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Fate of the cluster state on the square lattice in a magnetic field

Henning Kalis,1,* Daniel Klagges,1,† Román Orús,2,‡ and Kai Phillip Schmidt1,§
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The cluster state represents a highly entangled state which is one central object for measurement-based
quantum computing. Here we study the robustness of the cluster state on the two-dimensional square lattice at
zero temperature in the presence of external magnetic fields by means of different types of high-order series
expansions and variational techniques using infinite projected entangled pair states. The phase diagram displays
a first-order phase transition line ending in two critical end points. Furthermore, it contains a characteristic
self-dual line in parameter space allowing many precise statements. The self-duality is shown to exist on any
lattice topology.
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I. MOTIVATION

The exploitation of quantum mechanics to build a quantum
computer is a very active area in current research, because it is
expected to be capable of solving classically hard problems in a
polynomial amount of time [1] yielding a deeper understanding
of the quantum world. To this end it has been shown that
a universal quantum computer can be built by only a small
set of elementary operations, namely, arbitrary single-qubit
rotations plus certain two-qubit gates like CZ or CNOT [2,3].
Especially the two-qubit operations turn out to be complicated
to implement in experiment.

Measurement-based quantum computing is a fascinating
alternative approach for a quantum computer [4]. The essential
idea is to prepare a highly entangled initial quantum state
on which only single-qubit measurements are sufficient to
run a quantum algorithm. Measurements with respect to an
arbitrary basis are easy to perform in experiment. This feature
comes with the price that the initial state is hard to prepare
in nature. One class of such highly entangled states useful for
measurement-based quantum computation is cluster states.

One natural way of realizing a cluster state would be to cool
down appropriate Hamiltonians having the cluster state as a
ground state. Indeed, so-called cluster Hamiltonians exist but
contain typically multisite interactions which are very rare in
nature. As a consequence, simpler models containing solely
two-spin interactions have been proposed in the literature
having the cluster Hamiltonian as an effective low-energy
model. But it has been shown recently that it is very challenging
to protect approximative cluster states against additional
perturbations [5]. Another approach to study such systems
efficiently could be to prepare the cluster Hamiltonian with
a quantum simulator [6–8]. However simulating multispin
interactions with respect to the desired topology will probably
be a challenge.

In any case it is important to check whether the cluster
state is stable and protected against additional perturbations.
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This has been the subject of several works in recent years
which mostly concentrate on additional magnetic fields as
a perturbation [9,10]. The latter studies either investigated
the change of entanglement of the perturbed cluster state or
explored the complete breakdown of the cluster state due
to a phase transition which serves as an upper bound for
measurement-based quantum computing.

Most is known for the perturbed one-dimensional cluster-
state Hamiltonian, e.g., the case of a single magnetic field
in the x direction can be solved exactly by fermionization
giving a second-order phase transition [10]. Recently also a
transverse Ising perturbation has been investigated [11]. But
of special interest are two-dimensional lattice topologies for
which a universal measurement-based quantum computer can
be formulated [12].

In this work we concentrate on the perturbed cluster-state
Hamiltonian on the square lattice. The case of an additional
magnetic field in the z or x direction has been already studied
[9]. However, a combination of both fields has never been
investigated. This more complicated problem is the major topic
of this work. The central aim from a solid-state perspective is
therefore to obtain the phase diagram. This is achieved by
combining analytical and numerical means. To be concrete,
we will show analytically that the phase diagram contains
a self-dual line in parameter space. A combination of high-
order series expansion and variational techniques are then used
to determine numerically the full phase diagram. Our main
finding is the existence of a first-order phase transition line
ending in two critical end points. Furthermore, we introduce
a quasiparticle picture for the elementary excitations within
the cluster phase. Finally we investigate the fidelity of the
cluster state with the perturbed ground states depending on the
strength of the perturbation, further confirming the obtained
phase diagram. Rigorously we then determine the threshold
for the usability for measurement-based quantum computing
with these states.

The paper is organized as follows. In Sec. II we introduce
the cluster-state Hamiltonian in a magnetic field and we discuss
certain limiting cases. Afterwards, we proove the existence of
a self-dual line in parameter space. The numerical methods
are introduced in Sec. III and the resulting phase diagram
is presented in Sec. IV. The consequences for the usability
in measurement-based quantum computing are discussed in
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Sec. V. Finally, in Sec. VI the major findings of this work are
discussed and embedded in possible future lines of research.

II. MODEL

The cluster Hamiltonian introduced by Raussendorf and
Briegel [4] has the cluster state as its unique ground state. The
model we investigate is defined on the two-dimensional square
lattice at zero temperature where there is a spin 1/2 degree of
freedom at each site of the lattice. The Hamiltonian reads

HCL = −J
∑

μ

σ x
μ

⊗
j∈�(μ)

σ z
j = −J

∑
μ

Kμ, (1)

where �(μ) denotes the four nearest-neighbor spins of lattice
site μ and the σα are the usual Pauli matrices with α ∈ {x,y,z}.
The cluster Hamiltonian HCL is exactly solvable. This is
a consequence of the large number of conserved quantities
originating from the fact that all operators Kμ commute with
each other and therefore with the full cluster HamiltonianHCL.
The conserved eigenvalue kμ of each operator Kμ takes values
±1 [illustrated in Fig. 1(a)], which is a direct consequence of
K2

μ = 1.
Consequently, the cluster Hamiltonian HCL has an equidis-

tant spectrum and its ground state for positive J corresponds
to the unique state having kμ = 1 for all μ, i.e., the energy
per site is −J . Elementary excitations of the system are called
clusterons. A one-clusteron state is defined by the flip of one
eigenvalue kμ to −1, i.e., the excitation gap for the creation of a
single clusteron is 2J . Clusterons of the Hamiltonian HCL are
hardcore bosons being static and noninteracting. Let us remark
that the cluster state is not topologically ordered in contrast to
the so-called toric code [13] which is also a stabilizer code
but displays topological order. As a consequence, elementary
excitations of the cluster Hamiltonian are not fractionalized
and a single clusteron is a well defined excitation.

