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We consider the security of continuous-variable quantum key distribution using thermal (or noisy) Gaussian
resource states. Specifically, we analyze this against collective Gaussian attacks using direct and reverse
reconciliation where both protocols use either homodyne or heterodyne detection. We show that in the case
of direct reconciliation with heterodyne detection, an improved robustness to channel noise is achieved when
large amounts of preparation noise is added, as compared to the case when no preparation noise is added. We
also consider the theoretical limit of infinite preparation noise and show a secure key can still be achieved
in this limit provided the channel noise is less than the preparation noise. Finally, we consider the security
of quantum key distribution at various electromagnetic wavelengths and derive an upper bound related to an
entanglement-breaking eavesdropping attack and discuss the feasibility of microwave quantum key distribution.
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I. INTRODUCTION

Continuous-variable quantum key distribution (QKD) [1,2]
is the ability to generate a secret key between two distant
parties, Alice and Bob, which can be used to encrypt messages
for secure communication. This is achieved by using Gaussian
quantum resource states [2], where its theoretical security is
guaranteed by the no-cloning theorem. A typical Gaussian
modulated protocol [3—-8] involves Alice randomly displacing
a number of pure vacuum modes and sending them over
an insecure quantum channel to Bob. These modes are then
measured by Bob using either homodyne [3] or heterodyne
detection [5]. The various stages of classical communication
[1] follow next, including error correction, where either direct
[3] or reverse reconciliation [4] can be used.

Generally, in Gaussian QKD protocols, it is assumed
that Alice starts off with a large number of pure vacuum
states. However, this is an idealization and is never quite
true in practice with small amounts of unknown Gaussian
preparation noise often being present. The idea of analyzing
the security of continuous-variable QKD using such noisy or
thermal states was considered in [9,10]. Here they showed,
using reverse reconciliation, that the distance over which
continuous-variable QKD was secure declined rapidly as the
resource states became noisier, ultimately resulting in the
inability to generate a secure key. However, in a subsequent
work [11], it was shown using direct reconciliation that the
distance with which the protocol is secure does not decline to
zero as the states become noisier. In fact, even though the rate
of generation of the secret key decreases for increasing noise,
itremains bigger than zero for values of transmission 7 > 0.5.
This means that the security threshold of the protocol remains
at T = 0.5 for extremely high values of preparation noise.
Thus, up to a requirement of a strong modulation of the input,
thermal-state QKD is able to reach distances comparable to
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standard QKD. Furthermore, an application of the analysis of
noisy coherent states using direct reconciliation was found by
considering the security of QKD at various wavelengths of
the electromagnetic spectrum, revealing regions of security
from the optical all the way down into the microwave
region [11].

In this paper, we build upon the work presented in [11]
and outline our results here. We begin by using the previous
analysis of reverse [10,11] and direct reconciliation [11] using
homodyne detection and extending them both to study the case
of heterodyne detection. For the case of direct reconciliation
and heterodyne detection we show an improved robustness
to channel noise when large amounts of preparation noise
is added, as compared to the case with zero preparation
noise. This effect of noise improving the performance of
QKD was identified in discrete-variable QKD [12] and its
manifestation in the context of continuous-variable QKD was
found in [13,14]. In [11] it was shown that direct reconciliation
could tolerate a thermal variance of 10* times that of the pure
vacuum mode and still show no deterioration in the security
threshold of the protocol (albeit with a reduced key rate). Here
we extend this result and show that, provided the channel
noise is less than the preparation noise, the same protocol can,
in principle, tolerate any amount of preparation noise, again at
a cost of decreasing key rate. Finally, we consider the security
of QKD at various electromagnetic wavelengths and develop
an improved security bound along with an upper bound related
to an entanglement-breaking eavesdropping attack.

This paper is organized as follows. Section II introduces
the main concepts of thermal-state QKD. In Secs. III and IV
the secret key rates for direct and reverse reconciliation using
both homodyne and heterodyne detection are given. Section V
considers QKD in the so-called classical limit where an infinite
amount of preparation noise is added for direct reconciliation
using homodyne detection. Finally, before concluding in Sec.
VIII, we look at the security of QKD at various wavelengths
along with the feasibility of microwave QKD in Sec. VIIL.
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FIG. 1. (Color online) Schematic of a continuous-variable QKD
protocol using thermal states. The loss in the quantum channel
is modeled by a beam splitter with channel transmission 7. The
eavesdropping attack is a Gaussian collective attack in the form of
an entangling cloner attack where the variance of the EPR state is W
with the modes of the EPR beam described by the operators £” and
E’. The initial mode sent by Alice X4 is a thermal state, and once
Bob receives the mode X 5 he will perform either a homodyne (Hom)
or heterodyne (Het) measurement on it.

II. THERMAL-STATE QUANTUM KEY DISTRIBUTION

The initial stages of a thermal-state QKD protocol consists
in Alice preparing a number of randomly displaced thermal
states and then sending them to Bob over an insecure
quantum channel monitored by Eve (cf., Fig. 1). This initial
mode prepared by Alice can be described in the Heisenberg
picture as

X4 = X5+ Xo, (1)

where X describes the classical signal encoding and X,
describes the quantum noise of the thermal mode. Here
the quadrature variables are given by X A€ {Q A,PA}, Xs €
{O4,Pa} and Xo € {Qo,Py}. The overall variance V :=
V(X 4) of Alice’s initially prepared modes is given by

V =Vs+ Vo, ()

where Vj is a Gaussian distribution with zero mean. Here Vj is
the shot noise, which can be defined in terms of the conditional
variance as

V(Q4lQ4) = V(PalP) = Vo > 1, 3)
where the conditional variance is defined as [15,16]
[(XY)[?

