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We build up a consistent theory of quantum electrodynamics in the presence of macroscopic polarizable media.
We use the Huttner-Barnett model of a dispersive and absorbing dielectric medium and formulate the theory in
terms of interacting quantum fields. We integrate out the damped polaritons by using diagrammatic techniques
and find an exact expression for the displacement-field (photon) propagator in the presence of a dispersive and
absorbing dielectric half-space. This offers a route to traceable perturbative calculations of the same kind as in
free-space quantum electrodynamics. As a worked-through example, we consider the interaction of a neutral atom
with a dispersive and absorbing dielectric half-space. For that, we use the multipolar coupling μ · D of the atomic
dipole moment to the electromagnetic displacement field. We apply this formalism to calculate the one-loop
correction to the atomic electron propagator and to find the energy-level shift and changes in the spontaneous
decay rates for a neutral atom close to an absorptive dielectric mirror.
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I. INTRODUCTION

Quantum electrodynamics is a well-functioning theory,
which accurately predicts a wide range of phenomena not
just in high-energy physics, but also in atomic physics.
The best-known quantum electrodynamic effect in atomic
physics is certainly the Lamb shift, which has, by now,
been calculated to very high accuracy [1]. If the atom is
located not in free space but, instead, near a reflecting surface,
which could be dielectric or conducting, then the reflection of
photons from that surface leads to the Lamb shift acquiring
a distance-dependent component, the Casimir-Polder shift,
whose gradient yields the Casimir-Polder force between atom
and surface. Alternatively, the Casimir-Polder shift can be
viewed as a Stark effect where the role of the electric field is
played by the nonzero and position-dependent electromagnetic
vacuum fluctuations in the presence of dielectrics [2]. In
order to study the Casimir-Polder effect and related quantum
electrodynamic effects due to the presence of macroscopic
material boundaries, one needs a theory of the quantized
electromagnetic field in the presence of such boundaries. The
method of field quantization largely depends on how sophisti-
cated a model of the material’s optical response one assumes.
In the simplest case, one might assume perfect reflectivity of
the surface. The quantization of the electromagnetic field can
then be achieved quite easily by a normal-mode expansion
of the field where the electromagnetic field is expanded in
terms of a complete set of solutions of the homogeneous
Helmholtz equation. The presence of the boundaries is taken
into account by imposing appropriate boundary conditions on
the electromagnetic field. Quantization is then accomplished
by promoting the expansion coefficients of each mode to
creation and annihilation operators, which are required to
satisfy bosonic commutation relations. This approach of
canonical quantization has the advantage of being simple
and, therefore, workable even for complex geometries [3],
but the perfect-reflector model for the surface lacks essential
physical features, e.g., evanescent modes, which may have a
dramatic effect on predicted quantities [4]. An improvement is
to consider the material as a nondispersive and nonabsorbing
dielectric characterized by a single real number, an index of

refraction. Then, field quantization can still be achieved by
canonical quantization using field modes, although the specific
implementation of the method requires a lot more care than
for perfect reflectors [5].

Canonical quantization of the electromagnetic field in terms
of normal modes runs into difficulties when one wants to
include, in the formalism, realistic properties of dielectrics.
The response of the material’s surface to the electromagnetic
radiation in reality depends on the frequency of the impinging
radiation. Furthermore, causality requirements demand that
any dispersion is always accompanied by absorption. However,
a naive incorporation of absorption into canonical field
quantization leads to field commutators decaying in time, i.e.,
an inconsistent theory. Therefore, in any model of interaction
between real dielectrics and the electromagnetic field, the field
has to be coupled to a reservoir in order to simulate the
absorptive degrees of freedom [6,7]. This can be done in a
number of ways. One is to model the absorptive degrees of
freedom by adding to the operator-valued Maxwell equations
Langevin-type fluctuating noise currents that ensure that the
canonical commutation relations do not decay in time but
rather take the expected form [8]. In this approach, the
field equations are solved by using the Green’s function of
the wave equation, and the noise-current operators and their
properties play a major role in describing the dynamics of the
coupled field-dielectric system. A few papers have provided
an a posteriori microscopic justification of such a procedure
by deriving the commutative properties of the noise-current
operators that were otherwise introduced ad hoc [9–11].

A more direct approach to modeling the interaction be-
tween the electromagnetic field and an absorptive dielectric
is to explicitly include, from the outset in the Lagrangian
(or Hamiltonian), the matter degrees of freedom that are
responsible for absorption. The dielectric is then envisaged
as consisting of a continuum of harmonic oscillators coupled
to a reservoir which consists of yet another set of harmonic
oscillators. This quantum model of a classical dielectric
was originally introduced by Hopfield [12]. The first Fano-
type diagonalization [13] of the resulting Hamiltonian was
achieved for fields in three dimensions in Ref. [14] for a bulk
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dielectric, and the general treatment of inhomogeneous di-
electrics followed in Ref. [10]. This model has also been
extended to include spatial dispersion [15] and magnetodi-
electrics [16]. Practical applications of the Huttner-Barnett
model, e.g., the calculation of spontaneous decay rates [17],
work well for bulk dielectrics where simple forms of the
relevant operators can be found, although an additional
difficulty is that, in a bulk medium, local field corrections
play an important role and need to be included. On the other
hand, complications that arise due to inhomogeneities of the
dielectric have previously led to unwieldy and impractical
results; the conceptually very interesting paper by Yeung and
Gustafson [18] uses the Wiener-Hopf method to calculate the
photon propagator of the vector field A in the presence of an
absorbing dielectric half-space, but the result is so complicated
that it has to be Fourier transformed and evaluated numerically,
whence all subsequent calculations are also necessarily only
numerical.

In this paper, we demonstrate that, by starting from a Power-
Zienau-Wooley type of Hamiltonian rather than adopting min-
imal coupling, one can carry out explicit and easy-to-follow
perturbative calculations in quantum electrodynamics in the
presence of inhomogeneous Huttner-Barnett dielectrics. We
apply the formalism we develop to the problem of calculating
the energy-level shifts and change in spontaneous-decay rates
for a neutral atom placed in the vicinity of a dielectric
half-space. We successfully re-derive the well-known results
of phenomenological methods and broaden them by providing
the asymptotic expansions that quantify the influence of
absorption on the standard Casimir-Polder force calculated
in Ref. [19]. We use only standard methods of quantum field
theory in a similar way as this is done in condensed-matter
theories. This requires the calculation of quantum propagators,
most notably that of the electromagnetic field. We show that
this task is nontrivial but manageable. Inspired by the results
of Ref. [20], we find an exact solution of the Dyson equation
satisfied by the photon propagator. In Appendix C, we make
contact with the phenomenological noise-current approach and
calculate the photon propagator using the electro-magnetic-
field operators constructed on the basis of the noise-current
operators [8].

II. CONSTRUCTION OF THE MODEL AND
HAMILTONIANS

We are aiming to study the electromagnetic interaction
between a quantum system, e.g., an atom, and a macroscopic
absorbing dielectric body. To this end, we use the model of
absorbing dielectrics developed in Ref. [6] but generalized
to inhomogeneous dielectrics. The dielectric is modeled by a
continuum of quantized harmonic oscillators—the polariza-
tion field. This, in turn, is coupled to another set of quantized
harmonic oscillators—the reservoir, the presence of which
leads to damping in the polarization field so as to allow
the absorption of radiation. These coupled quantum fields
interact with the electromagnetic field via the coupling of the
polarization field to the electric field. It turns out that the
subsystem consisting of the reservoir, the polarization, and the
electromagnetic field is exactly soluble, at least, for simple ge-
ometries of the dielectric. Therefore, the interaction of the atom

with the dielectric can de facto be reduced to the interaction
of the atomic dipole with the dressed electromagnetic field,
that is, the electromagnetic field corrected for the presence
of an absorptive body. This approach builds on the theory
developed in Ref. [21] where the interaction between an atom
and a pointlike absorptive dielectric (i.e., damped harmonic
oscillator) was addressed. The crucial difference is that, for
a description of the interaction with a pointlike absorber, the
dressed electromagnetic field is required only perturbatively,
but in the case of an extended absorbing body, one needs to
find the dressed electromagnetic field exactly if one wants
to accurately capture the interaction with an atom or other
quantum system.

Our starting point is the Lagrangian density describing
the complete dynamics of the electromagnetic field and the
dielectric,

L0 = LEM + LP + LR + LP−EM. (1)

The various constituent parts are as follows:
(i) The Lagrangian densityLEM of the free electromagnetic

field,

LEM = ε0

2
E2(r) − 1

2μ0
B2(r), (2)

where E(r) is the electric field and B(r) is the magnetic
induction [22].

(ii) The Lagrangian density LP of the polarization field,

LP = 1
2MẊ2(r) − 1

2Mω2
TX2(r). (3)

The field X is the dipole moment density of the continuum
of harmonic oscillators describing the dielectric. The strength
of the restoring force, acting on the polarization oscillators,
is determined by the combination Mω2

T. Hence, for a fixed
absorption frequency ωT of the dielectric, the mass M
is the parameter that determines the susceptibility of the
polarization oscillator to an external agent. It has dimensions
of (mass) × (length)−1 × (dipole moment density)−2. In fact,
the quantity (Mε0ω

2
T)−1 will turn out to be the polarizability

of the dielectric at zero frequency [12]. The absence of
derivatives with respect to r in Eq. (3) implies that the
polarization oscillators at different points in space are mutually
independent, resulting in a model with no spatial dispersion.

(iii) The Lagrangian density LR of the reservoir, including
its coupling to the polarization field,

LR =
∫ ∞

0
dν

{
1

2
ρνẎ2

ν(r) − 1

2
ρνν

2[Yν(r) − X(r)]2

}
. (4)

The set of fields Yν represents the dipole moment den-
sity of the bath oscillators at all bath frequencies ν, and
the parameter ρν has dimensions of (mass) × (length)−1 ×
(dipole moment density)−2 × (frequency)−1. The coupling of
the bath to the polarization field leads to the appearance of a
term proportional to Ẋ(r,t) in the equations of motion for the
polarization field; hence, it is responsible for damping [23,24]
(cf. also Appendix B). The masses of the bath oscillators ρν

vary continuously with index ν and describe the strength of
the coupling between a single polarization oscillator and the
continuum of reservoir oscillators for different frequencies
ν. The precise profile of ρν is chosen so that the desired
absorption spectrum is obtained [25].
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(iv) The Lagrangian density LP−EM describing the interac-
tion of the polarization field with the electromagnetic field,

LP−EM = g(r)X(r) · E(r). (5)

The dimensionless coupling function g(r) specifies where the
interaction is taking place, i.e.,

g(r) =
{

1, inside the dielectric,
0, outside the dielectric. (6)

Thus, g(r) describes the geometric shape of the dielectric
body and limits the interaction to its interior. Therefore, it is
inconsequential whether the polarization field X(r) is defined
in the whole space or only in the interior, but the latter would
cause unnecessary technical complications later on.

It is straightforward to identify the canonical momenta
Zν(r) ≡ ρνẎν(r), P(r) ≡ MẊ(r), and −D(r) ≡ −ε0E(r) −
g(r)X(r) and to obtain the corresponding Hamiltonian den-
sities,

HEM = 1

2ε0
D2(r) + 1

2μ0
B2(r), (7)

HP = P2(r)

2M + 1

2
Mω2

TX2(r), (8)

HR =
∫ ∞

0
dν

[
Z2

ν(r)

2ρν

+ 1

2
ρνν

2Y2
ν(r)

]
, (9)

HP−R = −
∫ ∞

0
dν ρνν

2X(r) · Yν(r), (10)

HP−EM = −g(r)

ε0
D(r) · X(r). (11)

For convenience, we have separated out the polarization-field
reservoir coupling HP−R and the part of the Hamiltonian that
just shifts the eigenfrequency of the polarization field,

HS = 1

2

∫ ∞

0
dν ρνν

2X2(r) + 1

2

g2(r)

ε0
X2(r). (12)

The first term of (12) arises due the coupling between the
polarization field and the reservoir, whereas, the second term
is caused by the coupling between the electromagnetic and the
polarization fields. Equations (7)–(12), accompanied by the
set of the equal-time commutation relations,

[Di(r),Bj (r′)] = ih̄εijm∇′
mδ(3)(r − r′), (13)

[Xi(r),Pj (r′)] = ih̄ δij δ
(3)(r − r′), (14)

[Yi,ν(r),Zj,ν ′ (r′)] = ih̄ δij δ
(3)(r − r′)δ(ν − ν ′), (15)

allow one to derive the equations of motion for the inhomo-
geneous damped-polariton model, cf. Ref. [9]. The dielectric
displacement D(r) ≡ ε0E(r) + g(r)X(r) is the negative of the
momentum conjugate to electromagnetic vector potential A(r)
as it should be [26]. This is assured by the correct choice of
coupling (5). As already mentioned, the Hamiltonian density
HS, Eq. (12), shifts the eigenfrequency ωT of the polarization
field, i.e.,

ω2
T −→ ω̃2

T = ω2
T + 1

M

∫ ∞

0
dν ρνν

2 + g2(r)

ε0M
. (16)

The second term contains the parameter ρν that pertains to
the shape of the absorption spectrum. For our choice of ν

dependence (see Appendix B), it turns out to be infinite.
However, this is not problematic as the equations of motion for
the fields, and hence, all observable quantities, most notably
the dielectric function, stay finite and physically meaningful.
Furthermore, the last term of Eq. (16), in principle, introduces a
position dependence of the frequency ω̃T through the coupling
function g(r). While not yet apparent at this stage, this position
dependence will turn out to be irrelevant. Hence, for now, we
set g(r) = 1 in the expression for the frequency shift but will
explain later on why we are allowed to do so. With that, we
can incorporate Eq. (12) into the Hamiltonian density of the
polarization field and can write

HP = P2(r)

