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The idea to base the uncertainty relation for photons on the electromagnetic energy distribution in space enabled
us to derive a sharp inequality that expresses the uncertainty relation [Phys. Rev. Lett. 108, 140401 (2012)]. An
alternative version of the uncertainty relation derived in this paper is closer in spirit to the original Heisenberg
relation because it employs the analog of the position operator for the photon—the center of the energy operator.
The noncommutativity of the components of the center of the energy operator results in the increase of the bound
3h̄/2 in the standard Heisenberg uncertainty relation in three dimensions. This difference diminishes with the
increase of the photon energy. In the infinite-momentum frame, the lower bound in the Heisenberg uncertainty
relations for photons is the same as in nonrelativistic quantum mechanics. A similar uncertainty relation is also
derived for coherent photon beams. This relation has direct experimental consequences since it gives a precise
relationship between the spectral composition of the laser beam and the minimal focal volume.
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I. INTRODUCTION

The nonexistence of the strictly localized photon states [1]
and the associated lack of the photon position operator makes
it impossible to formulate the uncertainty relation for photons
in the standard Heisenberg form. On the other hand, it is
obvious that also for photons, the spread of momentum and
the extension in space are subjected to some restrictions that
embody the famous Heisenberg phrase “Je genauer der Ort
bestimmt ist, desto ungenauer ist der Impuls bekannt und
umgekehrt [2].”

Our approach to the photon uncertainty relations is based
on two precisely defined concepts: the photon wave function
in momentum space and the energy density of the quantized
electromagnetic field. In our previous publication [3], we used
the second moment of the energy distribution to measure the
spread of the photon states in coordinate space. This led us to
the uncertainty relation for photons in the form

�r�p � 4h̄. (1)

In the present work, we define the uncertainty of the position
for photons that would be analogous to the standard definition.
For that we need some replacement for the (nonexistent)
photon position operator. This role is played by R̂, which is
the center of energy (or center of mass). The center-of-energy
operator R̂ is directly related to the first moment of the
energy distribution. This approach will allow us to obtain
the uncertainty relation in a form even closer to the original
Heisenberg relation,√

�R2
√

�P2 >
d

2
h̄, (2)

where d is the number of dimensions. A characteristic feature
of the uncertainty relation for photons is that the left-hand
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side in this inequality in two and in three dimensions is never
equal to dh̄/2, but it tends to this limit with the increase of the
average photon momentum. Only in the infinite-momentum
frame is the uncertainty relation for photons the same as for
nonrelativistic massive particles. However, in one dimension,
the inequality (2) is saturated so that in this case there is
no difference between photons and massive nonrelativistic
particles.

We also prove the following sharp inequality:

√
〈R̂ · R̂〉

√
〈 P̂ · P̂〉 � 3

2
h̄

√
1 + 4

√
5

9
. (3)

In nonrelativistic quantum mechanics, the inequalities
obeyed by the two measures of uncertainty, �R2�P2 and 〈R̂ ·
R̂〉〈 P̂ · P̂〉, are completely equivalent. They have equal lower
bounds and they are both saturated by Gaussian functions.
This equivalence does not hold for photons. Nevertheless, the
two inequalities are intimately related. We shall first prove
(3) and then use the information about the photon states that
saturate this inequality to elucidate the intricate properties of
the inequality (2).

An early attempt to base the uncertainty relation for photons
on the center of energy R̂ was made by Schwinger [4], but he
only gave a rough estimate that the lower bound of �R2�P2

is of the order of h̄2.
In addition to an uncertainty relation for single photons, we

derive a closely related uncertainty relation for photon beams.
Using coherent states of the electromagnetic field to describe
such beams in the limit of a large number of photons, we prove
the following sharp inequality:

√
�R2

√
�P2 � 3

2
h̄

√
1 + 4

√
2

9
, (4)

and we find the mode functions of the coherent states that
saturate this inequality.
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II. THE CENTER OF ENERGY

The nonexistence of the local photon density in configura-
tion space is due to the fact that in quantum electrodynamics,
the operator of the total number of photons N̂ involves not a
single but a double integral [5]:

N̂ = 1

4π2h̄c

∫
d3r

∫
d3r ′

× :

[
D̂(r,t) · D̂(r ′,t)

ε|r − r ′|2 + B̂(r,t) · B̂(r ′,t)
μ|r − r ′|2

]
:

= 1

2π2h̄c

∫
d3r

∫
d3r ′ :

[
F̂

†
(r,t) · F̂(r ′,t)
|r − r ′|2

]
: . (5)

We use systematically the Riemann-Silberstein vector (the RS
vector) [6]

F̂(r,t) = D̂(r,t)√
2ε

+ i
B̂(r,t)√

2μ
, (6)

which will allow us to write many formulas in a compact form.
The normal ordering removes the (infinite) contribution from
the vacuum state. In contrast to the total-number operator,
the total-energy operator of the electromagnetic field Ĥ (the
Hamiltonian) is an integral of a local density,

Ĥ =
∫

d3r Ê(r,t), (7)

where

Ê(r,t) =: F̂
†
(r,t) · F̂(r,t) : . (8)

The center of the energy operator can be introduced in any
relativistic theory. All we need for this construction is the
set of generators of the Poincaré group. Following Born and
Infeld [7], we define the operator R̂ as follows:

R̂ = 1

2Ĥ
N̂ + N̂

1

2Ĥ
= 1√

Ĥ
N̂

1√
Ĥ

, (9)

where N̂ is the first moment of the energy distribution,

N̂ =
∫

d3r rÊ(r,t). (10)

The symmetrization in (9) is necessary to obtain a Hermitian
operator. The inverse of the Hamiltonian is well defined,
provided we exclude the vacuum state. The spectrum of the
Hamiltonian is non-negative, therefore the positive square root
is unique. The significance of N̂ is further underscored by
its being the generator of Lorentz transformations. Since the
operators Ĥ and N̂ do not commute (the energy changes under
Lorentz transformations), the equivalence of the two forms of
R̂ in (9) is not obvious and is proved in Appendix A.