Here we are interested in the fate of the cluster state under
an external uniform magnetic field. The full Hamiltonian of
interest reads

H = HCL −
∑
i,α

hα σα
i , (2)

where the sum runs over all lattice sites i and over all
field directions α ∈ {x,y,z}. A finite external magnetic field
typically destroys the exact solvability of the model, and one
is confronted with a complicated two-dimensional many-body
problem. Clearly, at very large external fields the ground state
of the system corresponds to a polarized phase where all spins
point in the field direction. The highly entangled cluster state
will therefore be destabilized under an external field either by
reducing the entanglement adiabatically or more drastically by
a quantum phase transition, i.e., a macroscopic rearrangement
of the ground state.

We start to analyze H by discussing certain limiting cases
where rather strong statements can be made:

(a) Single hz field. The simplest case is the one where
only the hz field is finite. In this limit the system remains
exactly solvable. The latter is a consequence of the fact that
the action of σ z

i on any eigenstate of HCL characterized
by the eigenvalues kμ only flips the value of ki , i.e., the
operator σ z

i creates or destroys a single clusteron on site i.

FIG. 1. (Color online) (a) Eigenvalues kμ of stabilizer operator
Kμ on the square lattice with spin 1/2 degree of freedom on each
lattice site. Since Kμ forms a superlattice since it commutes with
each of the starlike five spin interaction. This superlattice is again
defined on a square lattice. (b) Effect of σα operators on the effective
superlattice. In conclusion the mainly investigated perturbation with
a combined hx ,hz field can create or destroy (depending on the initial
state) either 0, 1, 2, or 4 clusterons.

This process (and the effect of all Pauli matrices σα
i ) is

illustrated in Fig. 1(b). Effectively, one has a collection
of N independent two-level systems which can be solved
analytically. The clusteron remains static and noninteracting.
Its excitation energy is given by

� = 2
√

J 2 + h2
z. (3)

The one-clusteron gap � increases with increasing field. The
cluster phase becomes more stable and it is adiabatically
connected to the polarized high-field phase. In contrast, the
entanglement of the ground state is strongly reduced, and the
usability for measurement-based quantum computing is lost
for a finite value of hz [9] (see also Sec. V).

(b) Single hx field. Next we focus on the case where
only the hx field is finite. The cluster Hamiltonian in the
presence of an hx field is not exactly solvable anymore. The
action of σx

i on a zero-field eigenstate is to flip all the four
eigenvalues kj with site j being a nearest neighbor of site i (see
Fig. 1). One is therefore left with a complicated many-body
problem of interacting and mobile clusterons. Fortunately, the
hx-only case can be mapped to different models discussed
in the literature in recent years. To be specific, the cluster
Hamiltonian in the presence of an hx field is isospectral to the
Xu-Moore model [10,14] which is known to be isospectral to
the quantum compass model [15] and to the toric code in a
transverse field [16]. Note that only the spectrum is the same
for all models but not the degeneracies. As a consequence
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of the isospectrality of all four models, one can conclude
that the cluster Hamiltonian in the presence of an hx field
is self-dual and a first-order phase transition exists at J = hx

separating the cluster phase and the polarized phase [16,17].
To proof the self-duality we make use of the controlled-Z (CZ)
transformation on every bond of the lattice. Remembering the
matrix representation

[CZ] =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ , (4)

one directly can confirm its unitarity. The application of the
CZ will result in

[CZ]H(J,hx)[CZ] = H(hx,J ), (5)

what is effectively the exchange of J and hx .
(c) Single hy field. Interestingly H(J,hy) also reveals itself

to be self-dual. We will proove this via the application of the
CZ and subsequent rotations in the Pauli basis that could be
visualized on the Bloch sphere. Performing a CZ on every bond
of the lattice will lead to the expression

[CZ]H(J,hy)[CZ] = −J
∑

i

σ x
i − hy

∑
μ

σ y
μ

⊗
j∈�(μ)

σ z
j . (6)

Applying a π rotation around the y direction and a π/2 rotation
around the z axis, one transforms the Hamiltonian in the
original one with the desired exchange of the parameters J

and hy .
Once more than one field hx , hy , or hz is finite, no rigorous

results are known in the literature. This is the main motivation
of this work. In the following we will concentrate on the
case hy = 0. Interestingly, the model displays a self-dual line
for this case. One can show again that performing a unitary
transformation with the operator CZ on every bond of the lattice
will lead to the expression

[CZ]H(J,hz,hx)[CZ] = H(hx,hz,J ). (7)

This is a direct consequence of [CZ,σ z ⊗ 1] = 0. So one finds
one self-dual point at J = hx for each value of hz which
reduces to the self-duality discussed above for the hx-only
case if hz = 0. This analytical property will strongly help us to
numerically analyze the Hamiltonian H. Another remarkable
aspect of the CZ transformation is its independence of the lattice
topology. Therefore the self duality holds also on other lattices
where one can define the cluster Hamiltonian on neighboring
bonds.

Our main goals are the following. First, we would like
to deduce the full zero-temperature phase diagram. We are
therefore interested in phase transitions from the highly
entangled cluster phase into polarized phases present at large
fields. Such phase boundaries of the cluster phase certainly
represent upper bounds for the usability of measurement-based
quantum computing. Second, we will analyze the fidelity of
the ground state in the presence of external fields with the
exact cluster state at zero field. This allows more accurate
conclusions about the robustness of the cluster state under the
presence of external perturbations and its practical usefulness.

III. METHODS

We study the Hamiltonian H by combining high-order
series expansions and variational calculations using infinite
projected entangled pair states (iPEPS) [18]. In the following
we will introduce the most important properties of both
individual methods. Afterwards, we describe how to combine
both techniques.