2M + 1

2
Mω̃2

TX2(r), (17)

with

ω̃2
T = ω2

T + ω2
P + 1

M

∫ ∞

0
dν ρνν

2, (18)

where by hindsight, we have introduced the symbol ω2
P =

(ε0M)−1 in analogy to the plasma frequency in metals [27].
Our aim is to investigate the influence of an absorbing

dielectric on the properties of an atom, such as the shifts in
its energy levels and spontaneous decay rates. The complete
Hamiltonian, including the atom, reads

H =
∫

d3r(HA + HEM + HP + HR

+HP−R + HP−EM + HA−EM), (19)

where HA is the Hamiltonian density of the atom and
HA−EM describes its coupling to the electromagnetic field.
We consider a one-electron atom and treat the atomic elec-
tron nonrelativistically by representing it as a quantum of
the Schrödinger field satisfying fermionic anticommutation
relations. The Hamiltonian density HA of the noninteracting
atomic electron (i.e., in the absence of interactions with the
quantized electromagnetic field) can be written as

HA = �†(r)

[
− h̄2

2m
∇2 + V (|r − R|)

]
�(r), (20)

where �(r) is the Schrödinger field operator satisfying the
anticommutation relation,

{�(r),�†(r)} = δ(3)(r − r′), (21)

and V (|r − R|) is the potential due to the immobile nucleus
which we choose to be located well outside the dielectric
(i.e., at least a few Bohr radii away) at a position R so that
there is no wave-function overlap between the atom and the
solid. The atom is coupled to the electric field via its electric
dipole moment. The Hamiltonian, describing this coupling in
the dipole approximation, may be written as

HA−EM = −μ · E(R), (22)

i.e., we evaluate the electric field at the position of the nucleus.
Here, μ is the electric dipole moment operator, which depends
on the second-quantized fields � and �†. It is convenient to
expand the field operator �(r) in terms of a complete set of
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atomic wave functions satisfying[
− h̄2

2m
∇2 + V (|r − R|)

]
φn(r) = Enφn(r). (23)

If we write

�(r) =
∑
m

cmφm(r), �†(r) =
∑
m

c†mφ∗
m(r), (24)

then it follows from Eq. (21) that the operators cm and c
†
n

satisfy the equal-time anticommutation relation,

{cn,c
†
m} = δmn. (25)

We use Eqs. (24) and (25) to rewrite the Hamiltonians HA and
HEM in a more useful form,

HA =
∑

n

Enc
†
ncn, (26)

HA−EM = −e
∑
ij

c
†
i cj 〈i|ρ|j 〉 · E(R), (27)

where −e〈i|ρ|j 〉 are the dipole matrix elements.
We will follow the field-theoretical approach of Ref. [21]

to calculate the energy-level shifts and modified spontaneous
decay rates. In order to do so, we need to locate the poles of
the atomic propagator, which, once interactions have been
switched on, are accessible only perturbatively. For these
perturbative calculations, we need to work in the interaction
picture where the general expression for the perturbative
expansion of a Green’s function of the field � under the
influence of the interaction HI is [28]

G(r,r′,t,t ′) =
∞∑

n=0

(
− i

h̄

)n+1 ∫
dt1 · · ·

∫
dtn

×〈	|T[�(r,t)�†(r′,t ′)HI(t1) · · · HI(tn)]|	〉conn.

(28)

� is now the field operator in the Heisenberg picture,
and |	〉 is the exact ground state of the noninteracting
system. The subscript “conn” indicates that only connected
diagrams contribute as disconnected diagrams drop out in the
normalization of |	〉.

Wick’s theorem states that the terms appearing in the
expansion (28), when written out explicitly for a specific
interaction Hamiltonian, turn out to be given entirely in terms
of the propagators of the noninteracting fields. We will proceed
by determining the noninteracting propagators of the atom, the
polarization field, the bath, and the electromagnetic field. Then,
the interaction of the polarization field with the reservoir will
be treated exactly to all orders. Once this is accomplished,
the correction to the electromagnetic-field propagator caused
by the presence of the absorptive dielectric can be calculated,
which will also be done exactly to all orders. This is going
to give the dressed photon propagator that enters the final
perturbative expansion of the atomic propagator whose poles
give the energy-level shifts and changes in the transition rates.

III. UNPERTURBED FEYNMAN PROPAGATORS

A. Atomic-electron propagator

The unperturbed atomic-electron propagator, correspond-
ing to the Hamiltonian (20) or equivalently (26), is defined as

the time-ordered expectation value,

G(0)(r,r′,t,t ′) = − i

h̄
〈	|T[�(r,t)�†(r′,t ′)]|	〉, (29)

where � is the Schrödinger field operator in the Heisenberg
picture and |	〉 is the exact ground state of the noninteracting
system. We substitute the field operators written in terms of
the atomic eigenfunctions, Eq. (24), while remembering that
we are in the Heisenberg picture where the operators cl and c

†
m

are time dependent and find

G(0)(r,r′,t,t ′) =
∑
l,m

φl(r)φ∗
m(r′)G(0)

lm(t,t ′), (30)

with

G
(0)
lm(t,t ′) = − i

h̄
〈	|T[cl(t)c

†
m(t ′)]|	〉. (31)

The time dependence of the fermionic annihilation and
creation operators is governed by the Hamiltonian (26),

cm(t) = cm(0)e−iEmt/h̄, c†m(t) = c†m(0)eiEmt/h̄. (32)

With that, we can determine G
(0)
lm(t,t ′) and obtain

G
(0)
lm(t − t ′) = − i

h̄
θ (t − t ′)e−iEl (t−t ′)/h̄δlm, (33)

where we have used the definition of the time-ordering operator
and the fact that the vacuum state |	〉 is annihilated by
cm(0). Since G

(0)
lm(t,t ′) is, in fact, dependent only on the time

difference t − t ′, we can work with its Fourier transform with
respect to t − t ′ ≡ τ ,

G
(0)
lm(E) =

∫ ∞

−∞
dτ eiEτ/h̄G

(0)
lm(τ ) = 1

E − El + iη
δlm. (34)

With this convention of Fourier transformation, the iη pre-
scription ensures the correct causal behavior of the propagator
and guarantees the convergence of the integrals.

B. Photon propagator

To calculate the zeroth-order propagator of the displace-
ment field D(r,t) whose dynamics is governed by the Hamil-
tonian (7), which we emphasize does not include the coupling
term (11), we note that the Heisenberg equations of motion
imply

∂Di(r,t)
∂t

= 1

μ0
εijk∇jBk(r,t), (35)

∂Bi(r,t)
∂t

= − 1

ε0
εijk∇jDk(r,t), (36)

where εijk is the Levi-Civita symbol and the sum over doubly
occurring Cartesian indices is implied. Thus, the displacement
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field D(r,t) satisfies the homogeneous wave equation,

(∇i∇j − δij∇2)Dj (r,t) + μ0ε0
∂2

∂t2
Di(r,t) = 0. (37)

The formal definition of the photon propagator reads

Dij (r,r′,t,t ′) = − i

h̄
〈0|T[Di(r,t)Dj (r′,t ′)]|0〉, (38)

where Di(r,t) is the displacement-field operator in the
Heisenberg picture and |0〉 is the exact ground state of the
noninteracting electromagnetic field. We proceed by applying
the differential wave operator that appears in Eq. (37) to this
definition of the propagator, but we need to take care when
applying the time derivative to a time-ordered product and
observe that

∂

∂t
T[A(t)B(t ′)] = δ(t − t ′)[A(t),B(t)] + T

[
∂A(t)

∂t
B(t ′)

]
.

Thus, we find that the displacement-field propagator
D

(0)
ij (r,r′,t,t ′) satisfies the following differential equation:(

∇i∇j − δij∇2 + μ0ε0
∂2

∂t2

)
D

(0)
jk (r − r′,t − t ′)

= ε0

(2π )3
δ(t − t ′)

∫
d3q(qiqk − δikq2)eiq·(r−r′), (39)

where we have used the commutator,[
∂Di(r,t)

∂t
,Dk(r′,t)

]
= ih̄

μ0
(∇i∇k − δik∇2)δ(3)(r − r′),

and the fact that spatial derivatives commute with the time-
ordering operator. From Eq. (39), it is clear that the free-space
photon propagator is translation invariant in space and time,
i.e., it depends only on the differences r − r′ and τ = t − t ′.
Therefore, one can find the solution of the differential equation
through Fourier transformation. First, we note that Maxwell’s
equation (35) implies that the displacement field is transverse
so that its propagator satisfies

∇iD
(0)
jk (r − r′,t − t ′) = 0. (40)

Introducing the Fourier transform of the propagator,

D
(0)
ik (q,ω) =

∫
d3(r − r′)e−iq·(r−r′)

×
∫ ∞

−∞
d(t − t ′)eiω(t−t ′)D

(0)
ik (r − r′,t − t ′),

(41)

we readily obtain its spectral representation,

D
(0)
ik (q,ω) = ε0

δikq2 − qiqk

ω2 − q2 + iη
. (42)

We have displaced the poles in the denominator by iη so that
D

(0)
jk (r − r′,t − t ′) has the appropriate causality properties of

a Feynman propagator.

C. Polarization-field propagator

The Hamiltonian density (17) describes a collection of
mutually independent harmonic oscillators. The fact that the

harmonic oscillator at r is unaffected by the oscillator at r + dr
allows us to introduce creation and annihilation operators b†(r)
and b(r) for each harmonic oscillator,

X(r) =
√

h̄

2Mω̃T
[b†(r) + b(r)],

(43)

P(r) = i

√
h̄Mω̃T

2
[b†(r) − b(r)].

The operators b†(r) and b(r) satisfy the equal-time commuta-
tion relations,

[bi(r),b†j (r)] = δij δ
(3)(r − r′), (44)

which follow directly from their definition and Eq. (15). The
operator bi(r) annihilates the ground state of the oscillation
in the ith direction at r. Using this property together with
the commutation relation (44), we can directly evaluate the
polarization-field propagator defined as

K
(0)
ij (r,r′,t,t ′) = − i

h̄
〈	|T [Xi(r,t)Xj (r′,t ′)]|	〉. (45)

Here, Xi(r,t) is the polarization-field operator in the Heisen-
berg picture, and |	〉 is the exact ground state of the
noninteracting polarization field. When written in terms of the
creation and annihilation operators, the Hamiltonian density
(17) is, of course, diagonal in b†(r) and b(r) so that the
time dependence of the creation and annihilation operators
is harmonic,

b(r,t) = b(r,0)e−iω̃Tt , b†(r,t) = b†(r,0)eiω̃Tt . (46)

We substitute the polarization-field operators (43) expressed
in terms of the ladder operators into Eq. (45) and observe that,
due to the orthogonality of states, only terms proportional to
bib

†
i contribute. Taking care of the appropriate time ordering

of operators and using the commutator (44) to move any
annihilation operators to the right of creation operators so
that they act on the vacuum state |	〉, we readily obtain

K
(0)
ij (r − r′,t − t ′)

= − i

2Mω̃T
δij δ

(3)(r − r′)

× [θ (t − t ′)e−iω̃T(t−t ′) + θ (t ′−t)e+iω̃T(t−t ′)], (47)

with the frequency ω̃T as defined in Eq. (18). We will need the
Fourier transform of the polarization propagator with respect
to the time difference t − t ′,

K
(0)
ij (r − r′; ω) =

∫ ∞

−∞
d(t − t ′)eiω(t−t ′)K

(0)
ij (r − r′,t − t ′),

(48)

which is easily obtained from Eq. (47) and reads

K
(0)
ij (r − r′; ω) = 1

M
1

ω2 − ω̃2
T + iη

δij δ
(3)(r − r′). (49)

Since the polarization-field operators are mutually indepen-
dent, there is no need for any special consideration of the
boundaries of the dielectric medium at this stage. The bound-
aries are taken into account through the coupling function
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g(r), Eq. (6), and the field equation for the electromagnetic
field, once coupled to the polarization field, will include the
physical processes of reflection and refraction as it should.
It is worth pointing out that an artificial restriction of the free
polarization field to just the interior of the dielectric would lead
to a much more complicated free propagator thereby causing
unnecessary technical complications while not describing any
different physics.

D. Reservoir propagator

The dynamics of the noninteracting reservoir field is
governed by the Hamiltonian (9), which describes a set of
independent harmonic oscillators. The propagator for the free
reservoir field can be obtained by repeating the same steps as
for the derivation of the propagator for the free polarization
field in Sec. III C. Therefore, we do not repeat the details of the
derivation but simply point out the similarity of the structure
of the result to Eqs. (47) and (49). In the time domain, the
reservoir propagator reads

H
(0)
ij (r − r′,t − t ′,ν,ν ′)

= − i

2ρνν
δij δ

(3)(r − r′)δ(ν − ν ′)

× [θ (t − t ′)e−iν(t−t ′) + θ (t ′ − t)e+iν(t−t ′)]. (50)

Its Fourier transform, with respect to t − t ′, is given by

H
(0)
ij (r − r′,ν,ν ′; ω)

=
∫ ∞

−∞
d(t − t ′)eiω(t−t ′)H

(0)
ij (r − r′,t − t ′,ν,ν ′),

= 1

ρν

δij

ω2 − ν2 + iη
δ(3)(r − r′)δ(ν − ν ′). (51)

IV. DRESSED PROPAGATORS

Having gathered all the unperturbed propagators, we can
proceed to work out the propagators for the coupled fields.
We are going to use a diagrammatic approach to illustrate the
workings of perturbation theory, i.e., we represent each term
of the perturbative expansion (28) by an appropriate Feynman
diagram (cf., e.g., Ref. [28]). To proceed with that, we need
to lay down the Feynman rules for our approach. We have
four different free propagators; accordingly, we associate four
distinct lines with them:

≡ i¯
(0)
ii (t, t )

t tii

≡ i¯
(0)
kl (r, r , t, t )

r , t r, tkl

≡ i¯ (0)
mn(r, r , t, t )

r , t r, tmn

≡ i¯ (0)
pq (r, r , t, t ; ν, ν )

r , t r, tν, pq

hG

hD

hK

hH

We will need to consider three interaction Hamiltonians, in
turn, HP−R, HP−EM, and HA−EM,

HP−R = −
∫

d3r
∫ ∞

0
dν ρνν

2X(r) · Yν(r), (52)

HP−EM = − 1

ε0

∫
d3r g(r)D(r) · X(r), (53)

HA−EM = − 1

ε0

∑
ij

c
†
i cjμij · D(R). (54)

Note that we have introduced the shorthand μij = 〈i|μ|j 〉
for the matrix elements of the atomic electric dipole moment
operator μ. These interaction Hamiltonians yield the following
Feynman rules for the vertices between the lines defined above:

≡ −1
0 μk

ijδ
(3)(r1 − R)

kl

t r1, t1ii jj t

r1, t1

r1, t1
≡ − −1

0 g(r1)δlm

kl mn r, tr , t

r , t r, tmn ν, pq
≡ −ρνν

2δnp

To compute a diagram, one has to sum over all internal
indices and to integrate over internal times, internal coor-
dinates, and reservoir oscillator frequencies ν and ν ′. As
mentioned earlier, the subscript conn in Eq. (28) means that
the summation in that equation runs only over those terms
that correspond to connected Feynman diagrams. Furthermore,
topologically equivalent diagrams, i.e., those that can be
obtained by permuting the factors HI(ti) in Eq. (28), are
counted only once, and therefore, we have omitted the factor
of 1/n! that would otherwise have arisen in a straightforward
expansion of the time-ordered exponential of the interaction
Hamiltonian in perturbation theory.