It follows from the commutation relations between the
generators of the Poincaré group [7,8],

[N̂i,P̂j ] = ih̄δij Ĥ , (11)

that R̂ and the total momentum P̂ obey the canonical
commutation relations between the position and momentum,

[R̂i,P̂j ] = ih̄δij . (12)

We must, however, resist the temptation to treat R̂ as a bona
fide position operator because its components do not commute,

[R̂i,R̂j ] = −ih̄c2Ĥ−1Ŝij Ĥ
−1, (13)

where Ŝij is the operator of the intrinsic angular momentum:
the difference between the total angular momentum and the
orbital angular momentum,

Ŝij = M̂ij − (R̂i P̂j − R̂j P̂i). (14)

Note that the effects of the noncommutativity are present in all
systems with intrinsic angular momentum and decrease with
the increasing energy. We shall fully confirm this observation
in Sec. VI.

III. RELATIVISTIC UNCERTAINTY RELATIONS IN ONE,
TWO, AND THREE DIMENSIONS

Despite all of the differences between the nonrelativistic
and relativistic dynamics, we may derive a sharp Heisenberg
uncertainty relation along one direction, say x, for any
relativistic system. This one-dimensional uncertainty relation
is based solely on the commutation relations between X̂ = R̂x

and P̂ = P̂x and has the standard form
√

�X2
√

�P 2 � 1
2h̄, (15)

where

�X2 = 〈(�P̂ )2〉, �X̂ = X̂ − 〈X̂〉, (16a)

�P 2 = 〈(�P̂ )2〉, �P̂ = P̂ − 〈P̂ 〉. (16b)

The one-dimensional uncertainty relation holds for any rel-
ativistic quantum system. A simple proof of (15) uses the
commutation relations (12) and the non-negative expectation
value of the operator:

〈(�X̂ − iλ�P̂ )(�X̂ + iλ�P̂ )〉 � 0, (17)

where λ is an arbitrary real number. The condition that this
expression treated as a function of λ can have at most one real
root gives (15). This inequality is saturated by the quantum
state whose state vector satisfies the condition

(�X̂ + iλ�P̂ )|�〉 = 0. (18)

The specific form of |�〉 depends, of course, on the system
under study. Note that we may remove the average values 〈X̂〉
and 〈P̂ 〉 from (18) by choosing |�〉 in the form

|�〉 = exp(i〈P̂ 〉X̂/h̄ − i〈X̂〉P̂ /h̄)|� ′〉. (19)

Since the inequality must hold for all vectors, replacing |�〉 by
|� ′〉 makes no difference, and the two forms of the uncertainty
relation in one dimension, namely,

√
�X2

√
�P 2 � 1

2h̄ and
√

〈X̂2〉
√

〈P̂ 2〉 � 1
2h̄, (20)

are completely equivalent. In nonrelativistic quantum me-
chanics, the equivalence holds in any number of dimensions.
A spherically symmetric Gaussian function shifted in the
coordinate space by 〈r〉 and in the momentum space by 〈 p〉 by
the unitary transformation of the form (19) will automatically
saturate the inequality (2). This equivalence, however, is no
longer valid for relativistic systems in three dimensions.
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To extend our analysis to two and three dimensions, we
introduce the dispersion in position that involves two or three
components of the center-of-energy vector R̂,

�R2 = 〈�R̂ · �R̂〉, (21)

where �R̂ = R̂ − 〈R̂〉, and the dispersion in momentum,

�P2 = 〈� P̂ · � P̂〉, (22)

where � P̂ = P̂ − 〈 P̂〉. Following the same procedure as the
one used in deriving (15), we obtain (2). The proof is based
this time on the expectation value of the following positive
operator:

〈(�R̂ − iλ� P̂) · (�R̂ + iλ� P̂)〉 > 0. (23)

In contrast to the one-dimensional case, the inequalities (2)
and (23) are not sharp because there is no state vector that
is annihilated by all three components of the vector operator
Â = �R̂ + iλ� P̂ and even by two components. This is due to
the fact that the commutators (13) of the components of R̂ do
not vanish. Should there exist a state vector annihilated by Â,
then this vector would also be annihilated by the commutators
of the components of Â. These commutators are proportional
to the components of spin. Therefore, for any relativistic
quantum system endowed with spin, the inequality (2) cannot
be saturated.

In the next section, we introduce a convenient formalism to
describe photon states that will be later applied to derive the
inequalities (3) and (4) and also to elucidate the meaning of
the inequality (2).