A. Series expansions

Our aim is to calculate a high-order series expansion of the
ground-state energy per site, of the one-particle gap, and of
the fidelity per site for different limits of the perturbed cluster
Hamiltonian. We have used a partitioning technique provided
by Löwdin [19,20] to calculate the energetic properties of the
system. The fidelity has been calculated [5] by a projector
method introduced by Takahashi [21]. A more detailed discus-
sion of the fidelity and its calculation is presented in Sec. V.
Here we concentrate on describing the most relevant properties
of Löwdin’s approach giving us the essential quantities to
determine the phase diagram.

The Löwdin approach is highly related to the Rayleigh-
Schrödinger and Brillouin-Wigner perturbation theory but
provides faster convergence in the case of degeneracies [20].
In essence, all approaches try to find an approximative solution
of the eigenvalue problem

H|ψn〉 = En|ψn〉, (8)

where usually the Hamiltonian H = H0 + λV is split into
an unperturbed part H0 and a perturbation V which is
adiabatically turned on with the real parameter λ. Consider
the nth eigenvalue of H0 to be g-fold degenerate. Using the
partitioning technique we define two projection operators P

and Q as follows:

P =
g∑

j=1

∣∣ψ (0)
n,j

〉〈
ψ

(0)
n,j

∣∣, Q = 1 − P, (9)

where |ψ (0)
n,j 〉 denote the unperturbed eigenstates of H0.

Therefore P is a projection operator on the unperturbed
eigenspace of H0, and Q is the projection operator on
the complementary (orthogonal) space. Furthermore, let us
define R := (E(0)

n − H0)−1 to be the resolvent where E(0)
n

corresponds to the unperturbed eigenenergy of the states |ψ (0)
n 〉.

In the following we denote by E
(j )
n with j ∈ {0,1,2, . . .}

the energy correction in order j perturbation theory of the
eigenvalue problem Eq. (8). In fact, in the nondegenerate case
(g = 1) the application of the characteristic Löwdin operator
sequence in order j ,

O(j ) = PV

j−1∑
m=0

⎡
⎣m−1∑

i=0

(
−R

i∑
k=1

E(k)
n

)i

RQV

⎤
⎦

m

P, (10)

corresponds to the energy correction terms of the Rayleigh-
Schrödinger perturbation theory. Calculating the expectation
value for the ground-state energy in order j then can be
achieved by computing

E
(j )
0 = 〈

ψ
(0)
0

∣∣O(j )
∣∣ψ (0)

0

〉
. (11)
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Therefore the Löwdin method provides perturbative correc-
tions of expectation values for an observable up to a desired
order j . We have calculated the general operator sequence
given in Eq. (10) up to order 16. Additionally, we have reached
order 20 for the simpler case where the first-order contribution
given on the operator level by PV P vanishes. Since we are
interested in the phase diagram, which in general can contain
first- and second-order phase transitions, it is necessary to
determine the ground-state energy per site e0 ≡ E0/N and the
one-particle gap � as a high-order series expansion.

Let us stress that E
(0)
1 is N -fold degenerate in all pertur-

bative limits considered in this work. In the high-field limit
the unperturbed first excited states E

(0)
1 correspond to spin flip

excitations in the polarized phases and in the cluster phase,
E

(0)
1 refers to the bare one-clusteron energy.
Unfortunately, it is not possible to calculate the gap

momentum with Löwdin’s method because one has no access
to hopping elements. We therefore have also used the method
of Takahashi [21] and perturbative continuous unitary transfor-
mations [22–24] allowing a high-order series expansion of the
hopping elements. With these methods one usually calculates
the one-particle dispersion ω(kx,ky). The one-particle gap is
then identified as the global minimum obtained for a certain
momentum kmin. Once the gap momentum is identified, one
can again use Löwdin’s approach by constructing an eigenstate
of the system having this specific momentum (see below).

In order to compute the dispersion ω(kx,ky), one has to
find all possible hopping elements a

(j )
(l,m) in a given order j . A

hopping element from site (x,y) to site (x + l,y + m) on the
square lattice is defined as

a
(j )
(l,m) = 〈

ψ
(0)
1

∣∣
(x+l,y+m)H

(j )
eff

∣∣ψ (0)
1

〉
(x,y), (12)

where

H(j )
eff = �† (j )H�(j ) (13)

is supposed to be the effective Hamiltonian for the case of
Takahashi‘s perturbation theory of a specific model in order
j perturbation theory. Here |ψ (0)

1 〉(x,y) corresponds to a one-
particle state where the particle is located on site (x,y). Let us
mention again that this can be either a spin-flip excitation in a
high-field limit or a clusteron excitation which both live on a
square lattice.

The specific � ≡ �(∞) is the operator that transforms
an unperturbed state |ψ (0)

n 〉 into the perturbed state space
(�|ψ (0)

n 〉 = |ψn〉). The effective Hamiltonian consists of all
possible sequences of creation and annihilation operators,
that conserve the total particle number. Particularly for the
Hamiltonian H, the effective representation H(j )

eff allows
creation or destruction of 0, 1, 2, or 4 clusterons [see
also Fig. 1(b)]. Once having computed all possible hopping
elements of a given order, one can perform a Fourier transform
into momentum space, which leads to the expression for the
dispersion

ω(k)(j ) = (
a

(j )
(0,0) − E

(j )
0

) −
∑

l,m�=0

a
(j )
(l,m) cos(lkx + mky). (14)

Finding min(ω(k)(j )) leads to the series for the one-particle
gap. Let us remark, that the Fourier transform diagonalizes the

Hamiltonian in the one-particle sector because the momentum
is a good quantum number. Once adding another particle into
the system the Hamiltonian will not be diagonal after the
Fourier transform, due to the existence of a relative motion.

As a result, we found that the gap is located at momentum
(kx,ky) = (π,π ) for all limits studied in this work. This allows
us to construct a one-particle eigenstate |ψ (0)

1 〉(kx ,ky ) of the
effective Hamiltonian explicitly having (kx,ky) = (π,π ). The
state |ψ (0)

1 〉(kx ,ky ) is defined as the Fourier transform of

the one-particle states |ψ (0)
1 〉(x,y),

∣∣ψ (0)
1

〉
(kx ,ky ) = 1

N

∑
x,y

ei(kxx+kyy)
∣∣ψ (0)

1

〉
(x,y). (15)

We therefore have used Löwdin’s method to obtain a series
expansion with maximal order directly for the one-particle gap.

