries to reduce the number of genes by assigning zero values to
a few gene parameters. If the fitness function does not cross the
cutoff value, then the program will rerun with more numbers
of genes. We have carried out the optimization procedure
using a population size of 100 individuals evolving for 1000
generations. All of the programs are written in MATLAB in
combination with MATLAB’s optimization toolbox.

B. Fitness function

A fitness function is a particular type of objective function
that describes the optimality of a solution or individual. In
operator optimization, GA tries to reach a preferred target
unitary operator (Utar) from an initial random-guess pulse-
sequence operator (Upul). We have selected the fitness function
Fpul to be the projection of Upul onto Utar,

Fpul = Tr[(Upul)(U
†
tar)]. (2)

It is normalized to give the maximum value 1.0 when
Upul = Utar.

FIG. 1. A two-spin system with chemical shifts ±δ and coupling J .

In state-to-state optimization, the optimization program will
run over different possibilities of Upul to prepare a preferred
target state ρtar from the initial state ρin. Then we choose the
fitness function to be

Fstate = Tr
[
(Upul)(ρin)

(
U−1

pul

)
(ρ†

tar)
]
. (3)

In both cases, the optimization has to maximize the fitness
function.

III. TWO-QUBIT HOMONUCLEAR CASE

Consider the two-qubit NMR homonuclear system (Fig. 1)
with chemical shifts ±δ and coupling J . Assuming weak
coupling (δ � J ), the Hamiltonians can be written as [26]

H = Hcs + HJ = 2πδ(Iz1 − Iz2) + 2πJ (Iz1Iz2). (4)

For single-qubit rotations in this system, one can use spin
selective pulses (low power, long rf pulses), which will excite
a small spectral region around the selected spin [27]. On the
other hand, by using the natural chemical shift difference
between two spins, we show here how to implement SQR
with global hard (nonselective) pulses. Later, we extend
this method to perform a two-qubit, homonuclear, universal
quantum computation using only global hard pulses.

A. Operator optimization

Operator optimization deals with pulse-sequence genera-
tion for quantum logic gates. Here we look at two essential
unitary operators for universal quantum computation: SQR
and the two-qubit CNOT gate.

1. Single-qubit rotations using nonselective pulses

For a two-qubit homonuclear NMR system, we first
consider the case J = 0,

H = Hcs = 2πδ(Iz1 − Iz2). (5)

Evolution under such a Hamiltonian creates a relative phase
among spins, proportional to the chemical shift difference
(2δ) and the evolution time. By combining this relative phase
with global-rotation hard pulses, single-qubit operations can
be performed.

The target operator for SQR is

Utar = exp(−iθIφk), (6)

where k = 1 or 2, θ is the flip angle, and φ is the phase.
The optimized pulse sequence for SQR is shown in Fig. 2. At
the start, we selected m = 3, i.e., three hard pulses and three
delays. The optimized sequence has three hard pulses and a
single delay. The flip angle θ of the SQR pulse is determined by
the delay and the flip angle of the third pulse, whereas the phase
of SQR φ and spin selection is determined by phases of all three
pulses (Table I). It may be pointed out that single-qubit rotation
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FIG. 2. Pulse sequence for single-qubit rotation. The first two
filled pulses are π/2. The flip angle of the third pulse is θ/2 with
phase φ. The parentheses above each pulse contain the flip angle
(first number) and the phase (second number).

with θ = π is a NOT gate and θ = π/2 is a pseudo-Hadamard
gate [28].

The experimental verification of the optimized SQR pulse
sequence in 5-bromofuroic acid [Fig. 3(a)] (in C6D6) is shown
in Figs. 3(c) and 3(d). The total length of the pulse sequence
for the π/2 SQR pulse is less than 500 μs, whereas the
conventional method (using a selective soft pulse) would need
a 2 ms shaped pulse. This substantial (a factor of 4) shortening
in time can lead to a significant advantage in quantum circuits.