IV. QUANTUM MECHANICS OF PHOTONS

In what follows, we shall consider one-photon states of
the electromagnetic field. These states are generated from the
vacuum state by the action of the photon creation operators,

|f 〉 =
∫

d3k

k
[f+(k)a†

+(k) + f−(k)a†
−(k)]|0〉, (24)

where a
†
±(k) create photons with momentum h̄k and positive

or negative helicity λ (left-handed or right-handed circular
polarization). We assume the normalization of these operators
such that the commutation relations have the form

[aλ(k),a†
λ′(k′)] = δλλ′k δ(3)(k − k′). (25)

This leads to the relativistic form (the volume element on the
light cone d3k/k is invariant under Lorentz transformations)
of the scalar product,

〈f (1)|f (2)〉 =
∑ ∫

1

k
f

(1)∗
λ (k)f (2)

λ (k), (26)

and the associated norm of one-photon state vectors,

〈f |f 〉 = ||f ||2 =
∑∫ 1

k
|fλ(k)|2. (27)

The symbol
∑∫

stands for the summation over λ and the

integration over k, ∑∫
=

∑
λ

∫
d3k. (28)

The functions f+(k) and f−(k) are the photon wave functions
in momentum space. Their moduli squared are the probability
densities to find the left- or right-handed photons with
momentum h̄k.

The creation and annihilation operators are connected with
the field operators through the expansion of the RS operator
into plane waves [9],

F̂(r,t) =
√

h̄c

∫
d3k

(2π )3/2
e(k)[a+(k)eik·r−iωt

+a
†
−(k)e−ik·r+iωt ]. (29)

The normalized polarization vector e(k) is

e(k) = k × (n × k) − ik(n × k)√
2 k|n × k| , (30)

where n is an arbitrary unit vector.
In order to find the action of all relevant operators on one-

photon states, we first express these operators in terms of
creation and annihilation operators. This task is simplified by
using the RS vector in the form (29) and we obtain [9]

Ĥ =
∑∫ 1

k
h̄ωa

†
λ(k)aλ(k), (31a)

P̂ =
∑∫ 1

k
h̄ka

†
λ(k)aλ(k), (31b)

M̂ =
∑∫ 1

k
h̄a

†
λ(k)

(
k × 1

i
Dλ + λ

k
k

)
aλ(k), (31c)

N̂ =
∑∫ 1

k
h̄ωa

†
λ(k)i Dλaλ(k), (31d)

where Dλ is the covariant derivative in momentum space on
the light cone,

Dλ = ∇ − iλα(k), (32)

α(k) = ie∗(k) · ∇e(k) = (n · k)(n × k)

k |n × k|2 , (33)

the dot denotes the scalar product of polarization vectors, and
∇ denotes the derivatives with respect to k.

In relativistic quantum mechanics of photons, the gener-
ators of the Poincaré group (31) act on the photon wave
functions as follows:

Ĥfλ(k) = h̄ωfλ(k), (34a)

P̂fλ(k) = h̄kfλ(k), (34b)

M̂fλ(k) = h̄

(
k × 1

i
Dλ + λ

k
k

)
fλ(k), (34c)

N̂fλ(k) = h̄ωi Dλfλ(k), (34d)

where we stretched our notation keeping the same symbols
to denote the operators acting on the states of the field and
the operators acting on the photon wave functions. Since all
of these operators are Hermitian with respect to the scalar
product (26), they generate two unitary representations f+(k)
and f−(k) of the Poincaré group. These representations are
concrete realizations of the general scheme described in [10].

The center-of-energy operator R̂ given by the second
expression in (9) has the following representation in quantum
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mechanics of photons:

R̂fλ(k) = i
√

k Dλ

1√
k
fλ(k). (35)

It is often convenient to replace the function fλ(k) by its
rescaled counterpart gλ(k),

gλ(k) = fλ(k)√
k

. (36)

The transformation properties of gλ(k) under the Lorentz
transformations are more complicated than those of fλ(k),
but this function is similar to the nonrelativistic wave function
because in contrast to (27) its norm (and also the scalar product)
has a familiar nonrelativistic form

||g||2 =
∑∫

g∗
λgλ. (37)

The center-of-energy operator acting on gλ(k) is

R̂gλ(k) = i Dλgλ(k). (38)

As a simple application of this formula, we find now the
function that saturates the general one-dimensional uncertainty
relation (15) in the case of photons. Choosing the direction in
this relation along the n vector, we find that the covariant
derivative (32) becomes an ordinary derivative along this
direction because the component of α(k) along n vanishes.
Therefore, the function gλ(k) which saturates the inequality is
a Gaussian in the direction n. This result has been obtained
before by Holevo [11] in the framework of estimation theory.

The extension of the Heisenberg uncertainty relation for
photons from one to three dimensions is nontrivial. In the next
section, we use the representation (38) of the operator R̂ to
fulfill this aim.

V. UNCERTAINTY RELATION FOR THE PRODUCT OF
〈R̂ · R̂〉 AND 〈 P̂ · P̂〉

The formulation of the uncertainty relation for the photon
will be carried out with the use of the operators R̂ and P̂ acting
on the photon wave functions fλ(k) in momentum space. In
this section, we shall consider the product of the quantities
〈R̂ · R̂〉 and 〈 P̂ · P̂〉, instead of their variances. The variances
�R2 and �P2 reduce to 〈R̂ · R̂〉 and 〈 P̂ · P̂〉 only when both
〈R̂〉 and 〈 P̂〉 vanish.