VXIY)=VX) - 4)

V()
We can decompose the shot-noise variance as Vo =1+ 8,
where B is the variance of the preparation noise at Alice’s
station and 1 denotes the variance of the pure vacuum mode.
It is common in most continuous-variable QKD protocols to
theoretically let V = Vg + 1, i.e., zero preparation noise (8 =
0) in Alice’s mode preparation. However, in our analysis we
consider the general case where f is different from zero. This
means that the shot-noise Vj, (that we also call the “purity”)
can be greater than 1. Then we make the valid assumption that
this preparation noise is restricted to Alice’s station and is not
accessible, or known, to Eve (or even to Alice for that matter).

The most important type of eavesdropping attack is the
collective Gaussian attack [17-19]. It was shown that such
an attack is the most powerful attack allowed by quantum
physics, up to a suitable symmetrization of the protocols [20].
It consists in Eve interacting her independent ancilla modes
with Alice’s mode for each run of the protocol in such a way
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to generate a memoryless (or one-mode) Gaussian channel.
The entangling cloner [21] is the most important and practical
example of a collective Gaussian attack and is used in our
analysis. This consists in Eve perfectly replacing the quantum
channel between Alice and Bob with her own quantum channel
where the loss is simulated by a beam splitter with transmission
T €[0,1].

She then prepares ancilla modes £ and E” in an Einstein-
Podolsky-Rosen (EPR) entangled Gaussian state [22] with
variance W (see Fig. 1). Eve keeps one mode £” and injects the
other mode £ into the unused port of the beam splitter, leading
to the output mode £’. This operation is repeated identically
and independently for each signal mode sent by Alice. Eve’s
output modes are then stored in a quantum computer and
detected collectively at the end of the protocol. Eve’s final
measurement is optimized based on Alice and Bob’s classical
communication. Note that this attack can be simply described
by two parameters: the channel transmission 7" and the channel
noise W. The latter parameter can be replaced by the equivalent
noise of the channel,

a-17m
T

where the first term (1 — 7)/T corresponds to the noise
induced by the loss and € is the excess channel noise, which
can be written as € = (W — 1)(1 — T)/T. In the particular
case where W = 1, or equivalently ¢ = 0 (no excess noise),
the attack corresponds to a pure loss channel.

X = +e€, &)

III. REVERSE RECONCILIATION

We begin the analysis by considering reverse reconciliation
[4] (denoted by the symbol «) using homodyne and heterodyne
detection and then in the following section consider direct
reconciliation. We note that there is also another postprocess-
ing technique known as postselection [7]. However, such a
technique is quite involved and thus lies outside the scope
of this paper. Also note that reverse reconciliation using
homodyne detection has been analyzed before [9,10]. For
completeness, we give the derivation for reverse reconciliation
for homodyne detection so as to help in the derivation
for heterodyne detection. Before commencing we make a
brief comment about notation. When we consider homodyne
detection the relevant variable Xp is Qg € R (or Pp € R,
equivalently). On the other hand, when considering heterodyne
detection, the relevant variable X p is the pair {Q g, Pg} € R?.
Also, a variable with a hat is an operator, while the same
variable without a hat is the corresponding classical variable
after measurement.

A. Homodyne detection

The secret key rate R 4IHo™ for reverse reconciliation where
Bob uses homodyne detection is given by

RHom] ._ I(X4:Xp)—1(Xp: E), ©)

where the mutual information between Alice and Bob is
given by

I(X4:Xp):=H(Xp)— H(Xp|X,), @)
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where
H(Xp) = 3 log, V(Xp) ®)
is the Shannon (or classical) entropy and
H(X5|X4) = 3 log, V(X5 X) ©)

is the conditional Shannon entropy [23]. The mutual informa-
tion between Eve and Bob is given by the Holevo bound [24],
defined as

I(Xp: E):= S(E)— S(E|X5p), (10)

where S(-) is the von Neumann (or quantum) entropy. The von
Neumann entropy of a Gaussian state p containing n modes
can be written in terms of its symplectic eigenvalues [25]

n

Sp) =Y 8w, (11)
k=1
where
+1 +1 -1 —1
o= (5o (157) - (557 )o(57)
(12)

We will show how to explicitly calculate the symplectic
spectrum v = {vy, ...,v,} soon.