High-order series expansions for the ground-state energy
per site e0 and � have been calculated for different limits of the
Hamiltonian (1). In particular, we have performed expansions
for (i) J � hx ,hz, (ii) hx � J ,hz, and (iii) hz � J ,hx which
are given explicitly in paragraph 1 of the Appendix. Note
that expansions (i) and (ii) are identical up to an exchange
of couplings J and hx due to the self-duality. Additionally,
it is possible to obtain series expansions for hx + hz � J .
This is done by applying a base transformation diagonalizing
the unperturbed local part hx

∑
i σ

x
i + hz

∑
j σ z

j of the full
Hamiltonian. As a consequence, the latter expansion is the
hardest one numerically, because the transformed perturbation
(the transformed cluster Hamiltonian) is a very complicated
object containing in general all possible five-site matrix
elements.

B. iPEPS

The method of iPEPS [25] produces a variational approxi-
mation to the ground-state wave function of two-dimensional
quantum lattice systems in the thermodynamic limit by em-
ploying a tensor-network approach [18]. A number of different
variations of the method have already been successfully
applied to a number of systems [25–39]. In our case, we
have adapted the specifics of the algorithm in order to deal
efficiently with the peculiarities of the Hamiltonian in Eq. (2).
Here we explain the most distinctive features of the algorithm
that was employed to simulate this model (for generic notions
on the method, we address the reader to the aforementioned
references).

The goal of our algorithm is to best approximate the ground
state ofH. In general terms, this can be done by implementing,
in a way to be specified later, an imaginary-time evolution
driven by the Hamiltonian:

|
gs〉 = lim
τ→∞

e−τH|
0〉
‖e−τH|
0〉‖ , (16)

where |
gs〉 is the ground state of H and |
0〉 is any initial
state that has a nonvanishing overlap with the ground state. In
order to approximate this evolution, we proceed similarly as
explained in, e.g., Refs. [25,28]. More precisely, the evolution
is split into small imaginary-time steps δτ � 1 by using a
Suzuki-Trotter expansion of the evolution operator e−τH. In
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FIG. 2. (Color online) (a) Tensor network diagram for the five-
body operator eδτJKμ . This is given in terms of five tensors, Tz

(repeated four times) and Tx . (b) Nonzero components of tensors
Tz and Tx . (c) Tensor network diagram for the one-body operator
eδτ

∑
α hασα

i . This is given in terms of one tensor Th. (d) Nonzero
components of tensor Th.

our case, for the Hamiltonian in Eq.(2) we have

e−τH ≈
⊗

μ

(eδτJKμ )
⊗

i

(
eδτ

∑
α hασα

i

) + O(δτ 2)

≈ [U (δτ )]m + O(δτ 2), (17)

where a simple first-order approximation has been employed.
In the above equation, m = τ/δτ , and U (δτ ) ≡ e−δτH is an
operator acting over the whole system and implementing the
imaginary-time evolution for a time step δτ .

It is now convenient for us to switch to the language
of tensor network diagrams (see, e.g., the Introduction in
Ref. [35]). Using this, we can understand the different elements
in the above equation in terms of the diagrams in Figs. 2 and
3. In particular, the evolution operator U (δτ ) can be easily
understood as an infinite projected entangled pair operator
(iPEPO) described by just one tensor; see the diagrams in
Fig. 3.

Using the above representation of the evolution operator in
terms of an iPEPO, the iPEPS algorithm applied to our case
proceeds as follows:

(i) Initialization. Take the initial state |
0〉 to be an iPEPS
with a unit cell of two sites and bond dimension D, as in
Fig. 4(a). This is defined in terms of tensors �A,�B at the
lattice sites and the diagonal and positive matrices λ1, . . . ,λ4

at the links. This representation for the iPEPS is useful in the
context of the so-called simplified update; see Refs. [26,38].
The initialization can be done in a variety of ways, e.g., by
choosing a PEPS that corresponds to the nonperturbed cluster
state [40], or either with polarized and random states.

Then, at step k, apply the following:
(ii) Contraction. Apply the iPEPO for U (δτ ) over the iPEPS

for state |
k〉, as in Fig. 4(a). As a result, obtain a new PEPS
of bond dimension D̃ = 4D for the evolved state |
̃k+1〉,
defined in terms of tensors �̃A,�̃B and matrices λ̃1, . . . ,λ̃4;
see Fig. 4(b). The complexity of this step is O(D4).

FIG. 3. (Color online) (a) The contraction of four Tz tensors
together with Tx and Th produces a tensor R with double indices,
which can be considered as single indices after grouping them.
(b) The evolution operator U (δτ ) can be understood as an iPEPO
that can be constructed just from tensor R.

(iii) Quasiorthogonalization. Obtain a quasicanonical form
for the evolved iPEPS of state |
̃k+1〉. We do this by (a)
applying the identity operator over all the links of the lattice, (b)
performing simplified updates [26,38] to account for the action
of these (identity) operators, and (c) iterating this procedure
until the convergence of the diagonal positive λ matrices at
each link. The iPEPS obtained in this way is defined by tensors
�̃′

A,�̃′
B , matrices λ̃′

1, . . . ,λ̃
′
4, and is reminiscent of the canonical

form for infinite matrix product states [41,42]. Notice, though,
that no canonical form exists formally in tensor networks with
closed loops, such as two-dimensional PEPS. Nevertheless, we
expect this procedure to converge quickly for systems with a
finite correlation length, and to produce a representation of the
iPEPS that is well suited for further numerical manipulations.
In practice, we observe that for a wide variety of interesting
systems [including the Hamiltonian in Eq. (2)] this strategy
converges very fast numerically. The bond dimension of the
resultant iPEPS does not change, that is, D̃′ = D̃ = 4D; see
Fig. 4(c). The complexity of this step is O(D5).