The quantities 〈R̂ · R̂〉 and 〈 P̂ · P̂〉 expressed in terms of
the rescaled wave function gλ are

〈R̂ · R̂〉 = 1

||g||2
∑∫

(Dλgλ)∗ · Dλgλ

= 1

||g||2
∑∫

[∇g∗
λ · ∇gλ + λ2α2(k)g∗

λgλ

+iλα(k) · (g∗
λ∇gλ − gλ∇g∗

λ)], (39)

〈 P̂ · P̂〉 = h̄2

||g||2
∑∫

g∗
λk2gλ. (40)

There is one immediate conclusion that can be drawn by
inspecting the integrand in the formula for 〈R̂ · R̂〉. Namely,
the presence of α(k) rules out spherically symmetric functions.
To obtain a finite value of 〈R̂ · R̂〉, we must eliminate
the singularity at |n × k| = 0 by the appropriate angular

dependence of gλ. Our analytic solution will confirm this
expectation. The breaking of the spherical symmetry is an
important difference between the uncertainty relation for
photons and for the nonrelativistic particles.

Further calculations are most easily done after the transfor-
mation of the integrals to spherical coordinates,

〈R̂ · R̂〉 = 1

||g||2
∑

λ

∫ ∞

0
dkk2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ

×
[
|∂kgλ|2 + |∂θgλ|2

k2
+ |∂ϕgλ|2

k2 sin2 θ
+ λ2 cos2 θ |gλ|2

k2 sin2 θ

+ iλ cos θ (g∗
λ∂ϕgλ − gλ∂ϕg∗

λ)

k2 sin2 θ

]
, (41)

〈 P̂ · P̂〉 = h̄2

||g||2
∑

λ

∫ ∞

0
dkk2

∫ π

0
dθ sin θ

∫ 2π

0
dϕk2|gλ|2,

(42)

||g||2 =
∑

λ

∫ ∞

0
dkk2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ|gλ|2. (43)

The left-hand side of the uncertainty relation for R̂ · R̂ and
P̂ · P̂ divided by h̄2 is a dimensionless quantity which will be
denoted [12] by γ 2,

γ 2 = 〈R̂ · R̂〉〈 P̂ · P̂〉
h̄2 . (44)

We shall determine the minimal value of γ applying a
variational procedure, as we have done in [3]. The variation
of γ 2 with respect to g∗

λ(k) leads to the following equation
for gλ(k):[

− 1

κ2
∂κκ

2∂κ − 1

κ2 sin2 θ

(
∂θ sin θ ∂θ + ∂2

ϕ − λ2

− 2iλ cos θ ∂ϕ

) − λ2

κ2
+ γ κ2 − 2γ

]
gλ(κ,θ,ϕ) = 0, (45)

where we replaced k by the dimensionless variable κ ,

κ = k

(
h̄2 〈R̂ · R̂〉

〈 P̂ · P̂〉

)1/4

. (46)

After performing the variation, we put ||g||2 = 1. The varia-
tional equations for two values of λ decouple, so that we may
take one value of λ at a time. Since the change of the sign of
λ is compensated by complex conjugation, we will consider
only positive helicity λ = 1.

Equation (45) allows for the separation of variables,

gλ(κ,θ,ϕ) = K(κ)�(θ )eimϕ, (47)

and we obtain the following equations for the radial and the
angular parts:[

− 1

κ2
∂κκ

2∂κ + j (j + 1) − λ2

κ2
+ γ κ2

]
K(κ) = 2γK(κ),

(48)[
− 1

sin θ
∂θ sin θ ∂θ + m2 + λ2 − 2λm cos θ

sin2 θ

]
�(θ )

= j (j + 1)�(θ ). (49)
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The equation for �(θ ) is the same as in the theory
of magnetic monopoles (cf. [3,13]). Its solutions are given
in terms of Jacobi polynomials P

(m,m′)
j (x) (also known as

“monopole harmonics”),

�(θ ) = sinλ θ cotm θP
(λ−m,λ+m)
j−m (cos θ ). (50)

Regular solutions are obtained when j is a natural number
starting from j = 1. For j = 0, not only are both solutions
of the angular equation, namely, 1/ sin θ and cot θ , singular,
but also the radial equation does not have regular solutions
because the centrifugal force becomes attractive. Therefore,
the s states are ruled out, as we already observed before.

The equation for K(κ) is the radial part of the Schrödinger
equation for the three-dimensional harmonic oscillator with a
modified centrifugal force. This equation after the substitution,

K(κ) = κν−3/2 exp
( − 1

2κ2
)
K̃(κ), (51)

reduces to the equation for the confluent hypergeometric
function,

K̃(κ) = 1F1

(
ν − γ

2
,ν; κ2

)
, (52)

where ν = 1 +
√

j + j 2 − 3/4. To obtain a regular solution,
1F1 must become a polynomial and this leads to the quantiza-
tion condition for the parameter γ ,

γ = 2n + 1 +
√

j + j 2 − 3/4, n = 0,1,2, . . . . (53)

The lowest value of γ is obtained for j = 1 and n = 0,

γ = 1 +
√

5

2
= 3

2

√
1 + 4

√
5

9
. (54)

This is the right-hand side in the uncertainty relation (3).
In what follows, we shall denote by γ always its lowest

value (54). This eigenvalue is degenerate. There are three
eigenfunctions that saturate the inequality (3) corresponding
to m = 0, ± 1:

f0(k,θ,φ) = Aa sin θ (ak)γ−1 exp
[ − 1

2 (ak)2
]
, (55a)

f±(k,θ,φ) = Aa
(1 ± cos θ )√

2
e±iφ(ak)γ−1 exp

[ − 1
2 (ak)2

]
,

(55b)

where the normalization constant is

A =
√

3

4π�(γ )
, (56)

and the parameter a sets the length scale. The value of a is
arbitrary because there is no intrinsic length associated with
the photon.