A. Dressing the polarization line

The polarization field interacts with the reservoir; all these
interactions in their entirety dress the polarization field. We
choose to represent the dressed polarization propagator by a
bold dashed line:

≡ i¯ mn(r, r , t, t )
r , t r, tmn

hK

From the interaction Hamiltonian (52) and the associated
Feynman rules, one can see that the polarization line can only
ever connect to exactly one reservoir line. Hence, the complete
set of all possible interactions, corresponding to the expansion
(28), is represented by the following sequence of Feynman

022111-6



QUANTUM ELECTRODYNAMICS NEAR A DISPERSIVE AND . . . PHYSICAL REVIEW A 86, 022111 (2012)

diagrams:

=

+

+

+ . . .

=

The equivalent analytical expression is the Dyson equation
for the dressed polarization propagator; it reads

Kmn(r,r′,t,t ′)
= K (0)

mn(r,r′,t,t ′)

+
∑
l,p

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∫
d3r1

∫
d3r2

∫ ∞

0
dν

∫ ∞

0
dν ′

×K
(0)
ml (r,r1,t,t1)H (0)

lp (r1,r2,t1,t2,ν,ν ′)Kpn(r2,r′,t2,t ′).

Despite being an integral equation, the above equation is easily
solved exactly. Upon substituting Eqs. (49) and (51), we can
easily carry out the spatial integrations. Then, we Fourier
transform with respect to t − t ′,

Kmn(r,r′; ω) =
∫ ∞

−∞
d(t − t ′)eiω(t−t ′)Kmn(r,r′,t − t ′),

and find the following expression for the dressed polarization-
field propagator in the frequency domain,

Kmn(r − r′; ω) = K(ω)δ(3)(r − r′)δmn, (55)

with

K(ω) = 1

M

[
ω2 − ω2

T − ω2
P − ω2

M

∫ ∞

0
dν

ρνν
2

ω2 − ν2 + iη

]−1

.

(56)

Note that K(ω) is an even function of ω. The plasma frequency
ωP was defined below Eq. (18).

B. Dressing the photon line

The coupling (53) between the dressed polarization field
and the electromagnetic field has formally the same form as
the coupling (52) between the bare polarization field and the
reservoir. By analogy with the previous section, we write down
the graphical equation for the dressed photon propagator as

=

where the bold wavy line denotes the dressed photon propa-
gator, i.e.,

≡ i¯ kl(r, r , t, t )
r , t r, tkl

hD

The corresponding analytical expression reads

Dik(r,r′,t,t ′)
= D

(0)
ik (r − r′,t − t ′)

+ 1

ε2
0

∑
j,l

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∫
d3r1

∫
d3r2g(r1)g(r2)

×D
(0)
ij (r − r1,t − t1)Kjl(r1 − r2,t1,t2)Dlk(r2,r′,t2,t ′).

(57)

Now, recall the discussion following Eq. (16) of the shifted
eigenfrequency ω̃T of the polarization field. It enters the
Dyson equation (57) through the dressed polarization-field
propagator Kjl(r1 − r2,t1,t2). As we noted earlier, according
to Eq. (16), the shifted eigenfrequency ω̃T suddenly jumps at
the boundary of the region where the polarization field interacts
with the electromagnetic field, i.e., where the coupling function
g(r) = 1. However, it is now apparent that this discontinuity is
unproblematic because all spatial integrations in Eq. (57) are
limited to the region of space where g(r) = 1.

To simplify Eq. (57), we note that one of the spatial
integrations is trivial due to the δ function in the dressed
polarization-field propagator (55). Fourier transforming with
respect to the time difference t − t ′,

Dik(r,r′; ω) =
∫ ∞

−∞
d(t − t ′)eiω(t−t ′)Dik(r,r′,t,t ′), (58)

we find the Dyson equation for the dressed photon propagator
in the frequency domain,

Dik(r,r′; ω) = D
(0)
ik (r − r′; ω) + K(ω)

ε2
0

×
∫

d3r1g(r1)D(0)
ij (r − r1; ω)Djk(r1,r′; ω).

(59)

Here, K(ω) is a complex-valued function of frequency that has
originated from the dressed polarization-field propagator and is
given in Eq. (56); it will be shown to be related to the dielectric
permittivity. Note that the dimensionless coupling function
g(r), describing the geometry of the dielectric medium as
defined in Eq. (6), is the only way the geometry enters
in the calculation by effectively defining the limits of the
spatial integration in Eq. (59). D

(0)
ik (r − r′,ω) is the free-space

photon propagator in coordinate representation, i.e., the inverse
Fourier transform of Eq. (42),

D
(0)
ik (r − r′,ω) = ε0

(2π )3

∫
d3q eiq(r−r′) δikq2 − qiqk

ω2 − q2 + iη
. (60)

The solution of the integral equation (59) is much less trivial
than that of the equivalent equation for dressing the polariza-
tion line in Sec. IV A. This is because translation invariance
is lost when an inhomogeneous dielectric is introduced into
the system. Here, we report two ways of tackling the problem.
First, we demonstrate that it is possible to solve the integral
equation (59) by direct iteration. The iteration method that we
employ is inspired by Ref. [20]. In order to explain it, we write
Eq. (59) symbolically as

D = D0 + KD0 ⊗ D. (61)

Iteration of this equation yields the expansion,

D = D0 + KD0 ⊗ D0 + K2D0 ⊗ D0 ⊗ D0 + · · · , (62)

which proves especially useful if the action of the operatorO =
D0⊗ on the free-space propagator D0 amounts to a simple
multiplication, i.e., if

OD0 = D0 ⊗ D0 = CD0, (63)
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FIG. 1. The atomic dipole is located a distance Z away from the
dielectric half-space of complex and frequency-dependent permit-
tivity ε(ω). The transverse propagator Dik(r,r′; ω) of the dielectric
displacement field in this geometry is given by Eq. (96).

where C is some constant. Then, Eq. (62) becomes a
geometrical series,

D = D0(1 + KC + K2C2 + K3C3 + · · · ), (64)

which we know how to sum to all orders.
An alternative approach, which we sketch in Appendix A,

consists of converting the integral equation (59) to a differential
equation supplemented by Maxwell boundary conditions.
In addition, in Appendix C, for comparison with other
theories, we construct the photon propagator using yet another,
completely different method based on the phenomenological
noise-current approach of Ref. [8].

Let us now concentrate on the example geometry of a
dielectric half-space occupying the z < 0 region of space,
cf. Fig. 1, for which the coupling function g(r) in Eq. (59)
becomes g(r) = θ (−z). Due to the boundary, the problem
has lost translation invariance in the z direction but not in
directions parallel to the surface. In other words, the propagator
depends only on the difference r‖ − r′

‖ but separately on z

and z′. It is convenient to work with quantities that have
been Fourier transformed with respect to r‖ − r′

‖; e.g., for
the dressed photon propagator, we have

Dij (z,z′) =
∫

d2(r‖ − r′
‖)e−iq‖·(r‖−r′

‖)Dij (r‖ − r′
‖,z,z

′), (65)

where, for notational convenience, we have suppressed the
dependence on q‖ and ω. Once Fourier transformed with
respect to r‖ − r′

‖, the integral equation (59) becomes

Dik(z,z′) = D
(0)
ik (z − z′)

+K(ω)

ε2
0

∫ 0

−∞
dz1D

(0)
ij (z − z1)Djk(z1,z

′). (66)

As is easily checked, this does not lend itself to iteration as it
stands. Following Ref. [20], we introduce an additional integral
equation in order to enable the iteration process,

Dik(z,z′) = D
(ε)
ik (z − z′)

−K(ω)

ε2
0

∫ ∞

0
dz1D

(ε)
ij (z − z1)Djk(z1,z

′). (67)

Here, D
(ε)
ik (z − z′) is the Fourier-transformed photon propa-

gator in a bulk medium, i.e., the solution of Eq. (59) with

g(r) = 1. In order to justify Eq. (67), let us recall that the part
of the Hamiltonian density that describes the interaction of the
photon field with the polarization field has the form

H = H0 − θ (−z)

ε0
X(r) · D(r), (68)

where H0 is the Hamiltonian density of the noninteracting
electromagnetic field. Using the fact that θ (−z) + θ (z) = 1,
we can also write

H = Hε + θ (z)

ε0
X(r) · D(r), (69)

where Hε = H0 − X(r) · D(r)/ε0 is the Hamiltonian density
of the electromagnetic field interacting with an unbounded
dielectric. Therefore, we have a choice: We can either
correct the free-space photon propagator for the presence of
the dielectric half-space or, equivalently, correct the photon
propagator in a bulk dielectric for the absence of the medium in
the other half-space. In other words, it is entirely up to us which
Hamiltonian we take as the zeroth-order (exactly solvable)
Hamiltonian when applying perturbation theory. The integral
equation (67) corresponds to treating the electromagnetic field
interacting with the bulk medium as the zeroth-order, solved
part of the problem.

To proceed, we need to find D
(0)
ik (z − z′) and D

(ε)
ik (z − z′)

appearing in Eqs. (66) and (67), which can, in fact, be
read off from the representations of these propagators as
two-dimensional integrals over the momenta parallel to the
surface. To find D

(0)
ik (z − z′), we carry out the qz integral in

Eq. (60) using the residue theorem. The result, written in a
compact form, is

D
(0)
ik (r − r′,ω) = − iε0

2(2π )2
(∇i∇k − δik∇2)

×
∫

d2q‖eiq‖·(r‖−r′
‖) e

ikz|z−z′ |

kz

, (70)

where kz is the z component of the wave vector in vacuum
and is given by kz =

√
ω2 − q2

‖ + iη. The square root is taken
such that the imaginary part of kz is always positive. Equation
(70) shows that some components of the Fourier transform of
the free-space photon propagator are singular when crossing
the z = z′ plane.

For deriving the photon propagator D
(ε)
ik (r − r′; ω) in a bulk

medium, we set g(r) = 1 in Eq. (59) and then Fourier transform
this equation with respect to r − r′,

D
(ε)
ik (q,ω) = ε0

δikq2 − qiqk

ω2 − q2 + iη

+K(ω)

ε0

δij q2 − qiqj

ω2 − q2 + iη
D

(ε)
jk (q,ω). (71)

This matrix equation becomes an algebraic one when one
takes the transversality of the propagator qjD

(ε)
jk (q,ω) = 0 into

account. The calculation is straightforward, and in coordinate
space, we obtain

D
(ε)
ik (r − r′,ω) = ε0ξ (ω)

(2π )3

∫
d3q

δikq2 − qiqk

ξ (ω)ω2 − q2
eiq(r−r′). (72)

Note that the function ξ (ω) that appears in Eq. (72) should not
be interpreted as the dielectric function of the bulk medium.
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It is an even function of the frequency ω and may be written
explicitly as

ξ (ω) =
(

1 + K(ω)

ε0

)−1

= 1 + 1

ε0M

[
ω2

T − ω2 − ω2

M

∫ ∞

0
dν

ρνν
2

ν2 − ω2 − iη

]−1

,

(73)

where we have used Eq. (56). Thus, the ω dependence of
ξ (ω) is not consistent with the causality requirements usually
imposed on response functions, i.e., with Kramers-Kronig
relations. This is because we have calculated a Feynman
propagator and not a retarded Green’s function. The dielectric
function of this model is discussed in Appendix B. We derive
the required Fourier representation of the propagator in the
bulk medium by carrying out the qz integral in Eq. (72) and
obtain

D
(ε)
ij (r − r′,ω) = − iε0ξ (ω)

2(2π )2
(∇i∇k − δik∇2)

×
∫

d2q‖eiq‖·(r‖−r′
‖) e

ikzd |z−z′ |

kzd

, (74)

in complete analogy with the formula for the free-space
propagator Eq. (70). Here, kzd =

√
ξ (ω)ω2 − q2

‖ is the z

component of the complex wave vector in the medium with an
always positive imaginary part.