To begin with, though, we calculate Alice and Bob’s mutual
information. To achieve this the first step is to consider the
output modes at Bob’s (and Eve’s) station. These are given,
respectively, by

V(Q)=V(Pg) = —T)W+TV :=by, (13)
VI Qp)=V(Pe)=(1—-T)V+TW:=ey, (14

with the following conditional variances:
V(Qp104) = V(PglP) = (1 —T)W +TVy:=by, (15)

V(QplQ4) = V(Pe|Py)=(1—-T)Vo+TW:=e, (16)

derived using the definition given in Eq. (4). Using Eq. (7) with
Egs. (13) and (15) we can calculate Alice and Bob’s mutual
information to be

1 1-TYW+TV. TV
I(XA:XB>=§log2[( W+ TVs + 0]‘ (17)

(1—T)W+TV,

Note that, ultimately in the above equation it is V; that will be
varied in our calculations. Next up is the calculation of Eve
and Bob’s mutual information, i.e., Eq. (10). First, though,
we need to introduce the covariance matrix. The covariance
matrix V can be constructed using the following definitions of
its matrix elements:

Vlm = %(f}l?m + YA'mﬁ) - (ﬁ)(ﬁn)v (18)
Vi = (1) = (11)* = v, (19)

where ¥; is the /th element of the quadrature row vec-
tor Y = (Ql,ﬁl, ... ,Qn,ﬁn), which describes the bosonic
system of n modes. As mentioned previously, to calculate
Eq. (10), we need to calculate the symplectic spectrum of
the appropriate covariance matrices. The symplectic spectrum
v = {vy,...,v,} of an arbitrary covariance matrix V can be
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calculated by finding the (standard) eigenvalues of the matrix
|i2V|, where 2 defines the symplectic form and is given by

-&(° 1)

k=1

(20)

Here € is the direct sum indicating adding matrices on the
block diagonal.

Eve’s covariance matrix is made up from the two modes £’
and £

2n

Vo(V.V) = <diag[ev,ev] goZ) ’

oZ W1
where ¢ = [T(W? — 1)]'/? and the notation “diag” simply
means a matrix with the arguments on the diagonal elements

of a matrix and zeros everywhere else. Here Z and I are the
Pauli matrices

() -()

To calculate Eve’s symplectic spectrum, we note that a
particular covariance matrix of the form

al «/TCZ
V =
JTcZ bl

where ¢ > 0 and T € [0,1] has a symplectic spectrum with a
simple expression given by

vy = /Y (@ —b)],

where y = (a + b)> — 4¢*T > 4 [2]. Therefore, using the
above, Eve’s symplectic spectrum can be expressed in a more
compact form as

(22)

) :=V(a,b,c,T), (23)

(24)

v = 1(ey + W)X —4T (W2 — 1) £ (ey — W)]. (25)

Next we need to calculate the symplectic spectrum of the
covariance matrix Vgx,. This represents the covariance
matrix of a system where one of the modes has been measured
using homodyne detection (in this case Bob) and is given
by [2,26,27]

Veix, = Ve — (by)"'DIID,

- ()2)

Here Dis a4 x 2 matrix describing the (quantum) correlations
between Eve’s modes {E’, E”} and Bob’s output mode X z. It

(26)

where

27)

is given by
(o) (s2)
where
£ =T —T)(Vs+Vo— W), (29)
¢ =VT—TVW2—1, (30)
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and we Ahave usegl X =TXs+J1—TE and E' =
J1=TX,—+TE. Using Eq. (26) we find that Eve’s
conditional covariance matrix is given by

A C
Veix, = c” B (31)
where

Vw 0
A = [ T-ww ’
0 1-T)yWV+TW

I-T+TWV 0
B = TV+W-TW ,
o (VT =D~ rvw=rw) 0 .
0 —JT(W2 = 1)

The symplectic spectrum of the above conditional covariance
matrix is composed by the two eigenvalues [28]

\/A:I:\/A2 —4detV
Vi = 3 )

where detV (the determinant of the covariance matrix) and
A := det A + det B + 2 det C are global symplectic invariants.
Note that these quantities can also be simply expressed in terms
of the symplectic spectrum as

_ 2.2
detV = v vz,

(32)

A=12 402. (33)

Using Eq. (32), the corresponding symplectic spectrum v g|x,
of Vg |x, can be calculated but is not written down explicitly
here due to its length. Finally, using Eq. (11) and Eq. (12)
with the just-computed symplectic spectra, we can determine
Bob and Eve’s mutual information. The final secret key rate
RHoml s calculated and plotted in Fig. 2(a) using various

4
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(b) ]

6
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FIG. 2. (Color online) Secret key rates for reverse reconciliation
using (a) homodyne detection and (b) heterodyne detection for various
values of Vjy. The top dashed (red) line is a pure encoded state sent by
Alice with the solid (blue) lines giving different values of impurity,
ie., Vo = 2,3,5 from top to bottom. Here Vs = 10> and W =1 (ie.,
only loss on the quantum channel).
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values of V; for a lossy channel (i.e., a quantum channel with
only loss and no added noise, i.e., W = 1). We find that, for
only moderate values of V;, the security of the protocol reduces
rapidly.

B. Heterodyne detection
The secret key rate for reverse reconciliation where Bob
now employs heterodyne detection is given by
R = [(X 5 : Xp)— (X5 : E), (34)

where, as mentioned previously, Xp is {Qp,Pp} € R? for
heterodyne detection and not O € R (or equivalently, Pg €
R), as it was previously for homodyne detection. The mutual
information between Alice and Bob is again defined as

I(Xa: Xp) = H(Xp) — H(Xp|X»), (35)
except now the Shannon entropies are
H(Xp) =log, V(Xp) (36)
and
H(Xp|X4) = log, V(X5]X ). (37)

Note that the above two formulas do not have the usual factor
of 1/2 out the front. This indicates that twice the amount of
information is obtained using heterodyne detection, but at a
cost of the extra unit of vacuum noise introduced at the beam
splitter. The mutual information between Eve and Bob is again
given by the Holevo information,