To exhibit the geometric structure of the wave functions
(55), we shall rewrite them as components of a Cartesian vector
f = (fx,fy,fz) in Cartesian coordinates,

f (k) = Aa2 (ak)γ−1 exp
[ − 1

2 (ak)2
]

× k × (n × k) + ik(n × k)

|n × k| . (57)

The presence of the unit vector in the direction n × k means
that there is a vortex line in momentum space along the n

direction with unit intensity. To obtain the formulas (55),
we must choose the direction of n as the z axis in spherical
coordinates.

The increase of the lower bound in the uncertainty relation
(3) from the value 3h̄/2 underscores the unique properties
of photons. This increase is due to the specific angular
dependence of the photon wave function in momentum space
enforced by the nontrivial geometry on the light cone. As a
result, all three functions (55) vanish at k = 0, in contrast
to the Gaussian functions saturating the standard Heisenberg
relation. This effect was also present in our previous photon
uncertainty relation [3]. In both cases, the angular dependence
is the same. However, the radial dependence is different and
this difference is reflected in the values of the lower bounds.
The scaling of κ is chosen so that (as in [3]) the uncertainties
in position and momentum are equally distributed,

〈R̂ · R̂〉 = a2(1 +
√

5/2), (58a)

〈 P̂ · P̂〉 = (h̄/a)2(1 +
√

5/2). (58b)

Of course, their product is scale independent and gives the
lower bound.

VI. UNCERTAINTY RELATION FOR THE PRODUCT
OF �R2 AND �P2

The information gained in the analysis of the uncertainty
relation (3) will now be used to improve the bound in (2). The
first observation is that 〈R̂〉 = 0 for all three functions that
saturate (3), whereas the value of 〈 P̂〉 does not vanish for the
states with m = ±1,

〈 P̂〉 = ±�(3/2 + √
5/2)

2�(1 + √
5/2)

h̄

a
n = ±0.686

h̄

a
n. (59)

Thus, already in this simple case, the value of �R2�P2 =
〈R̂ · R̂〉〈 P̂ · P̂〉 − 〈R̂ · R̂〉〈 P̂〉2 is lower than the value of 〈R̂ ·
R̂〉〈 P̂ · P̂〉.

In the general case, the bigger 〈 P̂〉 is, the bigger will be
the average photon energy. Thus, the noncommutativity of the
components of R̂ plays a decreasing role, bringing us closer
to the situation in nonrelativistic quantum mechanics. This
is clearly seen in Fig. 1 where we show the exact value (3)
obtained for the vanishing mean momentum and the results
of numerical calculations of �R2�P2. The points in this plot
were obtained by choosing the trial functions as the product of
f±(k,θ,φ) and a polynomial in k cos θ ,

1 + a1k cos θ + a2(k cos θ )2 + a3(k cos θ )3 + · · · , (60)

where ai are variational parameters. These parameters are
determined by requiring that they give the lowest value of
�R2�P2. The points in Fig. 1 represent the values obtained
with none, one, two, and up to six parameters. The solid line
represents a simple two-parameter fit of the form

9/4 +
√

5

1 + 1.14 〈 P̂〉2 + 0.8 〈 P̂〉4
(61)

to all eight results. The numerical results clearly show the
convergence to the value 9/4 when 〈 P̂〉 tends to infinity.
This result is also in agreement with the formula (13) for the
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commutator of the center-of-energy operators since the right-
hand side tends to zero with the increase of the energy, so that
at infinite energy these operators behave as their nonrelativistic
counterparts. We shall confirm now this result with analytic
considerations. We show that in the infinite-momentum frame,
we indeed obtain as a lower bound in the uncertainty relation
the limiting value 3h̄/2. Thus, our aim is to find the minimal
value of the expression

�R2�P2 = 〈(R̂ − 〈R̂〉)2〉〈( P̂ − 〈 P̂〉)2〉, (62)

in the limit of infinite 〈 P̂〉.
In the first step, we eliminate 〈R̂〉 by applying the unitary

transformation exp(−i〈R̂〉 · P̂/h̄) (i.e., by choosing the center
of the energy as the origin of the coordinate system). The
elimination of 〈 P̂〉 by the unitary transformation exp(i〈 P̂〉 ·
R̂/h̄) is not so painless because the components of R̂ do not
commute and we are left with the expression

γ 2 = 1

h̄2 〈e−i〈 P̂〉·R̂/h̄ R̂ · R̂ ei〈 P̂〉·R̂/h̄〉〈 P̂ · P̂〉, (63)

which is to be minimized [12]. In Appendix B, we find by the
variational procedure that the minimum of γ is indeed equal
to 3h̄/2.