We may now proceed by substituting Eq. (66) into Eq. (67),

Dik(z,z′) = D
(ε)
ik (z − z′)

−K(ω)

ε2
0

∫ ∞

0
dz1D

(ε)
ij (z − z1)D(0)

jk (z1 − z′)

−K2(ω)

ε4
0

∫ ∞

0
dz1

∫ 0

−∞
dz2D

(ε)
ij (z − z1)

×D
(0)
j l (z1 − z2)Dlk(z2,z

′), (75)

and focusing our attention on the solution of the cases z < 0
and z′ > 0, i.e., when the source is located outside the dielectric
and the observation point is inside the material. The solution
for the case z,z′ > 0 can then be obtained by applying the
integral equation (66). The advantage of introducing Eq. (75)
is that it facilitates iteration as it turns out that, when Dik

on the right-hand side is replaced by D
(ε)
ik , the action of the

double-integral operator in the last term reduces to a matrix
multiplication,

∫ ∞

0
dz1

∫ 0

−∞
dz2D

(ε)
ij (z − z1)D(0)

j l (z1 − z2)D(ε)
lk (z2 − z′)

= CijD
(ε)
lk (z − z′), (76)

with the matrix Cij independent of z and z′. In order to
efficiently verify and make use of assertion (76), let us point
out some useful facts. First, we recall that

q2δik − qiqk = ω2[eTE
i (q)eTE

k (q) + eTM
i (q)eTM

k (q)
]
, (77)

where q = (q‖,kz) is the wave vector in vacuum and we have
introduced the polarization vectors,

eTE(q‖) = 1

|q‖| (−qy,qx,0),

eTM(q‖,kz) = 1

|q‖|ω (qxkz,qykz, −q2
‖), (78)

eTM(q‖,kzd ) = 1

|q‖|
√

ξ (ω)ω
(qxkzd,qykzd, −q2

‖).

We have listed eTM(q‖,kzd ) explicitly to point out the additional
factor of ξ−1/2(ω) in its normalization. In the following, we
will suppress the insignificant dependence of the polarization
vectors on q‖. Relation (77) is simply a statement of the
completeness property of the polarization vectors (78), but
it allows us to write

(∇i∇k − δik∇2)eiq‖·(r‖−r′
‖)+ikz|z−z′ |

= ω2eiq‖·(r‖−r′
‖)

∑
λ

{
eλ
i (kz)eλ

k (kz)eikz(z−z′), z > z′,

eλ
i (−kz)eλ

k (−kz)e−ikz(z−z′), z < z′,

(79)

so that the partial Fourier transform of the free-space propa-
gator (70) may be written as

D
(0)
ij (z − z′) = − iε0ω

2

2kz

×
∑

λ

{
eλ
i (kz)eλ

k (kz)eikz(z−z′), z > z′,

eλ
i (−kz)eλ

k (−kz)e−ikz(z−z′), z < z′.

(80)

We emphasize that the above representation of the free-space
propagator is not valid at the point z = z′ where the z

derivatives in Eq. (70), acting on eikz|z−z′ |, would produce
additional terms proportional to a δ function. Similarly, we
have

D
(ε)
ij (z − z′) = − iε0ξ

2(ω)ω2

2kzd

×
∑

λ

{
eλ
i (kzd )eλ

k (kzd )eikzd (z−z′), z > z′,

eλ
i (−kzd )eλ

k (−kzd )e−ikzd (z−z′), z < z′.

(81)

Equations (80) and (81) show that the free-space and bulk-
medium propagators can be split into separate contributions
from the transverse electric and transverse magnetic polariza-
tions,

D
(··· )
ij (z − z′) =

∑
λ

D
(··· )
λ,ij (z − z′). (82)

Most of the further calculations are very much simplified if one
takes into account that scalar products of polarization vectors
with different z components are diagonal in the polarization
indices, i.e., we have

eλ
i (q‖,qz)e

σ
i (q‖,pz) = f λ(qz,pz)δλσ . (83)
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The function f is equal to 1 for the TE mode, and for the TM
mode, it reads

f TM(qz,pz) = qzpz + q2
‖√

q2
‖ + q2

z

√
q2

‖ + p2
z

. (84)

This is very useful because it shows that not only a single
propagator, as in Eq. (82), but also a product of propagators can
always be split into separate contributions from the transverse
electric and transverse magnetic modes, i.e., we can always
write

· · · Dij (z − z1)Djl(z1 − z2)Dlk(z2 − z′) · · ·
=

∑
λ

· · · Dλ,ij (z − z1)Dλ,jl(z1 − z2)Dλ,lk(z2 − z′) · · · .

This is true for an arbitrary number of propagators.
We can now proceed to verifying Eq. (76). First, we note

that the arguments of all three propagators entering Eq. (76)
have a definite sign. Indeed, we have

z − z1 < 0, z1 − z2 > 0, z2 − z′ < 0. (85)

Thus, from Eqs. (80) and (81), it follows that the propagators
entering the integral in Eq. (76) are given by

D
(0)
ij (z − z′) = − iε0ω

2

2kz

eikz(z−z′)
∑

λ

eλ
i (kz)e

λ
j (kz),

D
(ε)
ij (z − z′) = − iε0ξ

2(ω)ω2

2kzd

e−ikzd (z−z′)
∑

λ

eλ
i (−kzd )eλ

j (−kzd ).

(86)

With this, we can evaluate the integrals in Eq. (76) and find
that ∫ ∞

0
dz1

∫ 0

−∞
dz2D

(ε)
ij (z − z1)D(0)

j l (z1 − z2)D(ε)
lk (z2 − z′)

= ε4
0

K2(ω)

∑
λ

r2
λ

1 − r2
λ

D
(ε)
λ,lk(z − z′), (87)

where we have used Eq. (73). Here, rλ is the Fresnel coef-
ficient for reflection from a half-space. Since all the Fresnel
coefficients for reflection and transmission at a half-space are
needed later on, we list them here

rTE = kz − kzd

kz + kzd

, rTM = ξ (ω)kz − kzd

ξ (ω)kz + kzd

,

(88)

tTE = 2kz

kz + kzd

, tTM = 2
√

ξ (ω)kz

ξ (ω)kz + kzd

.

The significance of Eq. (87) is that it allows us to iterate the
integral equation (75) along the lines of Eqs. (63) and (64).
The iterative process is now straightforward and, thanks to
relation (87), leads to two separate geometric series for the
two polarizations,

Dλ,ij (z,z′)

=
[
D

(ε)
λ,ij (z − z′) − K(ω)

ε2
0

∫ ∞

0
dz1D

(ε)
λ,ij (z − z1)D(0)

λ,jk(z1−z′)
]

×
[

1 −
(

r2
λ

1 − r2
λ

)
+

(
r2
λ

1 − r2
λ

)2

+ · · ·
]
. (89)

These geometric series can easily be summed up for all orders
to give the exact photon propagator for the cases z < 0, z′ > 0.
In order to cast the result into a familiar form, we explicitly
evaluate the integral in the second line, which requires some
care. The integral that needs to be evaluated is

Iλ
ik(z,z′) = K(ω)

ε2
0

∫ ∞

0
dz1D

(ε)
λ,ij (z − z1)D(0)

λ,jk(z1 − z′). (90)

Here, the argument of D(ε) is always negative, z − z1 < 0,
whereas, the sign of z1 − z′ can be both positive and negative.
Therefore, we need to take into account that the propagator
(70) is discontinuous at z1 = z′ and contains singular terms
proportional to δ(z1 − z′).

In order to correctly evaluate the integral (90), we represent
the differential operator in Eq. (70) using the polarization
vectors written out in terms of derivatives. Using the com-
pleteness relation of the transverse polarization vectors, we
may symbolically write

∇i∇k − δik∇2 = −∇2
∑

λ

eλ
i (∇)eλ

k (∇). (91)

With this, the propagators entering the integral (90) are given
by

D
(0)
λ,ij (z1 − z′)

= − iε0

2kz

(
q2

‖ − ∇2
z′
)
eλ
i (−∇z′ )eλ

j (−∇z′ )eikz|z1−z′ |, (92)

D
(ε)
λ,ij (z − z1)

= − iε0ξ
2(ω)ω2

2kzd

eλ
i (−kzd )eλ

j (−kzd )e−ikzd (z−z1). (93)

Note that, in D(0), we have changed the z derivatives to act
on z′ rather than on z so that they could be pulled outside the
integral in Eq. (90). Now, it is straightforward to demonstrate
that the integral (90) is given by

I λ
ik(z,z′) = D

(ε)
λ,ik(z − z′)

− iε0ξ (ω)ω2

2kzd

1

tλ
eλ
i (−kzd )eλ

k (−kz)e
−ikzd z+ikzz

′
,

(94)

whose first term exactly cancels the bulk dielectric propagator
in the first line of Eq. (89). The remaining term yields the final
result,

Dij (z,z′)

= − iε0ω
2

2kz

∑
λ

[ξ (ω)eλ
i (−kzd )eλ

j (−kz)tλ]e−ikzd z+ikzz
′
, (95)

with the transmission coefficient as given in Eq. (88). This
formula describes the vacuum-dielectric transmission, i.e., it
is valid for z < 0, z′ > 0. It is a straightforward calculation to
plug Eq. (95) into Eq. (66) and to obtain the photon propagator
for the case z,z′ > 0. In the region z′ > 0, the final result for
the dressed photon propagator Fourier-transformed back to
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coordinate space, may be written as

Dij (r,r′; ω)

= θ (z)D(0)
ij (r − r′; ω) − iε0

(2π )2

∑
λ

∫
d2q‖

ω2

2kz

eiq‖·(r‖−r′
‖)

× {
θ (−z)

[
ξ (ω)eλ

i (q‖, −kzd )eλ
j (q‖, −kz)tλ

]
e−ikzd z+ikzz

′

+ θ (z)
[
eλ
i (q‖,kz)e

λ
j (q‖, −kz)rλ

]
eikz(z+z′)}. (96)

In the calculations of the energy-level shifts of an atom placed
outside an absorbing dielectric material to be discussed in the
following section, we will need the propagator for the case
z,z′ > 0. In that case, Eq. (96) shows that the propagator splits
into a free-space part D

(0)
ij (r − r′; ω), which is not interesting

as it just yields the standard (position-independent) Lamb shift,
and a correction due to reflection at the boundary, which
we call D

(r)
ij (r,r′; ω) and which gives rise to the position-

dependent Casimir-Polder shift. As we treat the atom-field
interaction in the dipole approximation, we are going to need
the reflected part of the propagator D

(r)
ij (r,r′; ω) evaluated

at equal arguments r = r′ = R, where R = (0,0,Z) is the
position of the atom. In that case, it simplifies considerably
and can be written in the form

D(r)(Z; ω) = − iε0

8π

∫ ∞

0
dq‖

q‖
kz

e2ikzZ

×
⎛
⎝ω2rTE − k2

z rTM 0 0
0 ω2rTE − k2

z rTM 0
0 0 2q2

‖ r
TM
R

⎞
⎠,

(97)

with kz =
√

ω2 − q2
‖ + iη as before. Note that we have gone

to polar coordinates qx = q‖ cos φ, qy = q‖ sin φ where the
azimuthal integration annihilated the off-diagonal elements of
the equal-argument propagator D

(r)
ik (r,r; ω).

As a final remark, we would like to comment on the
convergence of the series in Eq. (89). It clearly converges
provided

∣∣∣∣ r2
λ

1 − r2
λ

∣∣∣∣ < 1. (98)

However, there does not seem to be a physical significance
to this condition. That the result for the propagator can
be extended by analytic continuation to wave vectors not
satisfying the condition (98) can be shown by solving the
corresponding boundary-value problem, the procedure for
which we sketch in Appendix A.

V. ATOMIC PROPAGATOR AND ELECTRON
SELF-ENERGY

In order to investigate the perturbative expansion of the
atomic propagator (28), we use the expansion in terms of
atomic eigenstates, Eq. (24), and then work with the atomic
propagator in that basis. In analogy to Eqs. (30) and (31) for

the unperturbed propagator, we obtain

Gii(t,t
′) =

∞∑
n=0

(
− i

h̄

)n+1 ∫
dt1 · · ·

∫
dtn〈	|

× T [ci(t)c
†
i (t ′)HA−EM(t1) · · · HA−EM(tn)]|	〉conn.

(99)

By using Wick’s theorem to evaluate the ground-state expec-
tation value of the time-ordered product of operators, one
easily sees that the zeroth-order term is a propagator for
the noninteracting system and that the first-order correction
vanishes because it is not possible to contract all of the
operators. Therefore, the lowest-order nonvanishing pertur-
bative contributions come from terms of order e2. Diagrams
of this order have two vertices and, therefore, include a
pair of disconnected tadpole diagrams, which are irrelevant
as they go away in the process of normalization, and the
physically important self-energy diagram which contains all
the information about the energy-level shifts and decay rates,

.

For calculating the perturbatively corrected dressed atomic
propagator, it is, in fact, convenient to perform a partial
summation and to consider the following series of diagrams:

= +

where the thick solid line represents the dressed atomic
propagator. The location of the poles of such-constructed
propagator is much more straightforward to work out than
for the propagator with strictly only one-loop corrections. The
above is a graphical representation of the Dyson equation,
which expressed analytically reads

Gii(t,t
′) = G

(0)
ii (t,t ′) + ih̄

ε2
0

∑
k,l,m

μk
miμ

l
im

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

×G
(0)
ii (t,t1)G(0)

mm(t1,t2)Dkl(R,R,t1,t2)Gii(t2,t
′).

(100)

We note that, here and in the following, the indices k and l

label just Cartesian components, but the sum over m is a sum
over intermediate atomic eigenstates, and i is the atomic state
whose energy shift we are seeking to determine. To this end,
we Fourier transform (100) with respect to t − t ′ along the
lines of Eq. (34) and find the dressed atomic propagator,

Gii(E) =
∫ ∞

−∞
d(t − t ′)ei(t−t ′)E/h̄Gii(t − t ′)

= 1

E − Ei + iη − �ii(E)
, (101)
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with the self-energy insertion,

�ii(E) = ih̄

2πε2
0

∑
k,l,m

μk
miμ

l
im

∫ ∞

−∞
dω

Dkl(R,R; ω)

E − h̄ω − Em + iη
.