I(Xp : E) := S(E) — S(E|Q3. Pp), (38)

but now S(E|Qp, Pp) is calculated from the symplectic spec-
trum vgg,, p, of the conditional covariance matrix Vg o, p,.
The variances of the quadratures of the output modes after
Bob’s heterodyne measurement are given by

V(Qp) = V(Pp) = J(by + 1) := b, (39)

where by is defined in Eq. (13). The following conditional
variances now apply:

V(Q5|04) = V(P|Py) = (b1 + 1). (40)

Using Eq. (35) we calculate Alice and Bob’s mutual informa-
tion to be

(1=T)W+TVs+TVy+1
(I—T)W+TVy+1

I(Xx: Xp) = log, [ ] L@

The covariance matrix of Eve conditioned on Bob’s heterodyne
measurement results {Q g, Pg} is given by [2]

Veosr, = Ve —607'D(QVz Q7 + D7, (42)

where Vg is given by Eq. (21) and Vz = byl. Here 6 :=
detVg +TrVpg + 1 and D is defined previously in Eq. (28).
We find that 6 = b +2by + 1 and VR + 1=V + 1

We find that
al ﬁcZ
VEi0p. Py = ,

43
JTcZ bl @3
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(2)

(b /

Secret Key Rate R

0 0.2 0.4 06 08 1

Transmission T

FIG. 3. (Color online) (a) Comparison of reverse reconciliation
using homodyne detection (dashed lines) against heterodyne detec-
tion (solid lines) for V; = 1 (red lines) and V,; = 1.5 (blue lines) and
with only loss on the quantum channel, i.e., W = 1 with Vs = 10°.
(b) Close-up view of (a), where V,, = 1.5 for heterodyne detection
[solid (blue) line] crosses over with the pure state [dotted (red) line]
for homodyne detection.

where

(=T 4+ T+ VW
14+ TV+A-T)W
1T+ 14+TV)W
14+ TV+A-T)W’

5 1+V
c=vW?—-1(2-— .
1+7TV 4+ -T)W

The above covariance matrix has the corresponding symplectic
spectrum

)

Vg ps = 31V/Y £ @ = D), (44)

where y = (a + b)> — 4c>T as given by Eq. (24). Using this,
the final secret key rate R “IH¢!l can be calculated and is plotted
in Fig. 2(b) for different values of V;.

We can now compare homodyne detection to heterodyne
detection using reverse reconciliation with, for example, an
impurity of V, = 1.5. This is plotted in Fig. 3(a). We note
that after a certain value of line transmission (= T > 0.79)
it is better, in terms of information rates, to use heterodyne
detection with a noisy input state than homodyne detection
with a pure input state, cf., Fig. 3(b).

IV. DIRECT RECONCILIATION

We now look at direct reconciliation [3] (»), which is
known to be better suited to short-range QKD with noisy
channels [4], where Bob uses both homodyne and heterodyne
detection. First, though, we begin with our analysis using
homodyne detection, as first presented in [11].
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A. Homodyne detection

The secret key rate for direct reconciliation using homodyne
detection is given by

R™[Hom] ._ I(X4:Xp)—I1(X4: E), 45)

where 1(X4 : Xp) has already been calculated in Eq. (17).
(Note that the mutual information between Alice and Bob is
symmetric with respect to the two reconciliation protocols).
For Eve we have

I(X4: E):=S(E)— S(E|Xa), (46)

where S(E|X ) is calculated from the spectrum vgx, of the
conditional covariance matrix V gy, . Eve’s conditional covari-
ance matrix for homodyne detection using direct reconciliation
is equal to

Ve, = VW, V), (47)

where Vg is defined in Eq. (21). The resulting symplectic
spectrum calculated using Eq. (32) is again too complicated
to be written here. However, in Fig. 4(a) we have plotted the
resulting secret key rates for various values of V. Here we
see the feature of direct reconciliation, as first noticed in [11],
where adding preparation noise onto the initial states does not
reduce the transmission range of the protocol (despite the fact
that the secret key rate is reduced). More on this effect soon.

B. Heterodyne detection

In our final analysis of this section, we consider heterodyne
detection using direct reconciliation. The secret key rate for
direct reconciliation using homodyne detection is given by

R .— 1(X,: Xp)— [(X4: E), (48)

where (X4 : Xp)is the same as Eq. (41). For Eve, her mutual
information with Alice is defined as

I(Xa : E) := S(E) — S(E|Q4.Pa), (49)

where S(E|Q 4, Py4) is calculated from the spectrum vg|p,, p,
of the conditional covariance matrix Vg|g, p,. This condi-
tional covariance matrix is given by

Veig,.p, = Ve(Vo, Vo), (50)

where again Vg is defined in Eq. (21). Using Eq. (24) we can
write the symplectic spectrum as

Viigur, = [V + WP —4T(W? =D (1 = W)].
(51)

The resulting secret key rates are plotted in Fig. 4(b) for
different values of initial mode impurity. As with homodyne
detection, when the impurity is increased, there is no reduction
in the security threshold of the protocol, only the secret key
rates. Note, however, that the security threshold for heterodyne
detection (T" =~ 0.73) is higher than that of homodyne detection
(T =0.5).

