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Equivalent Hermitian Hamiltonians for some non-Hermitian Hamiltonians
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Six years ago, by using operator techniques and path-integral methods, it was shown that the complex
non-Hermitian PT -symmetric Hamiltonian p2 − gx4 is equivalent to a conventional Hermitian Hamiltonian
p2 + 4gx4 − 2h̄

√
gx. Further it was revealed that the linear term in the Hermitian Hamiltonian is anomalous in

the sense that it has no classical analog. In this paper we show that the complex non-Hermitian PT-symmetric
Hamiltonian p2 − gx4 + 4ih̄

√
gx and the conventional Hermitian Hamiltonian p2 + 4gx4 + 6h̄

√
gx have the

same eigenspectra. In this case, the anomalous terms in both Hamiltonians are different from the previous one
and vanish in the semiclassical limit. Further these equivalent Hamiltonians have zero-energy ground states. The
exact ground-state wave functions and supersymmetric partner potentials are derived.
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I. INTRODUCTION

This work is motivated by the papers of Jones et al.
published in 2006 [1–3]. During the last decade there has
been an increased interest in non-Hermitian PT -symmetric
Hamiltonian systems due to possible applications of non-
Hermitian models in particle-physics [4], quantum optics [5],
supersymmetric [6], and magnetohydrodynamical [7] models.
A Hamiltonian is PT symmetric if it is invariant under space-
time reflection: for P , p → −p, x → −x and for T , p →
−p, x → x and i → −i. More information on PT -symmetric
non-Hermitian systems can be found in Refs. [8–11]. When
the PT symmetry is not spontaneously broken, non-Hermitian
PT -symmetric Hamiltonians produce real and positive energy
spectra. However, for a given PT -symmetric Hamiltonian,
there is no simple way of finding out whether the PT symmetry
is spontaneously broken or not. It was shown by Mostafazadeh
[12] that a quantum system possessing an exact (unbroken)
PT symmetry is equivalent to a quantum system having a
Hermitian Hamiltonian. This was achieved by constructing the
unitary operator relating an arbitrary non-Hermitian Hamilto-
nian with exact PT symmetry to a Hermitian Hamiltonian.
Nevertheless, only in a few instances, it was possible to find
Hermitian Hamiltonians which possess the same eigenspectra
as PT -symmetric non-Hermitian Hamiltonians.

Six years ago, by using operator techniques and path-
integral methods, Jones et al. [1–3] proved that the eigen-
spectra of both the complex non-Hermitian PT -symmetric
Hamiltonian H = p2 − gx4 and the conventional Hermitian
Hamiltonian h = p2 + 4gx4 − 2

√
gx are the same. Further it

was revealed that the linear term in the Hermitian Hamiltonian
is anomalous in the sense that it has no classical analog and the
linear term has the form 2h̄

√
gx [2,3]. Further they have shown

that the PT -symmetric double-well H = p2 + μ2

2 x2 − gx4

and the Hermitian Hamiltonian h = p2 − 2h̄
√

gx + 4g(x2 −
μ2

8g
)2 have the same spectra. Here we have taken mass 2m = 1.

However, using Rayleigh-Schrödinger perturbation theory,
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Buslaev and Grecchi [13] had shown this equivalence relation
several years earlier.

In this paper we use a completely different approach,
based on the quantum action variable expansions (asymptotic
energy expansions), to find a Hermitian equivalence of the
non-Hermitian PT -symmetric Hamiltonian p2 − gx4 + bx.
It was found in the current study that operator techniques or
path-integral methods cannot be directly utilized to determine
the equivalent Hermitian Hamiltonians in a manner similar to
the case of H = p2 − gx4. We use the expression for quantum
action variables to determine the equivalency instead. Results
were verified with eigenvalues determined by direct numerical
integration of the Schrödinger equation along appropriate
complex contours. The outline of the paper is as follows.
In the Sec. II, we describe the quantum action variable
method and derive a series expansion of the action variable
for p2 − gx4 + bx and p2 + αx4 + βx. By imposing the
condition that both PT -symmetric non-Hermitian systems and
the Hermitian systems should have identical action variable
J (E) expansions, we determine g,b,α, and β. The Hermitian
Hamiltonians equivalent to the non-Hermitian PT -symmetric
Hamiltonians are found in Sec. III. Exact ground-state wave
functions and supersymmetric partners of both Hermitian
and non-Hermitian Hamiltonians are derived in Sec. IV.
Concluding remarks are given in Sec. V.