The significant simplification of relativistic dynamics in
the infinite-momentum frame was noted a long time ago
[14]. In particular, it has been shown [15] that in this limit,
the symmetry group in the transverse plane is the Galilean
group in two dimensions that governs nonrelativistic quantum
mechanics. This explains why α(k), given in the infinite-
momentum frame by (B1), is very simple, leading to the
nonrelativistic lower bound in the uncertainty relation for
photons (2).

VII. UNCERTAINTY RELATION FOR PHOTON BEAMS

In most experiments, photons appear in the form of photon
beams. In this section, we derive the uncertainty relation for
a very common representation of such beams: the coherent
state of the electromagnetic field. The exact determination of
the uncertainty relation for the coherent state does not seem to

0 1 2 3 4 5
2

3

4

P 2

R2 P2

9 4 5

9 4

FIG. 1. Dependence of the product of variances (in units of h̄2)
on the squared mean momentum (in units of h̄2/a2). The leftmost
dot represents the exact value of γ 2 obtained for vanishing average
momentum. The remaining dots (from left to right) mark the values
obtained for the trial functions (60) with none, one, two, and up to
six terms. The solid curve represents the two-parameter fit (61).

be feasible, but the important case—the limit when the mean
photon number 〈N〉 is large—is tractable.

Coherent states |coh〉 are generated from the vacuum state
by the unitary Glauber displacement operator D [16],

D = exp

(√
〈N〉

∑∫ 1

k
[fλ(k)a†

λ(k) − f ∗
λ (k)aλ(k)]

)
,

|coh〉 = D|0〉, (64)

where the function fλ(k) that so far represented a single-photon
state now describes an arbitrary nonmonochromatic mode of
electromagnetic radiation [17]. We pulled out the square root
of the mean photon number 〈N〉 in the coherent state to have
better control of the large 〈N〉 limit. The function f will be
normalized to 1 as in (27).

Our aim, as in Sec. VI, is to minimize the left-hand side
of the uncertainty relation (62). This time [12], all expectation
values are to be evaluated in the coherent state (64),

γ 2 = (〈R̂ · R̂〉 − 〈R̂〉 · 〈R̂〉)(〈 P̂ · P̂〉 − 〈 P̂〉 · 〈 P̂〉)
h̄2 . (65)

A fairly complicated evaluation of the two factors appearing
in this formula is relegated to Appendix C. Using the formulas
(C8) and (C6), we obtain the following expression for γ 2 valid
for large values of 〈N〉:

γ 2 =

∑∫
k|Dλfλ(k)|2

∑∫
k|fλ(k)|2[ ∑∫

|fλ(k)|2
]2

+ O

(
1

〈N〉
)

. (66)

In what follows, we will tacitly assume that all results are valid
only in the limit when 〈N〉 → ∞, and we will omit the symbol
O(1/〈N〉).

Before subjecting this expression to the variational proce-
dure, let us note that it does not depend on the normalization
of fλ(k). Therefore, we may vary the function fλ(k) freely,
as we did in all previous cases. The variation with respect to
f ∗

λ (k) leads to the following equation for fλ in the spherical
coordinate system:[

− 1

κ3
∂κκ

3∂κ − 1

κ2 sin2 θ

(
∂θ sin θ ∂θ + ∂2

ϕ − λ2

− 2iλ cos θ ∂ϕ

) − λ2

κ2
− 2γ 2

κ
+ γ 2

]
fλ(κ,θ,ϕ) = 0. (67)

We omitted here all intermediate steps because they are
analogous to those followed in Sec. V. The dimensionless
parameter κ is defined now as

κ = h̄k

c

〈Ĥ 〉
�P2 = k

∑∫ |fλ(k)|2∑∫
k|fλ(k)|2 (68)

After the separation of variable, we obtain the following
equation for the radial part:[

− 1

κ3
∂κκ

3∂κ + j (j + 1) − λ2

κ2
− 2γ 2

κ

]
K(κ) = −γ 2K(κ),

(69)

while the angular part is the same as in (49), so that the lowest
allowed value of j is 1. The equation for the radial part after
the substitution,

K(κ) = κ
√

j (j+1)−1 exp(−γ κ)K̃(κ), (70)
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reduces to the equation for the confluent hypergeometric
function,

K̃(κ) =1 F1

(
μ

2
− γ,μ; 2γ κ

)
, (71)

where μ = 1 + 2
√

j (j + 1). To obtain a regular solution, 1F1

must become a polynomial, and this leads to the quantization
condition for the parameter γ ,

γ = 2n + 1 + 2
√

j (j + 1)

2
, n = 0,1,2, . . . . (72)

The lowest value of γ is obtained for j = 1 and n = 0,

γ = 1

2
+

√
2 = 3

2

√
1 + 4

√
2

9
. (73)

Again, as in Sec. VI, the solution corresponding to the lowest
value of γ has a threefold degeneracy. The three normalized
solutions, which are the counterparts of (55), are

f0(k,θ,φ) = Aa sin θ (ak)
√

2−1e−γ ak, (74a)

f±(k,θ,φ) = Aa
(1 ± cos θ )√

2
e±iφ(ak)

√
2−1e−γ ak, (74b)

where

A = (2γ )
√

2

√
3

8π�(2
√

2)
, (75)

and the parameter a sets the scale as in the case of a single
photon.