(102)

The self-energy insertion (102) contains the dressed photon
propagator which, in the case of an atom outside a dielectric
half-space, comprises: (i) the free-space photon propagator
D

(0)
kl (R,R; ω), which gives rise to the position-independent

Lamb shift, and (ii) the reflected part D
(r)
kl (R,R; ω), which

yields the position-dependent Casimir-Polder shift. Thus, the
shift in the atomic energy levels, given by the poles of
Eq. (101), can be written

E − Ei = �
(0)
ii (E) + �

(r)
ii (E). (103)

As we want to work out changes in the energy levels already
corrected for the coupling between the atom and the free-space
electromagnetic fields, we renormalize the energy-level shift
by subtracting the self-energy associated with the free-space
electromagnetic field �

(0)
ii (E) and consider

�E ren
i ≡ E − Ēi = �

(r)
ii (E). (104)

We use the symbol Ēi ≡ Ei + �
(0)
ii (E) to represent the atomic

energy levels already corrected for the free-space Lamb shift
and decay rates.

Prima facie it may seem difficult to extract the energy shift
from Eq. (104) because it is an implicit equation whose right-
hand side also depends on E . However, if the energy shift we
calculate is small compared to the difference in energy between
the state under consideration and its nearest dipole-connected
neighbors (which it needs to anyhow for perturbation theory to
be applicable), then the shift can be extracted from Eq. (104)
by a single iteration leading to

�E ren
i ≈ �

(r)
ii (Ēi)

= − i

2πε2
0

∑
k,l,m

μk
miμ

l
im

∫ ∞

−∞
dω

D
(r)
kl (R,R; ω)

ωmi + ω − iη
, (105)

where we have abbreviated ωmi = ωm − ωi . The ω integral in
Eq. (105) can be restricted to the positive real axis by writing

1

ω + ωmi − iη
= ω − ωmi

ω2 − (ωmg − iη)2
, (106)

and noting that D
(r)
kr (R,R; ω) is even in ω (see Sec. IV B and

Appendix B). Then, the term proportional to ω is odd and
vanishes when integrated over the real ω axis. As the photon
propagator is analytic in the first quadrant of the complex ω

plane, it is permissible, provided ωmi > 0, to rotate the contour
of ω integration by π/2, i.e., ω → iω. This applies when one
considers an atom in its ground state.

However, for an excited state i of the atom, one has ωmi < 0,
which means that there will be poles in the first quadrant of
the ω plane due to the denominator in Eq. (105). We would
also like to remark that the Fresnel reflection coefficients
have poles in the complex plane at the location of trapped
electromagnetic modes, which is not an issue in the case of a
dielectric half-space but arises, e.g., for a dielectric slab [29]
and other systems capable of waveguiding [30].

We recall that D
(r)
kr (R,R; ω) is diagonal, cf. Eq. (97) and

write down the final result for the energy shift in the form

�E ren
i = �Ei + �E�

i , (107)

with �Ei and �E�
i given by

�Ei = 1

πε2
0

∑
k,m

∣∣μk
im

∣∣2
∫ ∞

0
dω

ωmi

ω2 + ω2
mi

D
(r)
kk (R,R; iω),

(108)

�E�
i = 1

ε2
0

∑
k,m

∣∣μk
im

∣∣2
D

(r)
kk (R,R; |ωmi |)θ (−ωmi), (109)

where |μk
mi | ≡ |〈m|μk|i〉| are the matrix elements of the

kth component of the electric dipole moment operator. The
quantity �E�

i is the contribution to the self-energy that
originates from the poles in Eq. (105) that arise for an excited
state i for which ωmi < 0. Expressions equivalent to Eqs. (108)
and (109) have been derived before by different methods, e.g.,
by linear-response theory [31,32] or later by the noise-current
approach to phenomenological QED [33].

The shift �Ei is real because it is a convolution of atom and
field susceptibilities, which are real at complex frequencies
[31]. However, �E�

i is complex; its imaginary part modifies
the decay rates of excited states. To summarize, we have

�Ei = �Ei + Re(�E�
i ),

��i = −2

h̄
Im(�E�

i ), (110)

where �Ei are the renormalized energy-level shifts and ��i

are the changes in decay rates.

VI. ENERGY-LEVEL SHIFTS NEAR A HALF-SPACE

A. Ground state

Substituting the photon propagator (97) into Eq. (108), we
find that the energy shift of the atomic ground state |g〉 is given
by

�Eg = − 1

8π2ε0

∑
m

∫ ∞

0
dq‖q‖

∫ ∞

0
dω

ωmg

ω2 + ω2
mg

e−2
√

q2
‖+ω2Z√

q2
‖ + ω2

× [(q2
‖ + ω2)r̄TM − ω2r̄TE]|μ‖

mg|2 + 2q2
‖ r̄

TM|μ⊥
mg|2},
(111)

where we have used the notation |μ‖
mi |2 = |μx

mi |2 + |μy

mi |2 and
|μ⊥

mi |2 = |μz
mi |2. The reflection coefficients are as defined in

Eq. (88). In terms of the new variables, they read

r̄TE =
√

ω2 + q2
‖ −

√
ε(iω)ω2 + q2

‖√
ω2 + q2

‖ +
√

ε(iω)ω2 + q2
‖
,

(112)

r̄TM =
ε(iω)

√
ω2 + q2

‖ −
√

ε(iω)ω2 + q2
‖

ε(iω)
√

ω2 + q2
‖ +

√
ε(iω)ω2 + q2

‖
.

Note that we have replaced ξ (ω) by ε(ω) in Eq. (112)
compared to Eq. (88) because, for the relevant frequencies,
both functions coincide (see Sec. IV B and Appendix B).
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If we now introduce polar coordinates according to
ω = ωmgx cos φ, q‖ = ωmgx sin φ and then write y = cos φ,
we obtain the, perhaps, most useful expression for the
ground-state shift, especially for numerical analysis and for
investigating the effects of retardation,

�Eg = − 1

8π2ε0

∑
m

∫ ∞

0
dx x3

∫ 1

0
dy

ω3
mg

1 + x2y2
e−2ωmgZx

× [(r̃TM − y2r̃TE)|μ‖
mg|2 + 2(1 − y2)r̃TM|μ⊥

mg|2].

(113)

The result in Eq. (113) formally takes the same form as the
results obtained in calculations involving only nondispersive
dielectrics (see, e.g., Ref. [19]), the only difference being the
reflection coefficients that now, through the dielectric constant,
depend on the product xy of the integration variables, which
is the photon frequency in units of ωmg ,

r̃TE = 1 − √
y2[ε(iωmgxy) − 1] + 1

1 + √
y2[ε(iωmgxy) − 1] + 1

,

(114)

r̃TM = ε(iωmgxy) − √
y2[ε(iωmgxy) − 1] + 1

ε(iωmgxy) + √
y2[ε(iωmgxy) − 1] + 1

.

Equation (113) is suitable for numerical analysis but does not
give immediate insight into the dependence of the energy shift
as a function of the distance from the surface. It is, therefore,
instructive to consider some of its limiting cases.

As has been spelled out, e.g., in Ref. [19], the dimensionless
parameter that plays a decisive role in the characteristics of
the Casimir-Polder interaction is given by the combination
2ωmgZ , which is the ratio of two time scales: (i) the typical
time 2Z/c needed by a virtual photon to make a round trip
between the atom and the surface and (ii) the typical time scale
ω−1

mg , at which, the atomic system evolves. While Eq. (113)
includes a sum over atomic states |m〉, in reality, contributions
to the shift are dominated by the state which is connected to
the ground state by the strongest dipole transition. We will
call the frequency ωmg that pertains to this strongest transition
the “typical transition frequency,” and it is this number that
enters the retardation criterion parameter. Roughly speaking, if
2ωmgZ � 1, we are in the so-called nonretarded regime when
the time needed by the photon to travel between the dielectric
and the atom is negligibly small compared to the typical atomic
time scale. Then, the interaction can safely be approximated as
instantaneous, and our result should reduce to that calculated
by Barton [34], who considers only the Coulomb interaction
of an atom with surface polaritons. In the opposite case
2ωmgZ � 1, the interaction becomes retarded, i.e., by the
time the photon has completed a round trip, the atomic state
has changed significantly. In that case, for reasons that are
not obvious but will become apparent later, the interaction
depends only on static polarizabilities, i.e., the polarizabilities
evaluated at zero frequency. The diagonal polarizability of the
spherically symmetric atom is then

αi
νν(0) =

∑
j

2ωji |〈j |μν |i〉|2
ω2

ji − ω2

∣∣∣∣∣∣
ω=0

= 2
∑

j

|〈j |μν |i〉|2
ωji

,

(115)

and the susceptibility of the dielectric becomes

ε(0)

ε0
= 1 + ω2

P

ω2
T − ω2 − 2iγ ω

∣∣∣∣
ω=0

= 1 + ω2
P

ω2
T

, (116)

as explained in Appendix B.

1. Nonretarded limit

In order to take the nonretarded limit of the energy shift, it
is best to start from Eq. (111). After changing variables from
ω to s with ω = (2ωmgZq‖)s, we take the limit 2ωmgZ → 0,
which we may do because the line s = ∞ does not contribute
to the integral, and approximate

q2
‖ + ω2 → q2

‖ [1 + (2ωmgZ)2s2] ≈ q‖,

q2
‖ + εω2 → q2

‖ [1 + ε(2ωmgZ)2s2] ≈ q‖.

This significantly simplifies Eq. (111). The q‖ integral becomes
elementary, and the final result reads

�Enonret
g ≈ − 1

32π2ε0Z3

∑
m

∫ ∞

0
dω

ωmg

ω2 + ω2
mg

ε(iω) − 1

ε(iω) + 1

×(|μ‖
mg|2 + 2|μ⊥

mg|2). (117)

We observe the expected Z−3 behavior of the energy-level
shift in the nonretarded or “van der Waals” regime. The exact
energy-level shift for all distances is plotted in Fig. 3; as the
plot shows the energy shift multiplied byZ4ωmg , the linear rise
in the graph at small arguments represents the Z−3 behavior
derived above.

In order to see that the result in Eq. (117) is equivalent to
the slightly more awkward principal-value integral given in
Eq. (7.14) of Ref. [34] or Eq. (13) of Ref. [35], one needs to
rewrite

ωmg

ω2 + ω2
mg

= 1

2

(
1

ωmg − iω
+ 1

ωmg + iω

)
,

and to re-rotate the contour from ω to iω in the first and
to −iω in the second summand. Equation (117) also confirms
the results derived on the basis of the phenomenological noise-
current approach to quantum electrodynamics with dielectric
media, see, e.g., Ref. [33].

2. Retarded limit

In order to work out an approximation for the energy
shift when retardation is dominant, it is convenient to start
with Eq. (113) where the decisive parameter 2ωmgZ is
present in the exponential, which, in the limit 2ωmgZ → ∞,
strongly damps the integrand. Then, the main contributions
to the integral come from the neighborhood of x = 0+, and
one can obtain an asymptotic expansion of the integral by
expanding the integrand in a Taylor series around this point.
A straightforward calculation gives

�Eret
g ≈ − 3

64π2ε0

∑
m

∑
σ=‖,⊥

(
cσ

4

Z4
− 4γ

ω2
T

cσ
5

Z5

) |〈g|μσ |m〉|2
ωmg

,

(118)

where, in the parentheses, we have neglected terms of order
ω−2

mgZ−6 and higher. The coefficients cσ
4,5, to be given below,

depend only on the static dielectric constant of the material.
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The fact that, to leading order, the Casimir-Polder force
depends only on the static polarizability of the atom, Eq. (115),
is well known [31]. Therefore, the leading-order Z−4 term
in Eq. (118) is identical to the retarded limit of the energy
shift in a ground-state atom interacting with a nonabsorptive
dielectric half-space described by a static refractive index
n(0) ≡ n =

√
1 + ω2

P/ω
2
T, which has been derived previously

[19]. We just quote the results for the coefficients c
‖,⊥
4 from

Ref. [19],

c
‖
4 = − 1

n2 − 1

(
2

3
n2 + n − 8

3

)

+ 2n4

(n2 − 1)
√

n2 + 1
ln

( √
n2 + 1 + 1

n[
√

n2 + 1 + n]

)

+ 2n4 − 2n2 − 1

(n2 − 1)3/2
ln(

√
n2 + 1 + n),

c⊥
4 = 1

n2 − 1

(
4n4 − 2n3 − 4

3
n2 + 4

3

)

− 4n6

(n2 − 1)
√

n2 + 1
ln

( √
n2 + 1 + 1

n[
√

n2 + 1 + n]

)

− 2n2(2n4 − 2n2 + 1)

(n2 − 1)3/2
ln(

√
n2 − 1 + n).

In other words, to leading order, in the retarded limit,
absorption makes no difference, and only static polarizabilities
of both the dielectric and the atom matter. This is because
the photon wavelengths that matter the most in the atom-wall
interaction are of the order of the distance between the atom
and the surface of the dielectric and longer. Thus, for an
atom in the so-called far zone, only long wavelengths of
the electromagnetic radiation come into play, which means
low frequencies. This is illustrated by the plot of the exact
energy-level shift in Fig. 3; for large arguments, all lines tend
to the same value, and absorption just determines how quickly.