(iv) Truncation. Truncate the bond dimension of the iPEPS
down to D′ = D by keeping the largest diagonal elements of
the λ matrices at each link. The new iPEPS for the new state
|
k+1〉 is defined by tensors �′

a,�
′
B and matrices λ′

1, . . . ,λ
′
4;

see Fig. 4(d).
(v) Iterate the above procedure for k = 0,1, . . . by applying

the iPEPO for U (δτ ) until the desired convergence has been
achieved (in, e.g., relevant observables and λ matrices).

The above procedure is very similar to the simplified update
for two-body gates explained in Refs. [26,38]. Here, though,
we use the full power of the iPEPO to handle the five-body
interactions in the Hamiltonian in a simple and elegant way.
Once convergence has been achieved, we extract expectation
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FIG. 4. (Color online) At step k, (a) the iPEPS for state |
k〉 is
defined by tensors �A,�B and positive diagonal matrices λ1, . . . ,λ4.
The iPEPO for operator U (δτ ) is applied. (b) iPEPS for the evolved
state |
̃k+1〉. Matrices �̃A,�̃B are obtained by contracting �A and
�B with R, whereas matrices λ̃1, . . . ,λ̃4 are obtained by doing
the tensor product of λ1, . . . ,λ4 with the 4 × 4 identity operator.
(c) Quasicanonical form for the iPEPS of state |
̃k+1〉. (d) iPEPS for
state |
k+1〉.

values by using, e.g., the directional-Corner Transfer Matrix
(CTM) method explained in Ref. [28].

For the purposes of this paper we have seen that an
iPEPS with bond dimension 2 � D � 4 is already sufficient
to produce reliable accuracies in all the results, in combination
with a time step δτ = 10−4 (relative error in the energy per
site of 10−3 to 10−4). Moreover, refinements of the above
procedure are also possible by using “full” variational updates
of the tensors of the iPEPS [25]. Nevertheless, we have also
implemented a number of simulations of the Hamiltonian in
Eq. (2) using such a full variational tensor update, and saw
almost no difference in the accuracies of the results.

C. Series expansion plus iPEPS

In the following we apply a combined series expansion
(SE) plus the iPEPS approach in order to determine the
phase diagram of the perturbed cluster Hamiltonian as it has
already been done successfully in the context of perturbed
topologically ordered states [33,34].

The underlying physical idea is the following. High-order
series expansions of the one-particle gap (or more generally
other modes) allows the location of second-order phase
transition points. The critical field value hcrit corresponds to the
field where the one-particle gap vanishes �(hcrit) = 0 which
often can be determined accurately by resummation techniques
like dlogPadé (Padé) extrapolations. In contrast, any series
expansion restricted to one limit is not able to detect first-order
phase transitions. We therefore define the field h∗ for which
eiPEPS

0 (h) < eSE
0 (h) with h > h∗ holding. The order of a phase

transition is now assigned as follows: If hcrit < h∗, we detect a
second-order phase transition at hcrit. If hcrit > h∗, we detect a

−1.25
−1.2

−1.15
−1.1

−1.05
−1

 0  0.2  0.4  0.6  0.8  1  1.2

e 0

h

bare series e0
iPEPS (D = 2,3,4)

Pade O(8,9)

 0

 0.5

 1

 1.5

 2

Δ

h* hcrit

bare series Δ
dlogPade O(7)

Pade O(8)

FIG. 5. (Color online) One-particle gap � (upper panel) and
ground-state energy per site e0 (lower panel) as a function of the
magnetic field h. The field direction is parametrized by hx = h cos(θ )
and hz = h sin(θ ) and is chosen to be θ = 5

128 π . Results of series
expansions are shown as lines while circles correspond to iPEPS data
with bond dimension D = 2,3,4 (energy differences are negligible
in the scale of the plot). The bare series obtained in order 9 (order
8) for e0 (�) is plotted as solid red lines. Different dlogPadé (Padé)
extrapolations of the highest order are shown as dashed (dotted) lines
(deviant extrapolations are omitted in the plot for the sake of clarity).
Notice that these extrapolations almost collapse in most of the plot.
It can be clearly seen that eiPEPS

0 is well below eSE
0 for a field value

for which the one-particle gap is still finite, i.e., hcrit > h∗ (black
vertical lines) holds. We therefore detect a first-order phase transition
for h ≈ 0.86 illustrated as the dashed vertical line at h∗.

first-order phase transition at h∗ because the series expansion
has missed a level crossing in the ground state observed in
the variational iPEPS calculation. A typical example for the
current problem of the perturbed cluster Hamiltonian is shown
in Fig. 5.

IV. PHASE DIAGRAM

In this section we present our results for the zero-
temperature phase diagram of the cluster Hamiltonian in
the presence of external fields which we have obtained by
the combined series expansion plus the iPEPS approach
introduced in the last section.

In order to simplify the presentation of the phase diagram,
we use a coordinate transformation that maps the three-
dimensional parameter space spanned by the basis vectors
{(J,0,0)T ,(0,hz,0)T ,(0,0,hx)T } onto a two-dimensional trian-
gle. Explicitly, the transformation reads

X = 1√
2

(1 − J + hx), Y = 1√
2

(1 − J − hx), (18)

where the normalization is chosen to be hx + hz + J = 1.
Let us note that we will nevertheless refer to certain points
in parameter space using the physically more intuitive three-
dimensional coordinates (J,hz,hx). The final phase diagram
obtained by the series expansion plus the iPEPS approach is
shown in Fig. 6.