VIII. OBSERVABLE CONSEQUENCES OF
UNCERTAINTY RELATIONS

Our uncertainty relations for individual photons can be
connected with observations through the Glauber theory of
photodetection [18], as we have indicated in [3]. The inter-
pretation of the uncertainty relation for photons is basically
the same as in the case of the standard Heisenberg uncertainty
relation. The only difference is that the photodetection relies
on the energy density of photons—the photon is where its
energy is localized—rather than on the probability density to
find the particle (its charge or mass) at a given location. To
test our uncertainty relation, one would have to make repeated
measurements on photons produced by the same source.

The uncertainty relation plays a different role in the case
of photon beams. In this case, the limitation on the dispersion
�R2 imposed by the uncertainty relation finds its physical
interpretation in terms of the directly observable quantity: the
focal volume. Of course, the focal volume does not have sharp
boundaries. However, the moments of the energy distribution
give reasonable measures of its size. Thus, a sensible measure
of the size of the focal volume Vf is

Vf = (�R2)3/2. (76)

The uncertainty relation in three dimensions gives precise
bounds on the size of the focal volume for a given spectral
composition of the beam. According to this relation, the
decrease of Vf is limited by the dispersion of momentum:

Vf � h̄3γ 3

(�P2)3/2
. (77)

It is worth mentioning here that the one-dimensional uncer-
tainty relation (15) can give only a rough estimate of the
focal volume due to the strong correlations imposed by the
noncommutativity of the components of R̂.

The reduction of the size of the focal volume is important
in many practical applications of laser beams, such as fluo-
rescence microscopy, optical tweezers, material processing,
and also in medicine. We are far from suggesting that our
uncertainty relations will lead to an improvement in any of
these techniques, but we believe that they are relevant at the
fundamental level.

IX. CONCLUSIONS

In this work, we based the uncertainty relation for photons
on a measure of the spatial extension of the photon wave
function, which is built around the center-of-energy vector:
the first moment of the energy distribution divided by the
total energy. By replacing the second moment of energy used
in Ref. [3] by the first moment of energy, we were able to
bring the analysis closer to the standard quantum-mechanical
treatment.

The center-of-energy vector turned out to be a very
good substitute for the nonexistent photon position operator,
although the noncommutativity of its components leads to
significant differences compared to the nonrelativistic case.
In nonrelativistic Heisenberg uncertainty relations, the lowest
value of

√
�R2

√
�P2 does not depend on the average position

and on the average momentum. It is not so for photons. The
lowest possible value of

√
�R2

√
�P2 depends on the choice

of the Lorentz frame. It varies between 3/2 h̄(1 + 4
√

5/9)
and 3h̄/2, when the average momentum changes from 0 to
infinity. Somewhat paradoxically, highly energetic photons
obey almost the same uncertainty relations as nonrelativistic
particles. This is explained by the special properties of
relativistic dynamics in the infinite-momentum frame.

The uncertainty relations based on the center-of-energy
operator were also derived for photon beams described by
coherent states of the electromagnetic field. Analytic results
were obtained in the limit of a large number of photons in the
beam. These uncertainty relation give a fundamental limitation
on the reduction of the beam focal volume.
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APPENDIX A

To prove the equality of the two forms of R̂ in (9), we will
first prove the following lemma:

If [Ĥ ,Ĉ] = 0, then [
√

Ĥ ,Ĉ] = 0. (A1)
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In the proof, we use the fact that the eigenvectors of the
Hamiltonian form a basis. Acting on an arbitrary state in this
basis |E〉 (excluding the vacuum), we have

(
√

Ĥ +
√

E)[
√

Ĥ ,Ĉ]|E〉 = [Ĥ ,Ĉ]|E〉 = 0. (A2)

Since the factor (
√

Ĥ + √
E) does not vanish, it can be

dropped and the validity of the lemma is established.
Next, we use the commutation relations between the

Hamiltonian and the generator of the Lorentz transformations,

[Ĥ ,N̂] = −ih̄ P̂, (A3)

to obtain[
Ĥ ,

[
1√
Ĥ

N̂
1√
Ĥ

,
1√
Ĥ

]]

=
[

1√
Ĥ

[Ĥ ,N̂]
1√
Ĥ

,
1√
Ĥ

]
= h̄

i

[
P̂

Ĥ
,

1√
Ĥ

]
= 0. (A4)

Finally, using the lemma, we may replace Ĥ by
√

Ĥ in the
first term and expand the resulting double commutator:

0 =
[√

Ĥ ,

[
1√
Ĥ

N̂
1√
Ĥ

,
1√
Ĥ

]]

= 1

Ĥ
N̂ + N̂

1

Ĥ
− 2

1√
Ĥ

N̂
1√
Ĥ

. (A5)

The vanishing of the difference of two expressions for R̂
appearing in (9) means that they are equal.

APPENDIX B

To apply the variational procedure, we rewrite the func-
tional (63) in the one-photon space. To simplify the calcula-
tions, we choose n in the direction of the average momentum.
With this choice, the operator in · R̂ reduces to an ordinary
derivative with respect to kz because the scalar product n · α

vanishes. Therefore, the unitary operator ei〈 P̂〉·R̂/h̄ acting on
the photon wave functions becomes just the shift operator.
Therefore, in the functional (39), the argument kz of α(k) is
shifted now by 〈kz〉 = 〈P̂z/h̄〉. The solution of the differential
equation obtained by varying γ 2 is a very difficult task because
the variables k and θ can no longer be separated.