Now, we turn our attention to the next term in the asymptotic
expansion, which is proportional to Z−5. This is the first term
that contains information about corrections to the energy shift
due to absorption in the retarded regime. Apart from the factor
4γ /ω2

T, the dimensionless coefficients cσ
5 depend again only

on the static refractive index n =
√

1 + ω2
P/ω

2
T and are given by

c
‖
5 = 1

3(n − 1)(n + 1)2(n2 + 1)

×
{

6n6 − 3n5 − 11n4 + 4n3 + 2n2 − 5n + 7

−6n2(n5 + n4 − n3 − n2 − 2n − 2) ln

[
n

(
n+1

n2+1

)]}
,

c⊥
5 = 4

3(n − 1)(n + 1)2(n2 + 1)

×
{
−6n8 + 3n7 + 10n6 − 5n5 + 3n4 − n3

− 6n2 + n + 1 + 3n4(2n5 + 2n4 − n3 − n2 − 3n − 3)

× ln

[
n

(
n+1

n2+1

)] }
. (119)

FIG. 2. Plot of the coefficients cσ
i (n) that enter Eq. (118) for

different values of the static refractive index n ≡ n(0).

We provide plots of these functions in Fig. 2 from where
a quick estimate of the value of these coefficients can be
obtained. Since both c

‖
5 and c⊥

5 are positive, we see that
absorption reduces the magnitude of the ground-state energy
shift by an amount that is proportional to the damping constant
γ , cf. Fig. 3. We also note that the correction goes with
the inverse square of the absorption frequency ωT in the
dielectric so that only absorption lines that lie at sufficiently
low frequencies make a significant difference. This happens
because the main contribution to the ground-state shift in the
retarded limit comes from long wavelengths or, equivalently,
small values of x (which is a scaled frequency). Therefore,
the integral is not sensitive to any absorption peaks which lie
at higher frequencies as there, the integrand is highly damped
anyway, cf. Eq. (113).

FIG. 3. Plot of the exact ground-state energy shift (contributions
due to the perpendicular component of the atomic dipole moment)
�E‖

g , Eq. (111), multiplied by Z4ωmg as a function of Zωmg for
various values of the damping parameter γ . The solid line represents
the energy shift caused by the nonabsorptive and nondispersive
dielectric half-space with static refractive index n(0) = √

2.
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B. Excited states

The shift of an excited energy level gets contributions from
both parts of �E ren, Eqs. (108) and (109). The nonresidue
contributions, Eq. (108), assume exactly the same form as the
results of the previous section. Therefore, we will not analyze
them again but will, instead, have a closer look at the additional
contributions due to Eq. (109).

Plugging in the photon propagator, Eq. (97), we find that
the energy shift in the excited state |i〉 is given by the real part
of the following expression:

�E�
i = − i

8πε0

∑
m<i

∫ ∞

0
dq‖

q‖e2iZ
√

ω2
mi−q2

‖√
ω2

mi − q2
‖ + iη

{[
ω2

mir
TE
mi

− (
ω2

mi − q2
‖
)
rTM
mi

]∣∣μ‖
mi

∣∣2 + 2q2
‖ r

TM
mi |μ⊥

mi |2
}
. (120)

Here, rλ
mi are the reflection coefficients of Eq. (88), evaluated

at the atomic transition frequencies ω = |ωmi |. Also, the
restriction of the sum over atomic states to those lying below
state |i〉 should be noted. For the purposes of asymptotic
analysis of �E�

i , we change the integration variable in

Eq. (120) to kz =
√
ω2

mi − q2
‖/|ωmi | and get

�E�
i = i

8πε0

∑
m<i

|ωmi |3
∫ i∞

1
dkze

2i|ωmi |Zkz

×{(
r̄TE
mi − k2

z r̄
TM
mi

)|μ‖
mi |2 + 2

(
1 − k2

z

)
r̄TM
mi |μ⊥

mi |2
}
,

(121)

where the contour of integration runs from kz = 1 along the
real axis to kz = 0 and then up along the imaginary axis to
kz = i∞. The reflection coefficients, expressed as functions
of kz, are

r̄TE
mi (kz) = kz − √

[ε(|ωmi |) − 1] + k2
z

kz + √
[ε(|ωmi |) − 1] + k2

z

,

(122)

r̄TM
mi (kz) = ε(|ωmi |)kz − √

[ε(|ωmi |) − 1] + k2
z

ε(|ωmi |)kz + √
[ε(|ωmi |) − 1] + k2

z

.

We now go on to analyze �E�
i in the nonretarded and retarded

limits.

1. Nonretarded limit

In the nonretarded limit of Eq. (121), we have
2|ωmg|Z � 1. It is expedient to split the integration in
Eq. (121) in the following way:

∫ i∞

1
dkz =

∫ ∞

0
d(ikz) −

∫ 1

0
dkz, (123)

and to note that, in the limit 2|ωmi |Z → 0, the second integral
on the RHS contributes to the asymptotic series only terms
that are proportional to non-negative powers of Z and can,

therefore, be discarded. The remaining part is given by

�E�,1
i = − 1

8πε0

∑
m<i

|ωmi |3
∫ ∞

0
dkze

−2|ωmi |Zkz

× [(
r̃TE
mi + k2

z r̃
TM
mi

)|μ‖
mi |2 + 2

(
1 + k2

z

)
r̃TM
mi |μ⊥

mi |2
]
,

(124)

where r̃λ
im are the reflection coefficients of Eq. (122) evaluated

at imaginary argument r̃λ
mi = r̄λ

mi(ikz). Scaling the integration
variable according to x = 2|ωmi |Zkz and approximating√

[ε(|ωmi |) − 1] − x2

(2|ωmi |Z)2
≈ ix

2|ωmi |Z , (125)

we derive that, in the nonretarded limit, Eq. (120) becomes

�E�,nonret
i

= − 1

32πε0Z3

∑
m<i

ε(|ωmi |) − 1

ε(|ωmi |) + 1
(|μ‖

mi |2 + 2|μ⊥
mi |2).

(126)

To leading order, the residue contributions to the energy shift
of the excited state |i〉, cf. Eq. (109), are given by the real part
of the above expression,

�E
�,nonret
i

= − 1

32πε0Z3

∑
m<i

|ε(|ωmi |)|2 − 1

|ε(|ωmi |) + 1|2 (|μ‖
mi |2 + 2|μ⊥

mi |2).

(127)

Thus, in the nonretarded regime, the residue contributions
behave as Z−3 and, therefore, are on the same order as the
nonresidue contributions, cf. Eq. (117). The result in Eq. (127)
is, in fact, equivalent to the real part of Eq. (7.10), derived in
Ref. [34].

2. Retarded limit

Now, we turn our attention to the asymptotic behavior of
Eq. (121) in the retarded limit, i.e., when 2|ωmi |Z � 1. It
is again useful to split the integration in the same way as
in Eq. (123), only that now, both integrals play an important
role. The first contribution, the integral along kz ∈ [0,i∞],
given in Eq. (124), can be tackled by use of Watson’s lemma
[36]. Noting that for 2|ωmi |Z � 1, the integrand is strongly
damped, we separate off the exponential and expand the
remaining part into Taylor series about kz = 0. The resulting
integrals are elementary, and we obtain, for the leading term,

�E�,1,ret
i = 1

8πε0

∑
m<i

|ωmi |3
{ |μ‖

mi |2
2|ωmi |Z

+2

[
1 − 2iε(|ωmi |)√

ε(|ωmi |) − 1

1

2|ωmi |Z
] |μ⊥

mi |2
2|ωmi |Z

}
.

(128)

Next, we deal with the integral on the interval kz ∈ [0,1]
which, unlike in the nonretarded case, cannot be discarded.
However, its asymptotic expansion in inverse powers of Z is
easily obtained by repeated integration by parts. Interestingly,
the asymptotic series contain nonoscillatory terms that exactly
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cancel out the contributions given in Eq. (128). Altogether, we
find that the leading-order and next-to-leading-order terms are

�E�,ret
i = 1

4πε0

∑
m<i

|ωmi |3 n(|ωmi |) − 1

n(|ωmi |) + 1
e2i|ωmi |Z

×
[

|μ‖
mi |2

2|ωmi |Z + 2i
|μ⊥

mi |2
(2|ωmi |Z)2

]
, (129)

with the refractive index n(|ωmi |) ≡ √
ε(|ωmi |). It is interesting

to observe that, to leading order inZ , only contributions due to
the parallel component of the atomic dipole moment are con-
tributing; contributions due to the perpendicular component
of the atomic dipole moment appear only in next-to-leading
order. Again, we need to take the real part of Eq. (129) to get
the explicit form of the energy shift,

�E
�,ret
i = 1

4πε0

∑
m<i

|ωmi |3
|n(ωmi) + 1|2

×
{

[[|n(|ωmi |)|2 − 1] cos(2|ωmi |Z)

− 2 Im[n(|ωmi |)] sin(2|ωmi |Z)]
|μ‖

mi |2
2|ωmi |Z

− 2[[|n(|ωmi |)|2 − 1] sin(2|ωmi |Z)

+ 2 Im[n(|ωmi |)] cos(2|ωmi |Z)]
|μ⊥

mi |2
(2|ωmi |Z)2

}
.

(130)

We see that, in the retarded regime, the two contributions
to the shift of an excited state behave quite differently. The
nonresidue contribution in Eq. (108) behaves as Z−4 (see
the analysis of the ground-state shift in Sec. VI A), and the
residue contribution in Eq. (130) depends on distance as Z−1.
Although it would be tempting to jump to the conclusion that
Eq. (130) always dominates, this might, in fact, not always
be the case as the relative size of the two contributions
also depends on the values of the dipole matrix elements
involved, which can vary significantly. Furthermore, Eq. (130)
is oscillatory so that, at least in principle, there are sets of
parameters for which it vanishes. Finally, we remark that it
is easy to verify that, in the limit of nonabsorptive dielectric
media, our results reduce to those derived in Ref. [19].

VII. SPONTANEOUS DECAY RATES NEAR A HALF-SPACE

The spontaneous decay rates are given by the imaginary
part of the complex self-energy, Eq. (110). As the nonresidue
contributions to the self-energy in Eq. (108) are real, these
contribute towards the energy-level shifts only, and the decay
rates are contained solely in the residue contributions to the
self-energy, Eq. (120), which are complex. In the nonretarded
limit, the decay rates are given by the imaginary part of
Eq. (126),

��nonret
i = 1

8πε0Z3

∑
m<i

Im[ε(|ωmi |)]
|ε(|ωmi |) + 1|2 (|μ‖

mi |2 + 2|μ⊥
mi |2),

(131)

and, in the retarded limit, by the imaginary part of Eq. (129),

��ret
i = − 1

2πε0

∑
m<i

|ωmi |3
|n(|ωmi |) + 1|2

×
{

[[|n(|ωmi |)|2 − 1] sin(2|ωmi |Z)

+ 2 Im[n(|ωmi |)] cos(2|ωmi |Z)]
|μ‖

mi |2
2|ωmi |Z

+ 2[[|n(|ωmi |)|2 − 1] cos(2|ωmi |Z)

− 2 Im[n(|ωmi |)] sin(2|ωmi |Z)]
|μ⊥

mi |2
(2|ωmi |Z)2

}
. (132)

The result in Eq. (131) is found to be in agreement with that
derived in Ref. [18], their Eq. (128). A consistency check of
Eq. (132) is that it reduces to the results given in Ref. [19] if
we assume n(ω) to be real and frequency independent.

As a numerical example, we plot the normalized lifetime
of the atomic state |i〉 decaying into a lower state |m〉. For
simplicity, we assume a two-level system and |μ⊥

mi | = 0 so that
the atom is polarized horizontally with respect to the surface.
Then, the normalized lifetime that we plot in Fig. 4 is given by

τ−1
‖ = ��i

��0
i

= −2 Im(�E�
i )

h̄ ��0
i

, (133)

where the quantity �E�
i comes from Eq. (120) and ��0

i is the
well-known decay rate in free space,

��0
i = |ωmi |3|μmi |2

3πε0h̄
. (134)

VIII. SUMMARY AND CONCLUSIONS

We have shown that, starting from a gauge-independent
microscopic model as represented by the Hamiltonian (19), it
is possible to develop a formalism which allows calculating
QED corrections in the presence of absorptive and dispersive
boundaries. We have used a diagrammatic technique to
integrate out the damped polaritons in order to arrive at a
Dyson equation for the electromagnetic displacement-field
propagator. We have solved this integral equation exactly using
traceable methods. The knowledge of the exact propagator has
enabled us to calculate analytically the one-loop self-energy
diagram for an electron bound in an atom near a dielectric
half-space and, hence, to determine its energy-level shifts and
the change in transition rates, which derive from the real and
imaginary parts of the electron’s self-energy, respectively. This
serves as a proof of principle that the theoretical framework
developed here works correctly and efficiently, as most of these
results have, in one form or another, been derived previously by
other methods, although often with considerably more effort
or much less rigor, especially as regards basic principles.