The phase diagram is symmetric about the centerline of the
triangle (solid red line in Fig. 6) which is a direct consequence
of the self-duality. The centerline is in fact the self-dual
line. The left edge (right edge) of the triangle corresponds to the
exactly solvable case (J,hz,0) [(0,hz,hx)] already discussed in
Sec. II. Here the system shows no phase transitions. Finally, the
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FIG. 6. (Color online) Phase diagram of the perturbed cluster
Hamiltonian as a function of X and Y obtained by the series expansion
plus the iPEPS approach. The corners of the triangle correspond to
the three limits: (i) the pure cluster Hamiltonian (J,0,0) (left corner),
(ii) the pure hx field (0,0,hx) (right corner), and (iii) the pure hz field
(0,hz,0) (upper corner). The self-dual line is illustrated by the vertical
red solid line cutting the triangle in the middle. The whole spectrum
and therefore also the phase diagram on both sides of the self-dual
line are fully symmetric. First-order phase transition lines are drawn
as orange solid lines. The two critical end points are marked by blue
circles [coordinates of the left point (Xleft ≈ 0.604,Yleft ≈ 0.174) and
coordinates of the right point (Xright ≈ 0.810,Yright = Yleft)].

baseline of the triangle represents the model (J,0,hx) which
displays a strong first-order phase transition at hx = J (lower
end point of the red line in Fig. 6). Altogether, it is therefore
possible to adiabatically connect all points on the edge of the
triangle without encountering any phase transition.

For the general case of J , hx , and hz finite, we have to
use the series expansion plus the iPEPS approach about two
different limits to deduce the full phase diagram displayed in
Fig. 6.

First, we compared series expansions and iPEPS data in the
cluster phase, i.e., high-order series expansions about the limit
J � hx,hz are performed. A convenient parametrization for
the obtained series is to set hx = h cos(θ ) and hz = h sin(θ )
for J = 1 and to compare for different values of θ the series
expansion and iPEPS data. One typical example is displayed
in Fig. 5 and has already been discussed in the last section.
We find two (symmetric) first-order lines emerging out of
the already known first-order self-dual point at hz = 0. The
difference between h∗ and hcrit becomes smaller and smaller
when increasing θ signaling a weakening of the first-order
nature of the transition. At a certain point (indicated as blue
circles in Fig. 6), h∗ and hcrit are comparable consistent with a
critical end point of the first-order transition lines. Increasing
the angle θ to even larger values, no transition at all is
detected.

Second, we analyzed our data coming from the limit hz �
hx,J . Here we find that the one-particle gap shows no tendency
to close (in fact it increases) for any combination of J and
hx . This is consistent with the absence of any second-order
phase transition at least in the convergence radius of our series
expansion about the limit hz � hx,J . Furthermore, putting
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 1.95
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 0  0.1  0.2  0.3  0.4  0.5

Δ

hz

Pade[3,3]
Pade[3,4]
Pade[6,4]
Pade[4,6]

bare series O(10)

−5.5
−5

−4.5
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−3.5
−3

−2.5
−2

−1.5
−1

 0  3  6

e 0

iPEPS (D=2,3,4)
SE high z−field

FIG. 7. (Color online) The gap �/J as a function of hz is
shown along the self-dual line hx = J setting J = 1. The solid line
corresponds to the bare series and dashed lines represent different
Padé extrapolations. We remark that dlogPadé extrapolations reveal
no poles along the real axis. (Inset) Comparing the iPEPS data
with the series expansion for the ground-state energy per site e0

in the high hz-field case. In this limit e0 behaves linearly with the
field e0/J = −hz. The good agreement between the different limits
indicates that there is no phase transition along the full self-dual line.

the series expansion and iPEPS together we find no evidence
for additional phase transition lines except the two first-order
phase transition lines already discussed in the last paragraph.
As a typical example confirming this scenario, we show in
Fig. 7 our data on the self-dual line. Clearly, no evidence of an
additional phase transition can be seen.

V. FIDELITY

From the condensed matter point of view, the main ques-
tions are addressed by determining the zero-temperature phase
diagram. However, the phase boundaries only correspond
to an upper bound for the usability in measurement-based
quantum computing. In the following we want to pinpoint
the boundaries quantitatively for which the entanglement
properties of a perturbed cluster state at finite fields are still
appropriate for measurement-based quantum computing. In
order to answer this question, we calculate the fidelity per site
d of the perturbed cluster state at finite fields with the exact
cluster state measuring the distance between two quantum
states. In fact, it has been shown that the cluster phase is
still usable for measurement-based quantum computing by
applying quantum error correction techniques when the fidelity
per site d is larger than 0.986 [43].

Let us remark, that the fidelity is not a metric on density
operators, even though it is used as a measure to estimate
distances. In this paper we evaluate only the fidelity between
pure states. Nevertheless, in what follows we give a short
general introduction to this quantity.

The fidelity for two quantum states governed by their
density matrices ρ and σ is defined as

F (ρ,σ ) ≡ tr(
√√

ρσ
√

ρ). (19)
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KALIS, KLAGGES, ORÚS, AND SCHMIDT PHYSICAL REVIEW A 86, 022317 (2012)

Let ρ = ∑
x px |x〉〈x| and σ = ∑

x qx |x〉〈x| be two commut-
ing density matrices, i.e., they can be diagonalized in the
same orthogonal basis. One can show that definition (19) will
reproduce the definition of the fidelity in classical probability
theory:

F (ρ,σ ) = F (px,qx) =
∑

x

√
pxqx. (20)

Later we will explicitly use the invariance of the fidelity under
unitary transformations. Using Uhlmann‘s theorem one finds
that the fidelity has the characteristics of an overlap of two
wave functions

F (ρ,σ ) = max
|ψ〉,|φ〉

|〈ψ |φ〉|, (21)

where |ψ〉,|φ〉 are purifications of the respective density
operators. This general definition reduces for the case of one
pure state ρ = |φ〉〈φ| and an arbitrary (mixed) state σ to

F (ρ,σ ) = tr(
√

〈φ|σ |φ〉|φ〉〈φ|) =
√

〈φ|σ |φ〉. (22)

The square of F (ρ,σ ) corresponds to the probability of finding
σ in the pure state |φ〉. Here we need the fidelity of two pure
states ρ = |φ〉〈φ| and σ = |ψ〉〈ψ | which is given by

F (ρ,σ ) = |〈φ|ψ〉|. (23)