The above analysis also holds for J �= 0, as long as γB1 �
δ,J , except that introduction of the J coupling dephases the
final state and results in a fidelity loss. The fidelity of the pulse
sequence [fitness function given by Eq. (2)] is studied using
a MATLAB simulation (Fig. 4) and is >99.8% for J/δ < 0.1
and θ < π/2. (J/δ < 0.1 is the limit for weakly coupled spins
and, in this paper, we are dealing with only weakly coupled
spins.) For π/2 < θ < π , the theoretical fidelity is still quite
good (>99.5%), as can be seen in Fig. 4.

2. Controlled-NOT gate

The CNOT gate is an essential component in the construction
of a universal quantum computer. Any quantum circuit can
be simulated to an arbitrary degree of precision using a
combination of CNOT gates and single-qubit rotations [1]. The
target unitary operator for C1NOT2 is

Utar = exp

[
− i

(
−π

4
I + π

2
Ix2 + π

2
Iz1 − πIz1Ix2

)]
. (7)

The optimized pulse sequence for CNOT is shown in Fig. 5(a),
obtained using the Hamiltonian of Eq. (4). All four CNOT gates
can be obtained by tuning (θ,φ), as shown in Table II. The
pulse sequence is identical for all four CNOT gates, except for
the angles θ and φ.

The experimental implementation of various CNOT gates in
5-bromofuroic acid is illustrated in Fig. 5(b). We achieved an
average experimental fidelity of 99.9%.

The theoretical fidelity of the CNOT operation [per Eq. (2)] is
dependent on the ratio J/δ. The MATLAB simulation of fidelity
as a function of J/δ for the CNOT gate pulse sequence is shown

TABLE I. Spin selection and phase φ of the SQR is controlled by
the phases φ1 and φ2.

Spin to be excited φ1 φ2

1 (φ − π/2) (φ + π/2)
2 (φ + π/2) (φ − π/2)

FIG. 3. (a) Chemical structure of 5-bromofuroic acid. Diagonal
elements in the table contain the chemical shifts of protons at
500 MHz and the nondiagonal element represents the J coupling
(sample dissolved in C6D6). (b) Equilibrium spectrum. (c) (π/2)y
SQR pulse on spin-1. (d) (π/2)y SQR pulse on spin-2. The average
experimental fidelity (calculated using the standard definition [21]
that compares spectral intensities with the equilibrium spectrum) for
the SQR pulse is 99.9%.

in Fig. 5(c). We find that fidelity is >99.99% for J/δ = 0.01
and >99.84% for J/δ < 0.1. This means that even if one
needs 10 CNOT gates in a quantum circuit, the fidelity can
exceed 99%.

FIG. 4. (Color online) MATLAB simulation study of fidelity
variation of SQR with different values of J/δ and θ . As J/δ ratio
increases the fidelity is reduced, but is still quite high. For example,
for θ = 90◦, the fidelity is >99.9% up to J/δ = 0.1 and for θ = 180◦,
the fidelity is >99.5% for J/δ = 0.1.
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FIG. 5. (a) Pulse sequence for the CNOT gate. The parentheses
above each pulse contain the flip angle (first number) and the
phase (second number). (b) Diagonal element tomography of (i) the
equilibrium state, and the states obtained after applying (ii) C1NOT2,
(iii) C2NOT1, (iv) C1NOT2, and (v) C2NOT1. The labels 1, 2, 3, and 4
represent the states |00〉, |01〉, |10〉, and |11〉, respectively. An average
experimental fidelity of 99.9% is observed (calculated according to
Ref. [21] from the diagonal elements of the density matrix). (c) The
fidelity F vs J/δ plot for the CNOT gate.