C. Improved performance using noise

We also notice that by adding more and more uncertainty
to the initial modes, the security threshold slightly improves
for heterodyne detection, meaning that the protocol can, at
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FIG. 4. (Color online) Secret key rates for direct reconciliation
using (a) homodyne detection and (b) heterodyne detection. Here the
dashed (red) line is the pure mode case V;, = 1 where the solid (blue)
lines are for impurity values V, = 2,3,5, from top to bottom, again
using the parameters W = 1 and Vs = 10%. (c) Close-up view of (b)
showing that as Alice’s input state becomes more and more thermal,
even though the information rates are reduced, the protocol becomes
more secure in terms of where the lines cross the transmission axis.
The values of V; are indicated next to the respective lines.

least for a small window of channel transmissions, tolerate
slightly higher levels of loss [cf., Fig. 4(c)]. For example,
for a pure vacuum as input, a secure key can be generated
from a transmission of T >~ 0.73. However, when the initial
mode is set to Vy =5 we have T >= 0.68. Numerically, we
find that for large values of impurity (Vy > 1), the security
asymptotes to 7 — 0.67. Out of the four families of protocols
studied in this paper, this is the only protocol that exhibits such
behavior. Figure 5 contains plots of the security thresholds (i.e.,
where R = 0) for both homodyne and heterodyne detection
using direct reconciliation and shows the improvement in
security when (unknown) preparation noise is added, with
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FIG. 5. (Color online) Security threshold plots for direct rec-
onciliation where the (red) dashed lines indicate a pure vacuum
mode at Alice’s preparation side and the (blue) solid lines indicate a
noisy coherent state (V, > 1) as input. The two lines converging to
T = 0.5 are for homodyne detection while the other two lines indicate
heterodyne detection. Adding preparation noise to the heterodyne
detection protocol illustrates the largest improvement in security of
the pair of two protocols.

heterodyne detection offering the largest improvement. This
situation of noise improving the performance of QKD was
seen in discrete-variable protocols [12] and has also been
seen in the context of direct reconciliation, where (pure)
coherent states and homodyne detection are more robust than
squeezed states and homodyne detection [29]. Furthermore,
reverse reconciliation, where Bob measures squeezed states
using heterodyne detection rather than homodyne detection,
also shows an enhanced robustness [13,14]. Achieving such
security robustness only works when additional noise is added
to the reference point (either Alice or Bob) of the reconciliation
protocol. This means Alice in direct reconciliation and Bob in
reverse reconciliation.

A simple physical way of understanding this effect and
why it sometimes helps in direct reconciliation but not in
reverse reconciliation, and vice versa, can be understood by
considering the following: the noise added on the side that is
used to make the key is not very harmful (and may even be good
sometimes) because it deteriorates both Eve’s information
and that of the authorized party trying to infer the key. The
exact balance between these two effects is subtle, so that the
difference (the secret key rate) may only be weakly affected. In
contrast, adding noise on the other side (i.e., on the authorized
party trying to infer the key) is only detrimental to Alice
and Bob, while it does not affect Eve’s information. In the
present case, preparation noise at Alice’s side obviously hurts
in reverse reconciliation, since it only penalizes Alice and not
Eve, while it does not hurt so much in direct reconciliation.
As an explicit example, consider the results in [14]. Here it
was explained that the improved performance of coherent-
state versus squeezed-state protocols in direct reconciliation
originates from the effect of adding noise at Alice’s side (this
effect is actually observable but not explained in [29]). This
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is easy to understand in the entanglement-based picture of
the protocol, where Alice’s estimate of a quadrature via a
heterodyne measurement can be seen as a noisy homodyne
measurement of the same quadrature. In this sense, the
coherent-state protocol is a noisy version of the squeezed-state
protocol, hence its improved performance [14]. This same
feature explains the comparison in Fig. 3 between homodyne
and heterodyne detection in reverse reconciliation. Since Bob
is having the key, heterodyning (viewed as noisy homodyning)
at Bob’s side does not hurt much and may even be beneficial,
as it appears to be the case here.

Finally, as we did with the reverse reconciliation protocols,
we compare homodyne detection to heterodyne detection but
this time for direct reconciliation. This comparison is plotted
in Fig. 6(a), where we have compared the two pure vacuum
modes against V, = 3 for both homodyne and heterodyne
detection. We have also plotted a comparison between direct
and reverse reconciliation for both homodyne and heterodyne
detection using impurity values of Vo =3 and 5. In the
case of homodyne detection, as given in Fig. 6(b), we
find that direct reconciliation offers stronger security and
higher information rates than reverse reconciliation for the
same values of impurity. This is somewhat mirrored in the
heterodyne detection scenario given in Fig. 6(c), although it
only becomes more apparent for values of impurity higher than
Vo =5.

D. Effect of channel noise

Here we consider the effect of channel noise (W > 1) on
the protocol that uses direct reconciliation with homodyne
detection for larger values of preparation noise. In particular,
we consider preparation noises with a variance up to 10*. In
Fig. 7 we plot the two cases of channel noises of W = 1.01
and W = 3 [Figs. 7(a) and 7(b), respectively]. As expected,
both plots show a reduction in both the channel transmission
and secret key rate for both channel noises. However, the
characteristic where the various values of V, converge to the
same channel transmission value still remains.