It has been shown [44] that the fideltiy F (ρ(λ),ρ(λ′)) of
a quantum system H = H0 + λV is an extensive quantity
which scales exponentially with the number of lattice sites
N . Since our aim is to quantify the system behavior in the
thermodynamic limit, we use the fidelity per lattice site d

which can be derived from the fidelity as follows:

d = lim
N→∞

N

√
F (ρ(λ),ρ(λ′))2. (24)

We calculated the fidelity per site d between the ground state
of the system at finite magnetic field and the unperturbed
cluster state, both using the iPEPS and high-order series
expansions. In the context of the iPEPS, this quantity can
be easily computed by using, e.g., the techniques explained in
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FIG. 8. (Color online) Direct comparison between the series
expansion for the fidelity and the iPEPS results. We contrast the
results in the limit hz = 0 (upper panel) and hx = 0 (lower panel).
One clearly sees the deviation of both approaches near the first-order
transition (red dashed line). We ascribe this fact to the insensitivity of
the SE approach to first-order effects. The agreement along the hz axis
remains very good, considering the Padé extrapolations of the bare
series. Notice also the collapse of the different Padé extrapolations
with the bare series in the scale of the plot.
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FIG. 9. (Color online) Phase diagram including the useful region
for quantum computing. The shaded gray (green) area and the gray
inset indicate the usable region for measurement-based quantum
computing (MBQC) according to the fidelity threshold at d � 0.986
[43]. (Inset) Comparing the extrapolations for the series expansion
of the fidelity per site (black line) with the iPEPS results (green
dots). Clearly there is no agreement beyond the first-order transition
line (hx > h∗). This is an artifact of the series expansion technique,
which is not sensitive to first-order effects. Departing from the phase
boundary, both fidelities are in very good agreement.

Ref. [39] (and generalizations thereof). With series expansions,
it can be obtained using Takahashi‘s degenerate perturbation
theory [21] as discussed recently [5]. The explicit expression
of d reads

d = lim
N→∞

N
√

|〈ψCS|�|ψCS〉|2, (25)

where the unperturbed ground-state wave function is set to
the exact cluster state |ψ (0)

0 〉 = |ψCS〉. Let us remark that
expression (25) suggests � to be independent of the order
perturbation theory j , but in fact, � is also an operator sequence
of a certain order. In general, � transforms the unperturbed
state into the perturbed subspace (see also Sec. III). Explicitly
the series for d is given in paragraph 3 of the Appendix.
Comparing the series expansion approach with the iPEPS
data (see Fig. 8) one finds a very good agreement of the two
approaches except for the first-order line. Let us stress that
by definition the series expansion cannot capture the jump
of the fidelity at the transition. Due to this fact the iPEPS
data is the only reliable tool to study the fidelity beyond the
phase boundary. In Fig. 9 we present the phase diagram in
combination with the results for the fidelity threshold d >

0.986. Clearly, almost the whole cluster phase up to the first-
order phase transition line lies above the usability threshold,
which is indeed a promising feature for measurement-based
quantum computing.

VI. CONCLUSIONS

In this work we have studied the influence of an external
magnetic field on the so-called cluster state being a highly
entangled state relevant for measurement-based quantum
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computing. Concretely, this is done by analyzing the cluster
Hamiltonian in the presence of external magnetic fields
hx and hz on the two-dimensional square lattice using a
combination of high-order series expansions and variational
iPEPS calculations.

We found an interesting zero-temperature phase diagram
displaying the cluster phase and polarized phases. The phase
diagram is fully symmetric under the exchange of J and hx

due to the existence of a self-dual line in parameter space.
Furthermore we showed that the self-duality also holds true
for the cluster Hamiltonian in combination with a hy field. The
phase diagram is dominated by two first-order lines related
by self-duality which emerge out of the self-dual point for
hz = 0. The end points of both lines for finite hz are critical.
Unfortunately, our current data does not allow one to determine
the critical exponents and therefore to pinpoint the universality
class of these critical end points. Additionally, our results show
that all ground states appearing in the full parameter space can
be connected adiabatically.

From the quantum information point of view, the main
interest in studying a perturbed cluster Hamiltonian is to
quantify the robustness and the usefulness of the perturbed
cluster state for measurement-based quantum computing. To
this end we have calculated the fidelity per site of the perturbed
ground state at finite fields with the exact cluster state. We
found that the fidelity per site remains remarkably high in a
large part of the parameter space. This is a direct consequence

of the fact that our phase diagram is dominated by first-order
phase transitions.

Finally, we would like to remark that most of the qualitative
aspects of our study are also true for other lattice topologies.
This is a consequence of two points. First, the self-dual line
exists on any lattice. Second, the case of a single field in the
z direction remains always exactly solvable giving no phase
transition. Both facts constrain the shape of the phase diagram
and its properties on most lattice topologies. The situation can
be different if other types of external perturbations are present
which possibly lead to second-order phase transitions.
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APPENDIX: SERIES EXPANSIONS

(1) Series expansion hz � J,hx . By exploring the model
in the limit hz � J,hx (fixing the energy scale to hz = 1),
one can do a perturbative expansion about the z-polarized
phase. Let us shortly remark that quasiparticles in this limit
are considered to be simple spin flips (magnons). We obtain
the following series expansion for the ground-state energy per
site up to order 14 using Löwdin’s approach:

e
(14)
0 = −1 − 1

2 h2
x − 1

2 J 2 + 1
8 J 4 + 1

8 h4
x − 1

16 J 6 − 1
16 h6

x + 5
128 J 8 + 5

128 h8
x − 7

256 J 10 − 7
256 h10

x + 5
2 hx J 3

+ 19
4 h2

xJ
2 + 5

2 h3
xJ − 197

4 h3
xJ

3 − 463
16 h4

xJ
2 − 35

8 h5
xJ − 35

8 hx J 5 − 463
16 h2

xJ
4 + 105

16 hx J 7 + 3347
32 h2

xJ
6

+ 62 935
144 h3

xJ
5 + 390 503

576 h4
xJ

4 + 62 935
144 h5

xJ
3 + 3347

32 h6
xJ

2 + 105
16 h7

xJ − 1155
128 hx J 9 − 1 082 869

3840 h2
xJ

8

− 75 441
32 h3

xJ
7 − 130 301 657

17 280 h4
xJ

6 − 18 856 195
1728 h5

xJ
5 − 130 301 657

17 280 h6
xJ

4 − 75 441
32 h7

xJ
3 − 1 082 869

3840 h8
xJ

2

− 1155
128 h9

xJ + 3003
256 hx J 11 + 4 859 819

7680 h2
xJ

10 + 11 847 547
1280 h3

xJ
9 + 12 177 924 859

230 400 h4
xJ

8 + 36 618 487 259
259 200 h5

xJ
7

+ 100 625 865 563
518 400 h6

xJ
6 + 36 618 487 259

259 200 h7
xJ

5 + 12 177 924 859
230 400 h8

xJ
4 + 11 847 547

1280 h9
xJ

3 + 4 859 819
7680 h10

x J 2

+ 3003
256 h11

x J − 15 015
1024 hx J 13 − 38 471 477

30 720 h2
xJ

12 − 224 644 117
7680 h3

xJ
11 − 1 869 780 914 599

6 912 000 h4
xJ

10

− 12 384 846 807 317
10 368 000 h5

xJ
9 − 174 347 365 283 677

62 208 000 h6
xJ

8 − 28 780 922 226 379
7 776 000 h7

xJ
7 − 174 347 365 283 677

62 208 000 h8
xJ

6

− 12 384 846 807 317
10 368 000 h9

xJ
5 − 1 869 780 914 599

6 912 000 h10
x J 4 − 224 644 117

7680 h11
x J 3 − 38 471 477

30 720 h12
x J 2 − 15 015

1024 h13
x J

+ 21
1024 h12

x − hx J − 33
2048 J 14 − 33

2048 h14
x + 21

1024 J 12.

One directly can confirm this series to be self-dual, under the exchange of J and hx . Furthermore we computed the one-particle
gap up to order 10 using Löwdin’s approach:

�(10) = 2 + J 2 + 2 hx J + h2
x − 1

4 J 4 − 17 hx J 3 − 67
2 h2

xJ
2 − 17 h3

xJ − 1
4 h4

x + 1
8 J 6 + 155

4 hx J 5 + 6893
24 h2

xJ
4

+ 2983
6 h3

xJ
3 + 6893

24 h4
xJ

2 + 155
4 h5

xJ + 1
8 h6

x − 5
64 J 8 − 525

8 hx J 7 − 19 499
16 h2

xJ
6 − 127 073

24 h3
xJ

5

− 795 181
96 h4

xJ
4 − 127 073

24 h5
xJ

3 − 19 499
16 h6

xJ
2 − 525

8 h7
xJ − 5

64 h8
x + 7

128 J 10 + 6 195
64 hx J 9 + 1 383 121

384 h2
xJ

8

+ 22 957 873
720 h3

xJ
7 + 99 787 009

960 h4
xJ

6 + 43 524 865
288 h5

xJ
5 + 99 787 009

960 h6
xJ

4 + 22 957 873
720 h7

xJ
3

+ 1 383 121
384 h8

xJ
2 + 6195

64 h9
xJ + 7

128 h10
x .
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KALIS, KLAGGES, ORÚS, AND SCHMIDT PHYSICAL REVIEW A 86, 022317 (2012)

(2) Series expansion J � hz,hx . Performing the series expansion in the cluster phase, one obtains (fixing the energy scale to
J = 1) the following expression for the ground-state energy per site in order 9 using Löwdin’s approach:

e
(9)
0 = −1 − 1

2 h2
z + 1

8 h4
z − 1

16 h6
z + 5

128 h8
z − h4

zhx + 5
2 h6

zhx − 35
8 h8

zhx − 1
8 h2

x − 19
240 h2

zh2
x − 977

960 h4
zh2

x

− 1187
1920 h6

zh2
x − 11

9 h4
zh3

x − 4127
720 h6

zh3
x − 13

1536 h4
x − 764 543

24 192 000 h2
zh4

x − 17 378 239
13 824 000 h4

zh4
x − 690 879 571

635 040 000 h4
zh5

x

− 197
98 304 h6

x − 334 349 031 161
20 863 180 800 000 h2

zh6
x − 163 885

226 492 416 h8
x.

Furthermore, for the one-particle gap up to order 8 using Löwdin’s approach, one receives

�(8) = 2 − 12 h2
zhx + 32 h4

zhx − 115
2 h6

zhx − 223
12 h2

zh2
x + 3323

48 h4
zh2

x − 2711
96 h6

zh2
x − 2345

144 h2
zh3

x + 766 661
7200 h4

zh3
x

− 25 369 919
1 209 600 h2

zh4
x + 168 566 773

691 200 h4
zh4

x − 3 313 008 739
211 680 000 h2

zh5
x − 44 922 852 472 229

2 133 734 400 000 h2
zh6

x + h2
z

− 5
64 h8

z − 1
4 h4

z + 1
8 h6

z − 1
2 h2

x − 15
128 h4

x − 575
12 288 h6

x − 26 492 351
1 019 215 872 h8

x.

(3) Series expansion for the fidelity in the limit J � hz,hx . Using Takahashi’s perturbation theory, the fidelity per site d up to
order 7 (fixing the energy scale to J = 1) is given by

d (7) = 1 − 1
8 h2

z − 1
128 h2

x + 11
128 h4

z − 11 087
230 400 h2

zh2
x − 557

294 912 h4
x − 269

384 h4
zhx − 69

1024 h6
z − 310 131

409 600 h4
zh2

x

− 5 618 345 657
216 760 320 000 h2

zh4
x − 82 355

113 246 208 h6
x + 36 913

15 360 h6
zhx − 84 044 267

77 414 400 h4
zh3

x.
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[26] P. Corboz, R. Orús, B. Bauer, and G. Vidal, Phys. Rev. B 81,
165104 (2010).
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