However, in the limiting case when 〈kz〉 tends to infinity,
there is a radical simplification. In this limit, α(k + 〈k〉)

becomes

lim
〈k〉→∞

α(k + 〈k〉) = n × k
|n × k|2 , (B1)

and the variational equation (45) is replaced now by[
− 1

κ2
∂κκ

2∂κ − 1

κ2 sin2 θ

(
∂θ sin θ ∂θ + ∂2

ϕ − λ2

− 2iλ ∂ϕ

) + κ2 − 2γ

]
gλ(κ,θ,ϕ) = 0, (B2)

which again allows for the separation of variables,

gλ(κ,θ,ϕ) = K(κ)�(θ )eimϕ. (B3)

The radial and the angular parts satisfy the equations[
− 1

κ2
∂κκ

2∂κ + j (j + 1)

κ2
+ κ2

]
K(κ) = 2γK(κ), (B4)

[
− 1

sin θ
∂θ sin θ ∂θ + (m − λ)2

sin2 θ

]
�(θ ) = j (j + 1)�(θ ).

(B5)

This time, the value j = 0 is allowed provided we choose
m = λ. The equation for the radial part is that of the spherically
symmetric harmonic oscillator. The lowest value of γ = 3h̄/2
is obtained for the ground state. This confirms the prediction
made on the basis of our numerical calculations.

APPENDIX C

In this appendix, we evaluate the leading terms of the
expansion in 1/〈N〉 for the dispersion in position (21)
and momentum (22) evaluated in the coherent state of the
electromagnetic field. In this calculation, we use the second
form of the position operator (9). The expectation value of
any combination of creation and annihilation operators in a
coherent state is tantamount to the vacuum expectation value
of the same combination of these operators transformed by the
action of the displacement operator D,

D†a†
λ(k)D = a

†
λ(k) +

√
〈N〉f ∗

λ (k), (C1a)

D†aλ(k)D = aλ(k) +
√

〈N〉fλ(k). (C1b)

We will need only the following lowest-order correction to the
operators Ĥ , N̂ , and P̂ :

D†ĤD = 〈N〉h̄c

{∑∫
f

†
λ (k)fλ(k) + 1√〈N〉

∑∫
[a†

λ(k)fλ(k) + f ∗
λ (k)aλ(k)] + O

(
1

〈N〉
)}

, (C2a)

D† N̂D = 〈N〉h̄c

{∑∫
f

†
λ (k)i Dλfλ(k) + 1√〈N〉

∑∫
[a†

λ(k)i Dλfλ(k) + f ∗
λ (k)i Dλaλ(k)] + O

(
1

〈N〉
)}

, (C2b)

D† P̂D = 〈N〉h̄
{∑∫

f
†
λ (k)nfλ(n) + 1√〈N〉

∑∫
[a†

λ(k)nfλ(k) + f ∗
λ (k)naλ(k)] + O

(
1

〈N〉
)}

. (C2c)
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The first two formulas lead to the following expression for R̂:

D† R̂D = 1

H

{
N + 1√〈N〉

∑∫
[a†

λ(k)i Dλfλ(k)

+f ∗
λ (k)i Dλaλ(k)] − R√〈N〉

∑∫
[a†

λ(k)fλ(k)

+f ∗
λ (k)aλ(k)] + O

(
1

〈N〉
)}

, (C3)

where

H =
∑∫

f ∗
λ (k)fλ(k), (C4a)

N =
∑∫

f ∗
λ (k)i Dλfλ(k), (C4b)

R = N /H. (C4c)

In both factors of (65), the leading terms cancel because
they are c numbers, so that there is no difference between
the averaged square and the square of the average. We shall
first calculate the next-order corrections to the difference
〈R̂ · R̂〉 − 〈R̂〉 · 〈R̂〉. First, note that if the contribution comes
from only one R̂, then it does not contribute to the difference
because it cancels out between the two terms. The O(1/〈N〉)

terms are not canceled by their counterparts in 〈R̂〉 · 〈R̂〉 only
when the corrections appear in both operators R̂ in R̂ · R̂. The
same observation holds for the momentum operator. Therefore,
the lowest-order corrections come only from the products of
two terms linear in the creation and annihilation operators, and
the final results can be written in the form

〈(R̂ − 〈R̂〉)2〉 = 1

H2〈N〉
×

∑∫
k[(i Dλ − R)fλ(k)]∗ · (i Dλ − R)fλ(k), (C5)

〈( P̂ − 〈 P̂〉)2〉 = 〈N〉h̄2
∑∫

kf ∗
λ (k)fλ(k). (C6)

Without any loss of generality [the function fλ(k) is at this
point arbitrary and it will be determined from the variational
procedure later], we can make the following replacement:

fλ(k) → exp(−ik · R)fλ(k). (C7)

This change of phase makes no difference in (C6), but it leads
to the elimination of the R-dependent terms in (C5), and we
obtain

〈(R̂ − 〈R̂〉)2〉 = 1

H2〈N〉
∑∫

k|Dλfλ(k)|2. (C8)
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