V. QKD IN THE CLASSICAL LIMIT

So far we have considered what happens to the four proto-
cols (direct/reverse reconciliation using homodyne/heterodyne
detection) when modest amounts (at most Vy = 5) of prepara-
tion noise is added onto Alice’s input states. In this section we
consider the theoretically interesting “classical limit,” where
an infinite amount of preparation noise is added, i.e., V) — oo,
and hence, the quantum vacuum mode contribution to QKD
becomes (almost) negligible. Here we consider the case of
direct reconciliation (using homodyne detection), because as
we have seen, reverse reconciliation (using either homodyne
or heterodyne detection) does not handle preparation noise
very well as the security (channel transmission) and the secret
key rate deteriorate quickly for modest increases in noise. It
was shown in [11] that for a pure loss channel (W = 1), a
secret key could still be established even if Alice’s preparation
noise was as large as Vy = 10*. Adding preparation noise from
Vo = 1to Vo = 10* reduced the key rate but kept the maximum
transmission threshold fixed at 7 = 0.5.
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Secret Key Rate R
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FIG. 6. (Color online) (a) Comparison of secret key rates between
direct reconciliation using homodyne detection (dashed lines) and
heterodyne detection (solid lines) for V; = 1 (red lines) and V, = 3
(blue lines) and with only loss on the quantum channel, i.e., W =1,
with Vs = 10°. Comparison of direct and reverse reconciliation for (b)
homodyne detection and (c) heterodyne detection for a lossy channel.
Here the dashed (red) lines indicate direct reconciliation, while the
solid (blue) lines indicate reverse reconciliation. In each of the cases
we have plotted the impurity values of Vy = 3 and 5.

We now consider what happens to the secret key rate
R™MHoml in the asymptotic limit where the preparation noise
goes to infinity Vy — oo and the channel noise is much
smaller, i.e., W < V,. To do this we consider the fixed ratio

¢ s _ o (52)
=—>0.

Vo
We note that keeping ¢ fixed results in keeping the signal-to-
noise ratio constant while increasing both the signal Vg and the
noise Vj. In our calculations we make the substitution Vg =
¢V and take the limit Vy — oco. We begin by first considering

the mutual information between Alice and Bob as defined in
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Secret Key Rate R

0.5 06 07 08 09 1
Transmission T

(b)

Secret Key Rate R
93]
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FIG. 7. (Color online) The effect of channel noise W on the secret
key rates for direct reconciliation using homodyne detection for a
quantum channel with noise of (a) W = 1.01 and (b) W =3 for
various values of V, where Vs = 10°. The effect of increasing the
channel noise only shifts the security threshold of both plots while
maintaining the same characteristic of the lossy channel [11] where
all values of V| converge to the same channel transmission. Such a
preparation noise effect is not seen in reverse reconciliation.

Eq. (17). Following the recipe given above, we obtain
I(X4: Xp) = logy(1 +¢). (53)

The above equation is simply Shannon’s formula for the
classical capacity of a single-mode communication channel
with additive Gaussian noise of variance V; and input Gaussian
signal Vg [23]. We now calculate the mutual information
between Eve and Alice I(X4 : E) in this so-called classical
limit. To do this we follow the techniques given in Sec. IV A.
Note that Eve and Alice’s mutual information is defined in
Eq. (46) and uses Eq. (11) with Eq. (12). However, in this
asymptotic limit the symplectic eigenvalues are also very large,
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i.e., v > 1, in which case Eq. (12) is simplified to

ev
gv) = g'(v) = log, (3) +00™. (54)
Again, in this asymptotic limit, the first symplectic spectrum
value of Eve using Eq. (25) is given by
vi=(1-T)V, (55)

while the other symplectic eigenvalue can be calculated in the
same manner to give

vy =W. (56)

To calculate the conditional symplectic spectrum vg|x, we use
Eq. (32), where

A=W+ (V-TVH+TW)Vy—TVo+TW)
—2T(W?—1) (57)
and
(A* —4detVex,) = (T — 1’[TX(V — WAV — W)
+(W? = VVo) +2T(V = W)
X (W = Vo)(W? +VVy—2)]. (58)

Taking the limit as before gives, for the first symplectic
eigenvalue, the following:

Vi, =1+ o0 —T)Vo+ 0(Vy"). (59)

Now in order to get a nonzero value for the other symplectic
eigenvalue we use Eq. (33) to give

VE|X,

(T (T +VW —=TVWXT + VoW — T VW)
- V Vo ’

(60)

Using the above asymptotic formulas with Eq. (45), we find
that a positive secret key rate exists only when

T+l vy
RMHoml _ og) |:(v ¢1 EIXa EXA:| ~ 0. (61)

VEVE
The above expression can be simplified to

o [T +VWA —DIT + VoW —T)]
& VVoW2(1 — T)2

} >0. (62

For a finite information rate we therefore require the following
inequality to be true:

[T+ VW1 =TT + %W ~T)]
VVoW2(1 — T)?

Algebraically, we find that the above inequality is always
satisfied for our required conditions of 1/2 < T < 1, Vp > 1,
Vs > 1, and W > 1. Therefore we have shown that in the
asymptotic limit where Vy — oo, Vg = ¢V, and W K Vj,
any value of preparation noise can be added onto the initial
quantum states used by Alice and a secret key can still be
achieved, albeit with a very small, but still finite, key rate. This
happens as long as the transmission of the channel is greater
than a half.

1.  (63)

022318-8



CONTINUOUS-VARIABLE QUANTUM KEY DISTRIBUTION ...