B. State-to-state optimization

State-to-state optimization deals with pulse-sequence gen-
eration for quantum state preparation. Here we added gradient
pulses to the optimization procedure, which enabled us to
perform nonunitary transformations. We show two important
quantum state preparations: pseudopure-state creation, and
Bell-state creation directly from the mixed thermal equilibrium
state using global hard pulses.

TABLE II. (θ ,φ) values for all four CNOT gates. The notation used
is CiNOTj , denoting control qubit i and target qubit j . Also Ci means
that the NOT operation acts on the target when the control qubit is in
the |0〉 state.

Gate θ φ

C1NOT2 π/4 π/2
C1NOT2 π/4 0
C2NOT1 3π/4 0
C2NOT1 3π/4 π/2

1. Pseudopure-state creation

Quantum information processing by NMR spectroscopy
uses PPS to mimic the evolution and observations on pure
states [29]. There are several methods for creating PPS
from thermal equilibrium [28–30]. We closely follow the
spatial-averaging method (SAM) of Cory et al. SAM uses spin-
selective pulses, which in homonuclear spin systems become
soft, long pulses. Instead, we obtain a novel pulse sequence
using only nonselective (hard) pulses for a homonuclear
two-qubit system. The optimization problem has the thermal
equilibrium state �ρeq = Iz1 + Iz2 as the initial state and
�ρ00 = Iz1 + Iz2 + 2Iz1Iz2 as the target state.

For easier optimization and experimental implementation,
we fixed all of the pulses to be π/2 and optimized only the
pulse phases. The resulting sequence consists of six π/2 pulses
and one π pulse for refocusing the chemical shift [Fig. 6(a)].
The phase of the π pulse can be controlled to achieve either
the |00〉 PPS or the |11〉 PPS. The other PPS’s are obtained
using a combination sequence of PPS and a SQR π pulse.
The experimental results are shown in Fig. 6(b). An average
experimental fidelity of 99.5% is obtained for various PPS’s.

The theoretical fidelity [using Eq. (3)] of the PPS prepara-
tion pulse sequence is also dependent on the ratio J/δ. The

FIG. 6. (a) The pulse sequence for PPS creation. All of the filled
pulses are π/2, and the nonfilled one is π , with the phases written
above them. ± in the phase of the π pulse determines the PPS to
be created (|00〉 or |11〉). The shaped pulse along Gz represents
a PFG pulse, which defocuses all of the transverse magnetization
components while retaining the longitudinal magnetization compo-
nents [25]. (b) Tomography of the diagonal elements after preparing
(i) the |00〉 PPS, (ii) the |01〉 PPS, (iii) the |10〉 PPS, and (iv) the |11〉
PPS. The labels 1, 2, 3, and 4 represent the states |00〉, |01〉, |10〉,
and |11〉, respectively. An average experimental fidelity of 99.5%
is observed (calculated according to Ref. [21] from the diagonal
elements of the density matrix). (c) The fidelity F vs J/δ plot of the
PPS-generation pulse sequence.
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FIG. 7. (Color online) (a) Pulse sequence for creating the Bell states directly from the thermal equilibrium state. All filled pulses are π/2
and nonfilled pulses are π , with the phases written above them. The shaped pulse along Gz represents a PFG pulse, which defocuses all of
the transverse magnetization components, retaining longitudinal magnetization components [25]. The values of φ and d are listed in Table III.
(b) Observation of the singlet state after applying the operator U of Eq. (9). (c) Density-matrix tomography of the created singlet state. The
labels 1, 2, 3, and 4 represent the states |00〉, |01〉, |10〉, and |11〉, respectively.

MATLAB simulation of this fidelity as a function of J/δ is
shown in Fig. 6(c). We observe that fidelity is >99.9% for
J/δ < 0.1.