We have looked at the role of the material’s absorption
in some detail and have confirmed the previously known
result that absorption has the most profound impact on the
atomic system in the nonretarded regime, i.e., when the
distance between the atom and the dielectric mirror is much
smaller than the wavelength of the dominant atomic dipole
transition. If the distance between the atom and the surface
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FIG. 4. (Color online) Normalized lifetime τ‖, Eq. (133), of the
atomic state |i〉 plotted as a function of |ωmi |/ωT. The sequence of
graphs corresponds to various distances of the atom from the mirror
ZωT as indicated. The three different line styles (colors) indicate
distinct choices of the damping constant γ in the dielectric: black solid
line: γ /ωT = 0.05; blue dashed line: γ /ωT = 0.5; and red dot-dashed
line: γ /ωT = 5. For sufficiently high frequencies |ωmi |, the dielectric
becomes transparent. If the atom is close to the surface and absorption
is small, the interaction is resonant at |ωmi |/ωT ≈ 1, i.e., when the
frequency of the atomic transition coincides with the absorption line
of the dielectric.

far exceeds the wavelength of this dominant transition, then,
to leading order, dispersion and absorption do not affect the
ground-state shift for which only static polarizabilities matter.
The next-to-leading order corrections are proportional to the
damping constant of the Lorentz-type dielectric function, and it
turns out that only the material’s absorption lines that lie in the
low-frequency region have a significant impact on the ground-
state energy-level shift. We have also re-derived the distance
dependence of the excited energy-level shifts and spontaneous
decay rates. We have confirmed the fact that, in the nonretarded
regime, the absorption is of fundamental importance to both
the change in decay rates and the energy-level shifts. For
example, for an atom near a nondispersive dielectric, the
spontaneous decay rate in the near zone comes out as a
distance-independent constant [19], whereas, in reality, when
the absorption is taken into account, a distance dependence ∝
Z−3 is obtained. In the far zone or retarded limit, the presence
of absorption does not affect the characteristic Z−1 behavior
of the excited energy-level shift and spontaneous decay rates,
even though the coefficients differ from the nondispersive
case.
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APPENDIX A: DRESSED PHOTON PROPAGATOR AS A
BOUNDARY-VALUE PROBLEM

We aim to show that the integral equation satisfied by the
dressed photon propagator derived in Sec. IV B,

Dik(r,r′; ω) = D
(0)
ik (r − r′; ω) + K(ω)

ε2
0

×
∫

d3r1g(r1)D(0)
ij (r − r1; ω)Djk(r1,r′; ω)

(A1)

can also be solved by considering it as a boundary-value
problem. Recall that D

(0)
ik (r − r′) is the photon propagator

in free-space Eq. (60), and g(r) is a dimensionless coupling
constant that is equal to unity in the region occupied by the
dielectric and vanishes otherwise. To describe a dielectric
half-space occupying the z < 0 region of space as illustrated in
Fig. 1, we take g(r1) = θ (−z1), where θ is the Heaviside step
function. Knowing that the free-space propagator satisfies the
differential Eq. (39), we apply the same differential operator
to Eq. (A1), and after a short calculation, we obtain the
differential equation satisfied by the photon propagator in the
half-space geometry,

(∇i∇j − δij∇2)

[
1 + θ (−z)

K(ω)

ε0

]
Djk(r,r′; ω)

−ω2Dik(r,r′; ω) = ε0

(2π )3

∫
d3q(qiqk − δikq2)eiq·(r−r′).

(A2)
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The RHS can be rewritten as

− 1

(2π )3

∫
d3q(q2δik − qiqk)eiq·(r−r′) = ∇2δ⊥

ik(r − r′),

where δ⊥
ik(r − r′) is the transverse δ function. Now, it is more

apparent that the RHS of Eq. (A2) is a distribution which,
unlike the transverse δ function, is sharply localized around
the point r = r′ because the nonlocal part of the transverse δ

function is removed by the application of the Laplacian as is
obvious from the relation,

−∇2

(
1

4π |r − r′|
)

= δ(3)(r − r′). (A3)

The locality of ∇2δ⊥
ik(r − r′) is very helpful towards the

solution of the differential Eq. (A2), which is essentially a
scattering problem. Its RHS contains a distribution, represent-
ing a pointlike source, and our task is to work out reflection
and transmission at the boundary of the dielectric. In order to
proceed any further, we need to specify physical situation, i.e.,
decide on which side of the boundary the source is placed.
Since our ultimate aim is to work out the energy shift in an
atom located outside the dielectric, we choose to consider the
case z′ > 0. Then, we write Eq. (A2) in a piecewise manner;
on the vacuum side, we have

(∇i∇j − δij∇2)Djk(r,r′; ω) − ω2Dik(r,r′; ω)

= ε0∇2δ⊥
ik(r − r′), z > 0, (A4)

and on the dielectric side, we have

(∇i∇j − δij∇2)Djk(r,r′; ω)

−ξ (ω)ω2Dik(r,r′; ω) = 0, z < 0, (A5)

with the behavior of the propagator Djk(r,r′; ω) across the
interface, z = 0 is still to be determined. The local character
of the RHS of Eq. (A2) simplifies its solution in that it makes
the RHS of Eq. (A5) go to zero.

In order to solve Eqs. (A4) and (A5), we start with the
following ansatz:

Dik(r,r′; ω) =
{

D
(t)
ik (r,r′; ω), z < 0,

D
(0)
ik (r − r′; ω) + D

(r)
ik (r,r′; ω), z > 0.

(A6)

On the vacuum side, we write the solution as a sum that
consists of a particular solution D

(0)
ik (r − r′; ω), which we

already know from Sec. III B, Eq. (42), and a solution
D

(r)
ik (r,r′; ω) of the corresponding homogeneous equation [i.e.,

Eq. (A4) with the RHS set to zero], which represents the
correction due to reflection at the boundary. The solution on
the dielectric side D

(t)
ik (r,r′; ω) represents the transmitted part

and satisfies the homogeneous Eq. (A5). The homogeneous
solutions D

(r)
ik (r,r′; ω) and D

(t)
ik (r,r′; ω) are chosen in such a

way that the general solution in Eq. (A6) satisfies appropriate
electromagnetic boundary conditions across the interface z =
0. To see what these boundary conditions should be, recall the
formal definition of the dressed propagator,

Dij (r,r′; ω) = − i

h̄
〈	|T[Di(r,t)Dj (r′,t ′)]|	〉. (A7)

The displacement operator Di(r,t) satisfies Maxwell’s equa-
tions, which follow from the Heisenberg equations of motion
for the field operators. Therefore, the photon propagator, by
virtue of its definition (A7), when taken as a function of
argument r and index i, is required to satisfy Maxwell’s
boundary conditions across the interface,

E‖ continuous −→ ε−1D‖j |z=0− = D‖j |z=0+ ,

Dz continuous −→ Dzj |z=0− = Dzj |z=0+ , (A8)

B‖ continuous −→ ε−1∇zD‖j |z=0− = ∇zD‖j |z=0+ ,

with ‖={x,y}.
The apparent complication, arising from the appearance of a

nonstandard distribution in the boundary-value problem (A2),
is just an illusion. In fact, it is easier to find the solution of
Eq. (A2) than it is to solve the differential equation satisfied by
the Green’s function of the standard wave equation (see, e.g.,
Ref. [37]). Equations (A4) and (A5) together with the boundary
conditions (A8) form a boundary-value problem, which is
equivalent to the integral equation (A1) with the choices
g(r1) = θ (−z1) (dielectric occupying the left half-space) and
z′ > 0 (source located in vacuum).

In the following, we will use Eq. (80) in the process of
matching the boundary conditions. This is safe because we
consider z = 0±, and the source located at z′ is always well
away from the boundary so that z �= z′ is assured.

To proceed further, we note that taking the divergence
of the integral equation in Eq. (A1) and using the fact that
the free-space propagator is transverse ∇iD

(0)
ik (r − r′; ω) = 0,

one infers that the dressed photon propagator is transverse
everywhere as well,

∇iDik(r,r′; ω) = 0. (A9)

With this, Eqs. (A4) and (A5) simplify further, and partially
Fourier transformed into the (q‖,z) space, cf. Eq. (65), they
may be written as(∇2

z − q2
‖ + ω2

)
Dij (z,z′)

= ε0
(
q2

‖ − ∇2
z

)
δ⊥
ij (q‖,z − z′), z > 0, (A10)

[∇2
z − q2

‖ + ξ (ω)ω2]Dij (z,z′) = 0, z < 0, (A11)

where δ⊥
ij (q‖,z − z′) is the Fourier transform of δ⊥

ij (r − r′) with
respect to r‖ − r′

‖,

δ⊥
ij (q‖,z − z′) =

∫
d2(r‖ − r′

‖)e−iq‖·(r‖−r′
‖)δ⊥

ij (r − r′).

Therefore, the homogeneous solutions D
(r)
ik (r,r′; ω) and

D
(t)
ik (r,r′; ω) in Eq. (A6) must necessarily take the form

D
(r)
ij (z,z′) = − iε0

2
[Rij (z′)eikzz + Sij (z′)e−ikzz], z > 0,

(A12)

D
(t)
ij (z,z′) = − iε0

2
[Tij (z′)e−ikzd z + Uij (z′)eikzd z], z < 0,

(A13)

with kz =
√

ω2 − q2
‖ + iη and kzd =

√
ξ (ω)ω2 − q2

‖ and the
square roots taken such that Im(kz) � 0 and Im(kzd ) � 0.

022111-18



QUANTUM ELECTRODYNAMICS NEAR A DISPERSIVE AND . . . PHYSICAL REVIEW A 86, 022111 (2012)

With this choice of sign for the square roots, the terms in
Eqs. (A12) and (A13) that contain exponentials e−ikzz and
eikzd z are unphysical as they represent waves that diverge at
infinity. Thus, we must set Sij = 0 = Uij . The remaining two
matrices Rij and Tij are determined by the requirement that
Eq. (A6) satisfies the boundary conditions in Eq. (A8). We note
that, in addition, the transversality of the dressed propagator,
Eq. (A9), imposes rather stringent constraints on both Rij and
Tij . For example, the matrix Rij needs to be of the form

Rij = vi(q‖)rj (q‖,z′), (A14)

where the vector v is such that q · v = 0, leading to

v =
(

vx,vy, − qxvy + qyvx

kz

)
, (A15)

with q ≡ (q‖,kz). One might pick vx = −qy and vy = qx so
that

v = (−qy,qx,0). (A16)

However, this choice is too restrictive on its own, as there is
no a priori reason for Dzj to vanish. Therefore, an additional
basis vector is needed in order to span the amplitude Rij in
full generality. An obvious and convenient choice is to choose
a vector that is orthogonal to both q and v,

w = v × q = (qxkz,qykz, −q2
‖). (A17)

Then, we can represent Rij as the linear combination,

Rij = [αv + βw]i rj (z′)

≡ eTE
i (kz)r

TE
j (z′) + eTM

i (kz)r
TM
j (z′),

where we have recognized, apart from normalization factors,
the transverse electric and transverse magnetic polarization
vectors of Eq. (78). Similarly, we have

Tij = eTE
i (−kzd )tTE

j (z′) + eTM
i (−kzd )tTM

j (z′). (A18)

We have chosen to write out the kz dependence of the
polarization vectors, even though kz and kzd are expressible
in terms of the frequency ω and the parallel wave vector q‖
because this explicitly indicates the wave vector to which a
given polarization vector is orthogonal. The decomposition
into transverse electric and transverse magnetic components
significantly simplifies the matching of boundary conditions.
The dressed photon propagator can now be written in the form

Dij (z,z′)

= − iε0

2

∑
λ

{[
eλ
i (−kzd )tλj e−ikzd z

]
θ (−z)

+
[
eλ
i (kz)r

λ
j eikzz + ω2

kz

eλ
i (−kz)e

λ
j (−kz)e

−ikz(z−z′)
]
θ (z)

}
,

(A19)

the last term of which is the free-space photon propagator
from Eq. (80) for z − z′ < 0 as appropriate for the matching
of boundary conditions at z = 0 when z′ > 0. Imposing the

boundary conditions of Eq. (A8), we find that

rλ
j = rλe

λ
j (−kz)

ω2

kz

eikzz
′
,

tλj = tλe
λ
j (−kz)

ξ (ω)ω2

kz

eikzz
′
,

with rλ and tλ being the standard Fresnel’s reflection and
transmission coefficients listed in Eq. (88). Plugging the above
amplitudes into Eq. (A19), we then readily obtain the photon
propagator given in Eq. (96).

We can readily apply the same methods to obtain the
propagator in the case when the source is placed in the
dielectric, i.e., for z′ < 0. The calculation goes along exactly
the same lines as for z′ > 0, and one can show that the photon
propagator, in the case of the source being placed in the
dielectric, is given by

Dij (r,r′; ω)

= θ (−z)D(ε)
ij (r − r′; ω) − iε0

(2π )2

∑
λ

∫
d2q‖

ξ (ω)ω2

2kzd

× eiq‖·(r‖−r′
‖){θ (−z)

[
ξ (ω)eλ

i (q‖, − kzd )eλ
j (q‖,kzd )rλ

L

]
× e−ikzd (z+z′) + θ (z)

[
eλ
i (q‖,kz)e

λ
j (q‖,kzd )tλL

]
eikzz−ikzd z′}

.

(A20)

Here, the reflection and transmission coefficients are those
appropriate for left-incident modes; they are given by

rTE
L = kzd − kz

kz + kzd

, rTM
L = kzd − ξ (ω)kz

ξ (ω)kz + kzd

,

(A21)

tTE
L = 2kzd

kz + kzd

, tTM
L = 2

√
ξ (ω)kzd

ξ (ω)kz + kzd

.

It is easily verified that Dij (r,r′; ω) is, indeed, transverse
everywhere.