VI. QUANTUM CRYPTOGRAPHY AT VARIOUS
ELECTROMAGNETIC WAVELENGTHS

It is interesting to consider that one possible application
of the results from the previous two sections is continuous-
variable QKD over different wavelengths of the electro-
magnetic spectrum. Such regimes would be interesting to
explore due to various technologies using wavelengths other
than optical. For example, Wi-Fi and Bluetooth technologies
operate at the microwave frequency, and the security of
such devices is extremely important, as well as the security
of free space optical communication using infrared lasers.
The reason why the previous analyses would be useful for
such an application is that the average photon number is
dependent on the wavelength of the signals sent. Typically,
QKD experiments [1] are performed at telecom wavelengths
of 1550 nm, where the average photon number at room
temperature is very low (7 ~ 10~'%). However, when one
moves away from this wavelength and down into the infrared,
the modes become more thermal. In Sec. IV we determined
that direct reconciliation is significantly more robust against
preparation noise than reverse reconciliation and is therefore
better suited to our analysis of QKD at various wavelengths.

We consider a simple model where Alice sends Bob thermal
states at a particular wavelength and Bob uses a (perfect
efficiency) homodyne detector that is unaffected by the thermal
radiation. Note that if Bob employed heterodyne detection,
the additional unit of shot noise vacuum from the heterodyne
detector would also be thermal and would need to be taken
into account. For Eve’s attack, as with the previous sections,
we assume she performs a collective Gaussian attack, but
this time with a difference. Eve’s ancilla modes, which she
interacts with Alice’s incoming modes (where the interaction
is typically modeled using a Gaussian beam splitter), are
also thermal (for the same reason Alice’s are). In order to
combat this Eve performs her entire attack inside a cryostat
(see Fig. 8). In preparation for her attack, Eve’s first step (1)
is to cool her thermal ancilla modes so as to approximate

, 6) Bl
Alice ‘ ‘ Bob
A
o A
." \‘. Xa | T E )/%B | QB
. ’.—) | ; >
e l ‘ A A
V=V+V, \ Q or P (Hom)
L & _

Eve’s cryostat

FIG. 8. (Color online) Schematic of a continuous-variable QKD
protocol performed at different wavelengths of the electromagnetic
spectrum. Alice sends modes at a particular fixed wavelength to Bob
who measures the incoming modes using homodyne (Hom) detection.
Eve’s attack consists of using a cryostat which is used to cool her
thermal modes to produce pure vacuum modes (1). The second step
(2) involves implementing the entangling cloner attack with variance
W. This variance is chosen to match the level of the variance of the
radiation of the environment, effectively covering her tracks.
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pure vacuum modes. In the second step (2) she performs a
collective Gaussian attack via the entangling cloner attack
with variance W. The variance of this thermal state is chosen
to be equal to the variance of the environmental noise, so that
Eve essentially covers her tracks.

To begin the analysis we need to calculate the variance of a
mode at a specific wavelength. To do this we note that we can
write the average photon number 7 in terms of the quadrature
variance V as

i=(alay=Yv-1=V=2i+1, (64)
where & = (Q +iP)/2 and a' are the annihilation and cre-
ations operators, respectively, and we have also symmetrized
both quadratures, i.e., V := V(Q) = V(ﬁ). Now the average
photon number for a single mode is equal to [30]

1
exp(hf/kpt) — 1’

where t is the temperature, f is the frequency of the mode,
h is Planck’s constant, and kp is Boltzmann’s constant. Using
the techniques from Sec. IV A we can calculate the regions
where continuous-variable QKD is secure as a function of
the frequency (wavelength) and channel transmission. This
is plotted in Fig. 9, where areas of security correspond to
R > 0 where again R is the secret key rate. We see that
regions of security exist over various wavelength values
from optical (1550 nm) into the infrared and down into the
microwave region. We note that in the original paper [11],
where continuous-variable QKD at various frequencies was
first investigated, a bound was derived that underestimated
the security threshold. The new, tighter bound given in Fig. 9

(65)

}'_l:

oL Optical 1550nm 1| 10
10]4 | o
\ 10°
N SECURE REGION =
~ 10"k — =l | g
N Infrared "~ =T ot
- T 45
c; I 10 é{)
2 T =
g 0% N
oy N <
o 3
i3 — NHio* &
\\
10" E INSECURE REGION
= Microwave
10°
10" 1 , , , ,
0.5 0.6 0.7 0.8 0.9 1

Transmission T

FIG. 9. (Color online) Security of continuous-variable QKD as
a function of channel transmission 7 at various wavelengths of the
electromagnetic spectrum at room temperature T = 300 K. Beginning
at the infrared spectrum (430 THz) and down into the microwave
spectrum (starting from 300 GHz) where Vs = 108. The solid (blue)
line is the secure region derived against a collective Gaussian
attack. The dotted (red) line corresponds to an entanglement-breaking
channel, where Eve performs an intercept-resend attack. In such a
situation no secure key can be synthesized.
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improves upon the previous bound by having higher levels of
security.

It is instructive to consider a loss limit (or transmission
threshold) for QKD at various wavelengths. It is known
[31] that a loss limit exists when considering channel noise
for continuous-variable QKD. This bound corresponds to
Eve performing an intercept-resend attack, which destroys
any quantum correlations between Alice and Bob and thus
the possibility of generating a secure key [32]. In order to
avoid an entanglement-breaking channel, we demand that the
equivalent noise of the quantum channel x cannot exceed one
unit of shot noise, i.e., x < 1 [3]. Since x = W(1 —T)/T,
the security condition becomes

W < (66)

1-T
We can rewrite the above equation in terms of a secure
bound on the required frequency as a function of channel
transmission. Using the fact that W = 271 + 1 with Egs. (65)
and (66), we can show that we require

f>—aln2T - 1), (67)

where o = kgt/h. This curve is plotted as the dotted (red)
line in Fig. 9 and gives a lower bound in security.