2. Creation of Bell states directly from the thermal state

Bell states are maximally entangled two-qubit states (also
known as the Einstein-Podolsky-Rosen states) [31]. They play
a crucial role in several applications of quantum information
theory. They have been used for teleportation, dense coding,
and entanglement swapping [17,18,32]. The creation of Bell
states using NMR conventionally requires PPS creation +
Hadamard gate + CNOT gate, and hence is demanding [33].
We integrated all of these steps in a single pulse sequence, and
optimized that with GA. Again, we kept all pulse amplitudes to
be π/2, and optimized the pulse phases and the delay durations.
The optimized pulse sequence [Fig. 7(a)] has 10 nonselective
pulses. The final Bell state can be selected by controlling the
phase of the pulses and delay durations according to Table III.

The experimental preparation of the Bell state |φ−〉 =
1√
2
(|01〉 − |10〉), also known as the long-lived singlet state

(LLSS), is carried out in 5-bromofuroic acid [34,35]:

ρφ− = (0.25I − Ix1Ix2 − Iy1Iy2 − Iz1Iz2). (8)

TABLE III. Values of φ and d for Bell-state preparation using the
pulse sequence shown in Fig. 7(a).

Bell State φ1 φ2 φ3 d1 d2

|ψ+〉 = 1√
2
(|00〉 + |11〉) 3π/4 9π/8 3π/4 1/16δ 0

|ψ−〉 = 1√
2
(|00〉 − |11〉) 3π/4 9π/8 π/4 1/16δ 0

|φ+〉 = 1√
2
(|01〉 + |10〉) 0 5π/8 3π/4 9/48δ 9/8δ

|φ−〉 = 1√
2
(|01〉 − |10〉) 0 5π/8 π/4 9/48δ 9/8δ

The experimental results are shown in Figs. 7(b) and 7(c).
Since ρφ− is not directly observable, we convert the created
singlet state into observable single quantum coherence by
applying

U = (e−i(π/2)Ix1 )(e−i(π/2)Ix2 )(e−i(π/4)(Iz1−Iz2)). (9)

An experimental fidelity of more than 99.5% is achieved.
The pulse sequence given in Fig. 7(a) is the shortest known
pulse sequence for creating a pure singlet state in a two-qubit
homonuclear NMR system [36].

The singlet-state lifetime (Ts) was measured by applying
the WALTZ-16 spin-lock sequence [37] for a variable time
period (0–20 s). We find it to be 11.2 s (Fig. 8), which is
longer than T1 = 8.7 and T2 = 3.8 s.

Pulse-sequence generation using GA for larger qubit
systems and more complicated operations is in progress.
The SQR and CNOT gates implemented using hard pulses
(Secs. III A1 and III A2) are valid for larger qubit systems with
homonuclear spin pairs (for example, the 1H -1H -19F -19F

system in 2,3-difluro-6-nitrophenol [27]).

FIG. 8. Antiphase signal decay as a function of interval and fits
to a single exponential decay. The initial intensity of singlet state is
normalized to one. Observed singlet-state lifetime is Ts = 11.2 s. The
system has a T1 = 8.7 and T2 = 3.8 s.
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IV. CONCLUSION

To summarize, we have used the global-optimization power
of a genetic algorithm for (i) efficiently implementing SQR and
CNOT gates, and (ii) creating PPS in a homonuclear two-qubit
system using only hard pulses. This demonstrates a method for
performing universal quantum computation in such systems.
We also demonstrated the creation of LLSS and Bell states
directly from the thermal equilibrium state, with the shortest
known pulse sequence. It should be noted that all of the

pulse sequences discussed here are generic, independent of
the system and the spectrometer.
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W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[19] J. R. Samal, A. K. Pati, and A. Kumar, Phys. Rev. Lett. 106,
080401 (2011).

[20] V. Athalye, S. S. Roy, and T. S. Mahesh, Phys. Rev. Lett. 107,
130402 (2011).

[21] E. Fortunato, M. Pravia, N. Boulant, G. Teklemariam, T. Havel,
and D. Cory, J. Chem. Phys. 116, 7599 (2002).

[22] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and
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