APPENDIX B: SIMPLE MODEL FOR ε(ω)

In order to determine the dielectric permittivity of our
model, we use the equations of motion for the fields that follow
from the Hamiltonians (7)–(11) and the commutation relations
(14)–(15),

∂

∂t
D(r,t) = 1

μ0
∇ × B(r,t), (B1)

∂

∂t
B(r,t) = −∇ × E(r,t), (B2)

∂

∂t
X(r,t) = 1

MP(r,t), (B3)

∂

∂t
P(r,t) = −Mω2

TX(r,t) + g(r)E(r,t)

+
∫ ∞

0
ρνν

2Yν(r,t), (B4)

∂

∂t
Yν(r,t) = 1

ρν

Zν(r,t), (B5)

∂

∂t
Zν(r,t) = −ρνν

2Yν(r,t) + ρνν
2X(r,t). (B6)

First, we deal with the subsystem consisting of the polarization
field and the reservoir. It is well known [24] that, when a
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quantized harmonic oscillator is coupled to a bath, its equation
of motion takes the form of a quantum Langevin equation.
Thus, we expect the equation of motion for the polarization
field, which is nothing but a set of independent oscillators, to
take the form

M ∂2

∂t2
X(r,t) +

∫ t

−∞
dt ′μ(t − t ′)

∂

∂t ′
X(r,t ′) + Mω2

TX(r,t)

= Fran(r,t) + Fext(r,t), (B7)

where μ(t − t ′) is the so-called memory function related
to dissipation and Fran(r,t) represents some random force
operator (see, e.g., Ref. [24] for details). Both μ(t − t ′) and
Fran(r,t) arise as a consequence of the coupling to the bath
and are to be determined in terms of the parameters of our
model. The term Fext(t) represents any external forces (i.e.,
those in addition to the harmonic restoring force) that may be
applied to the polarization field. To show that Eqs. (B3)–(B6),
indeed, combine to yield an equation of the form of Eq. (B7),
we eliminate P(r,t) and Zν(r,t) and rewrite the equations for
X(r,t) and Yν(r,t) as(

∂2

∂t2
+ ω2

T + 1

M

∫ ∞

0
dν ρνν

2

)
X(r,t)

= 1

M

∫ ∞

0
dν ρνν

2Yν(r,t), (B8)(
∂2

∂t2
+ ν2

)
Yν(r,t) = ν2X(r,t). (B9)

The most general solution of Eq. (B9) may be written as

Yν(r,t) = YH
ν (r,t) +

∫ ∞

−∞
dt ′Gν(t − t ′)X(r,t), (B10)

where YH
ν (r,t) is the solution of the homogeneous equation,

i.e., Eq. (B9) with its RHS set to zero,

YH
ν (r,t) = Yν(r,0) cos(νt) + Zν(r,0)

ρν

sin(νt)

ν
. (B11)

We assume that bath operators Yν(r,0) and Zν(r,0) satisfy
the canonical commutation relations at the initial time t = 0,
cf. Eq. (15), which we take as a moment in the distant past
when the interaction has been switched on. The second term
in Eq. (B10) is a particular solution expressed in terms of the
Green’s function,

Gν(t − t ′) = 1

2π

∫ ∞

−∞
dω

ν2

ν2 − (ω + iε)2
e−iω(t−t ′). (B12)

The iε prescription for handling the pole ensures that we have a
retarded Green’s function with Gν(t − t ′) = 0 for t − t ′ < 0.
Equation (B12) is easily obtained from Eq. (B9) by using
Fourier transforms according to

Yν(r,ω) =
∫ ∞

−∞
dt eiωtYν(r,t). (B13)

Note that the choice of the retarded solution breaks time-
reversal invariance as has been noted in Ref. [24]. The integral
in Eq. (B12) is easily worked out using the residue theorem,
and Eq. (B10) may be rewritten as

Yν(r,t) = YH
ν (r,t) + X(r,t)

−
∫ t

−∞
dt ′ cos[ν(t − t ′)]

∂

∂t
X(r,t), (B14)

where we have integrated by parts. Plugging the above
expression into Eq. (B8), we obtain

M ∂2

∂t2
X(r,t) +

∫ t

−∞
dt ′

{∫ ∞

0
dν ρνν

2 cos[ν(t − t ′)]
}

× ∂

∂t ′
X(r,t ′) + Mω2

TX(r,t)

=
∫ ∞

0
dν ρνν

2YH
ν (r,t). (B15)

This is the quantum Langevin equation that follows from our
model. Comparing with Eq. (B7), lets us identify

Fran(r,t) =
∫ ∞

0
dν ρνν

2YH
ν (r,t), (B16)

μ(t − t ′) =
∫ ∞

0
dν ρνν

2 cos[ν(t − t ′)]. (B17)

Now, we are in the position to choose the bath oscillator masses
ρν . Having in mind a simple single-resonance model of the
dielectric permittivity, we choose ρν in such a way that the
friction term in Eq. (B15) is local in time, i.e., it is nonvanishing
only for t = t ′. This is achieved by choosing

ρν = 4Mγ

πν2
, (B18)

which gives a frequency-independent coupling between the
bath and the polarization oscillators, cf. Eq. (10). Then,
Eq. (B15) becomes

∂2

∂t2
X(r,t) + 2γ

∂

∂t
X(r,t) + ω2

TX(r,t)

= 1

M

∫ ∞

0
dν ρνν

2YH
ν (r,t) + g(r)

M E(r,t). (B19)

We have augmented this equation by the “external force”
term that arises when the polarization field is coupled to the
electromagnetic field, which, according to Eqs. (B1) and (B2),
satisfies the equation of motion,

∇ × [∇ × E(r,t)] + μ0ε0
∂2

∂t2
E(r,t) = −μ0g(r)

∂2

∂t2
X(r,t),

(B20)

with D(r,t) = ε0E(r,t) + g(r)X(r,t). Similar to the reservoir
field discussed before, the most general solution of Eq. (B19) is
given as a sum of the homogeneous solution [i.e., the solution
of Eq. (B19) with the RHS set to zero and the assumption that
the oscillators are underdamped] and the particular solution.
The homogeneous solution is of the same form as Eq. (B11)
except for an additional damping factor proportional to e−γ t .
Since we assume that the initial time is a moment in the
distant past, we may discard the homogeneous solution, which
is exponentially small for γ t � 1. The particular solution is
easily obtained in Fourier space and is given by

X(r,t) = 1

2πM

∫ ∞

−∞
dω

Fran(r,ω) + g(r)E(r,ω)

ω2
T − ω2 + 2iγ ω

e−iωt ,

(B21)

where Fran(r,ω) is the Fourier transform of Eq. (B16) and is
given explicitly by

Fran(r,|ω|) = 4γ Y|ω|(r,0) + i
π

M |ω|Z|ω|(r,0). (B22)
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Substitution of the solution (B21) into Eq. (B20) yields

∇ × [∇ × E(r,ω)]

−μ0ε0ω
2

[
1 + g2(r)

Mε0

1

ω2
T − ω2 − 2iγ ω

]
E(r,ω)

= μ0
g(r)

M
Fran(r,ω)

ω2
T − ω2 − 2iγ ω

. (B23)

We may now read off the dielectric function given by

ε

ε0
= 1 + g2(r)

ω2
P

ω2
T − ω2 − 2iγ ω

, (B24)

with ω2
P ≡ 1/Mε0. The quantity that appears on the RHS is

proportional to the so-called noise-current operator, which is
introduced ad hoc in the phenomenological formulation of the
quantum theory developed in Ref. [8]. In fact, we have

JN(r,ω) = −iω
g(r)

M
Fran(r,ω)

ω2
T − ω2 − 2iγ ω

. (B25)

Since the operator Fran(r,ω) depends only on the initial
coordinates and momenta of the bath, cf. Eq. (B22), for which
the commutation relations are known, it is relatively easy to
verify that

[Ji(r,ω),J †
k (r′,ω′)]

= 4πh̄ε0Im[ε(r,ω)]ω2δ(3)(r − r′)δ(ω − ω′)δik. (B26)

This derivation justifies these phenomenologically introduced
commutation rules on a microscopic level. We just note that
this result differs from Eq. (C2) to be used in the following
Appendix by a factor of (2π )2 due to a different definition of
the Fourier transform.

APPENDIX C: PHOTON PROPAGATOR FROM
PHENOMENOLOGICAL QED

The phenomenological theory of quantum electrodynamics
as developed in Ref. [8] gives the electric-field operator as

Ei(r,t) = −iμ0

∫
d3r′

∫ ∞

0
dω e−iωt

×Gik(r,r′; ω)Jk(r′,ω) + H.c., (C1)

where Jk(r,ω) is the so-called noise-current operator, satisfy-
ing the following commutation relation,

[Ji(r,ω),J †
k (r′,ω′)]

= h̄ε0

π
Im[ε(r,ω)]ω2δ(3)(r − r′)δ(ω − ω′)δik, (C2)

and Gik(r,r′; ω) is the Green’s function of the wave equation
satisfying

(∇i∇j − δij∇2)Gjk(r,r′; ω) − ε(r,ω)ω2Gik(r,r′; ω)

= δikδ
(3)(r − r′), (C3)

with the additional requirement that it is retarded in time. Note,
however, that there is no transversality condition imposed, and
the RHS of Eq. (C3) is just a diagonal δ function. For an
overview of the noise-current approach and some applications,
see Ref. [38]. In the following, we will use two properties of

the Green’s tensor, in particular, its reciprocity,

Gik(r,r′; ω) = Gki(r′,r; ω), (C4)

and the integral relation,∫
d3r′′ω2Im[ε(r,ω)]G∗

ik(r,r′′; ω)Gjk(r′,r′′; ω)

= Im[Gij (r,r′; ω)]. (C5)

To prove the latter, one multiplies Eq. (C3) from the left by
G∗

mi(r
′′,r; ω) and integrates over r. Then, taking the difference

between the resulting relation and its complex conjugate
integrated by parts yields Eq. (C5).

In order to calculate the Feynman propagator of the electric-
field operator, i.e., the quantity,

DE
ij (r,r′,t,t ′) = − i

h̄
〈0|T [Ei(r,t)Ej (r′,t ′)]|0〉, (C6)

we substitute, into the above definition, the operator (C1) and
use Eqs. (C2)–(C5). We arrive at

DE
ij (r,r′,t,t ′) = − i

πε0

∫ ∞

0
dω ω2[θ (t − t ′)e−iω(t−t ′)

+ θ (t ′ − t)eiω(t−t ′)]Im[Gij (r,r′; ω)].

Now, we carry out the Fourier transform with respect to t − t ′
using the distributional identities,∫ ∞

0
dτ e±iτ	 = πδ(	) ± i

P

	
, (C7)

where P denotes the Cauchy principal value and obtain

DE
ij (r,r′; 	) = 2

πε0
P

∫ ∞

0
dω

ω3

	2 − ω2
Im[Gij (r,r′; ω)]

− i

ε0

∫ ∞

0
dω ω2[δ(	 − ω) + δ(	 + ω)]

× Im[Gij (r,r′; ω)]. (C8)

The Green’s tensor must satisfy retarded boundary conditions
in time in order to preserve causality. This means that it is ana-
lytical in the upper half of the complex ω plane. Analyticity in
the upper half of the ω plane leads to Kramers-Kronig relations
[39] so that the Green’s tensor inherits the causality properties
of the permittivity. In particular, its imaginary part is an odd
function of frequency ω, whereas, its real part is even in ω. With
that, we can proceed to deal with the principal-value integral
in Eq. (C8). Since Im[Gij (r,r′; −ω)] = −Im[Gij (r,r′; ω)] and
the remaining part of the integrand is also odd, we extend the
lower integration limit to −∞ and compensate by multiplying
by 1/2. On the other hand, the real part of the Green’s tensor
is even in ω so that we can replace

Im[Gij (r,r′,ω)] → 1

i
Gij (r,r′,ω), (C9)

without changing the value of the integral. Thus, the principal-
value integral in Eq. (C8) becomes

P

iπε0

∫ ∞

−∞
dω

ω3

	2 − ω2
Gij (r,r′; ω). (C10)

To work out this integral, we consider a contour of integration
γ that runs from −∞ to ∞ and above the poles at ω = ±	 and
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then closes up in the upper half of the ω plane along the large
semicircle |ω| → ∞. Because the Green’s tensor is analytic
in the upper half plane, the such-calculated integral vanishes,
and we can express the principal-value integral as

P
∫

= −
∫

γ −
−

∫
γ +

−
∫

�

, (C11)

where γ ± denotes the clockwise contours that go around the
poles at ω = ±	, respectively, and � denotes the contribution
from the large semicircle taken counterclockwise. Using the
residue theorem, we derive that the contribution from γ ± is
given by

− 1

ε0
	2G′

ij (r,r′; 	). (C12)

The large semicircle � contributes the δ function,

− 1

ε0
δij δ

(3)(r − r′) (C13)

for whose calculation we have used the fact that, asymptoti-
cally, the Green’s tensor behaves as [38]

lim
|ω|→∞

ω2Gij (r,r; ω) = −δij δ
(3)(r − r′). (C14)

The δ-function integral in Eq. (C8) is easily seen to be

− i

ε0
	2Im[Gij (r,r′; |	|)], (C15)

so that the final result for the relation between the photon
propagator and the Green’s function of the wave equation on
the real 	 axis can be compactly written as

DE
ij (r,r′; 	) = −	2

ε0
Gij (r,r′; |	|) − 1

ε0
δij δ

(3)(r − r′). (C16)

A similar formula has been given in Ref. [40]. We would like
to use this result for a comparison with the results of Sec. IV B.

First, we need to emphasize that what we have calculated here
is the propagator for the electric field E, whereas, Sec. IV B
derives the propagator for the displacement field D. Therefore,
the results can coincide only when r and r′ are both located
outside the dielectric, which is why we restrict ourselves to
this case. Then, the Green’s tensor Gij (r,r′; ω) splits into a
free-space part G

(0)
ij and a correction G

(r)
ij that describes the

reflection of the electromagnetic field from the surface, and
Eq. (C16) can be rewritten as

DE
ij (r,r′; 	) = −	2

ε0

[
G

(0)
ij (r − r′; |	|) + δij δ

(3)(r − r′)
]

−	2

ε0
G

(r)
ij (r,r′; |	|). (C17)

This makes clear that the Feynman propagator is an even
function of 	, unlike the Green’s function of the wave
equation, which has the same analytical structure as the dielec-
tric function. It is not difficult to verify that, for the particular
geometry considered here, the dielectric half-space Eq. (C17),
indeed, holds. The terms in square brackets combine to deliver
the transverse free-space propagator as given in Eq. (42).
The reflected part G

(r)
ij (r,r′; |	|), which can be found, e.g., in

Ref. [8], satisfies the homogeneous wave equation. Therefore,
it is automatically transverse,

∇iG
(r)
ij (r − r′; ω) = 0, (C18)

and for real ω, it coincides with the reflected part of the photon
propagator DE

ij (r,r′; ω) given in Eq. (96), although away from
the real axis, they are different due to the different boundary
conditions in time. DE

ij (r,r′; t − t ′) is a Feynman propagator,
whereas, Gij (r,r′,t − t ′) gives the retarded solutions of the
wave equation.
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