A. Discussion: Feasibility of microwave QKD

Here we consider the possibility of using QKD at the
microwave frequency. The microwave frequency is ubiquitous
as a communication wavelength in today’s technologies,
ranging from cell phones to short-range devices such as Wi-Fi
and Bluetooth. The fact that small regions of security exist in
the microwave regime is initially quite surprising due to the
presence of large amounts of background noise. We consider
the microwave frequency from 300 GHz (1 mm) to 1 GHz
(30 cm). Using Eq. (65) for Alice’s initial modes, we find
that this corresponds to a range of variances from Vy = 41.66
to Vo = 1.25 x 10*, respectively. In Fig. 10 we plot the case
where V) = 41.66 (i.e., 300 GHz) and where the noise on Eve’s
mode is also W = 41.66. We see that a secure key can only
be generated when the transmission is higher than 7 ~ 0.981.
Here the straight vertical line distinguishing the insecure and
secure regions is the entanglement-breaking region as given
by Eq. (66),i.e., T > W/(1 + W) = 0.9766. For the 1-GHz
frequency, numerically we only start getting positive key rates
when the channel reflection (i.e., loss) is on the order of
1 — T ~ 1073, giving a key rate on the order of R ~ 1075,
Although the secure region is very small, the practical required
distances are also very small. Such a short-range QKD scheme,
unlike the typical long-range QKD protocols, could potentially
be ideal for such devices as Bluetooth (maximum distance
of ~10 m) and Wi-Fi (~75 m). Also, a secure quantum
version of near-field communication (NFC) [33] would be
an ideal application, as the range with which these microwave
devices operate over is ~10 cm. However, in such a situation
what actually constitutes Alice’s and Bob’s stations becomes
blurred. We point out that the dominant factor in terms of the
limited range in security is the channel noise W and, as we
have seen from the results of the previous section, not the
preparation noise. The effect of channel noise on the security
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FIG. 10. (Color online) Security of microwave quantum cryptog-
raphy. Here we consider the upper end of the microwave spectrum,
i.e., Vy = 41.66 (300 GHz), using the direct reconciliation protocol
and homodyne detection, where W = 41.66 and Vs = 10%. The
insecure region corresponds to the entanglement-breaking channel
where no secure key can be created, while a region between the
secure and insecure region exists where it might be secure but as yet
no known protocol exists. For example, secure protocols could be
developed which are based on more complex strategies in terms of
classical communications and postprocessing.

of thermal-state QKD is plotted in Fig. 11. Here we assume
Vo = 41.66 and see that after only a small increase in channel
noise (i.e., W = 5) one can only generate a secure key after
T ~ 0.86. Therefore a continuous-variable QKD protocol that
is able to tolerate large amounts of preparation and channel
noise is required in order to make microwave QKD feasible.
Other important effects such as efficiency of the reconciliation

._‘
S|
—
T

. \)

Secret Key Rate R
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,_.
(=]
(9%)
.

165 A .

0.84 0.86 088 09 092 094 096 098 I

Transmission T

FIG. 11. (Color online) How channel noise W affects the security
of thermal state QKD. Here we have V, =41.66 using direct
reconciliation and homodyne detection with Vs = 10°. From left
to right: W = 5,10,20,50, and 100. After only modest increases in
channel noise the security of the protocol reduces rapidly.
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protocol and finite-size key effects need to be considered and
will also reduce the secure region.

Another possible platform for microwave QKD is using
discrete variables, e.g., the BB84 protocol [34]. The prepa-
ration and detection of photons at the microwave frequency
is an active field of experimental research in cavity quantum
electrodynamics [35-38]. However, such experiments do not
involve the propagation of microwave photons over free
space. Although, even if the technology allowed the efficient
generation and detection of single microwave photons over free
space, the fundamental problem exists where Bob would not
be able to distinguish the photons that originated from Alice
to those which came from the surrounding environment—both
are indistinguishable.

VII. CONCLUSION

In conclusion, we have considered continuous-variable
quantum key distribution from the perspective of Alice using
thermal Gaussian states as her initial cryptographic resource,
instead of the usual pure Gaussian states. The case of direct
reconciliation and homodyne detection was analyzed in [11],
and we have extended those results here to include both direct
and reverse reconciliation for the case of heterodyne detection.
We showed that an improved robustness to channel noise can
be achieved when preparation noise is added in the case of
direct reconciliation using heterodyne detection. In [11] it was
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shown that direct reconciliation does not suffer any loss in
security when preparation noise is added (although the secret
key rate does decrease as a function of preparation noise), even
when the variance of the initial thermal states was as large as
10* times that of the pure vacuum. We significantly improved
upon this result by showing that direct reconciliation can
tolerate any amount of preparation noise, provided the channel
noise is much less than the preparation noise. Finally, we
derived an upper bound related to an entanglement-breaking
eavesdropping attack for quantum key distribution at various
electromagnetic wavelengths and ended with a discussion on
the feasibility of microwave quantum key distribution.
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