II. QUANTUM ACTION VARIABLE EXPANSIONS

In quantum action variable theory [14–16], it was shown
that quantum eigenvalues can be obtained by quantizing the
quantum action variable (QAV) J (E) [14,15,17]. The exact
quantization condition is J (E) = nh̄, where n is a non-negative
integer. Details of the quantum action variable theory can be
found in Refs. [14–17]. In this section first we will derive
quantum action variable expansions for the quartic Hermitian
Hamiltonian

h(x,p) = p2 + V (x), (1)

where V (x) = αx4 + βx. The quantization condition for this
potential is

J (E) = nh̄, (2)
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where n is a positive integer and QAV J (E) is given by

J (E) = 1

2π

∫
γ

P (x,E)dx. (3)

P (x,E) satisfies the equation

h̄

i

∂P (x,E)

∂x
+ P 2(x,E) = E − V (x) = Pc(x,E), (4)

and it is related to the wave function as P (x,E) = h̄
i

∂�/∂x

�
.

The contour γ in (3) encloses two physical turning points of
Pc(x,E). The details of this method are described elsewhere
[18–21]. This method produces series expansions identical
to higher-order WKB expansions [22,23] for potentials such
as V (x) = x2N . However, two methods produce completely
different series for potentials such as V (x) = x2N + bx [18].
In order to obtain a series expansion called the asymptotic
energy expansion (AEE) of J (E), first P (x,E) is expanded in a
series of powers of energy and subsequently obtains recurrence
relations. For the above potential, Eq. (4) becomes

h̄

i

∂P (x,E)

∂x
+ P 2(x,E) = E − αx4 − βx. (5)

Let ε = E−1/4 and y = α1/4εx. Then (5) becomes, after
simplification,

ĥε5 ∂P (y,ε)

∂y
+ ε4P 2(y,ε) = 1 − y4 − Ayε3, (6)

where ĥ = h̄
i
α1/4 and A = β

α1/4 .
Now we expand P (y,ε) as a power series in ε,

P (y,ε) = εs

∞∑
k=0

ak(y)εk, (7)

where ak and s are determined below. Substituting (7) in Eq. (6)
and equating coefficients of ε0, we obtain s = −2 and a0 =√

1 − y4, and (6) becomes

ĥ

∞∑
k=0

εk+3 dak

dy
+

∞∑
i=0

∞∑
j=0

aiaj ε
i+j = 1 − y4 − Ayε3, (8)

and assuming ak = 0 when k < 0 and rearranging terms, we
obtain

ĥ

∞∑
k=1

dak−3

dy
εk +

∞∑
k=1

k−1∑
i=1

aiak−iε
k + 2a0

∞∑
k=0

akε
k

= 1 − y4 − Ayε3 (9)

for k > 0. Then coefficients ak are given by

ak = −1

2a0

[
k−1∑
i=1

aiak−i + Ayδk,3 + ĥ
dak−3

dy

]
. (10)

In the above formula ak = 0 ∀ k < 0. Now J can be written
as

J (E) =
∞∑

k=0

bkE
−(k−3)

4 , (11)

where

bk = 1

2π

∫
γ

akdy (12)

and can be determined analytically in terms of α and β. The
contour γ encloses the two branch points of

√
1 − y4 (i.e., + 1

and −1) on the real axis. The quantization condition J (E) =
nh̄ determines the eigenenergies of V (x) = αx4 + βx.

For the polynomial potentials, all the integrals
∫
γ
akdy have

the general form of either
∫

xn

(1−x4)m+1/2 dx or
∫

xn

(1−x4)m dx, where
m is an integer and n is a positive integer [18,20]. However,
the second integral, in general, does not contribute to J except
when m = 1 and n = 3.

Using (10) and evaluating integral (12) analytically, we
obtain the series expansion. Then the eigenenergy expansion
becomes

J (E) =
∞∑

k=0

bkE
−(k−3)

4 . (13)

Here the first six nonzero bk’s are

b0 = 

[

1
4

]
3
√

πα1/4 

[

3
4

] , b3 = −h̄

2
, b6 = − (2h̄2α − β2) 


[
3
4

]
8
√

πα3/4 

[

1
4

] , b12 = (44h̄4α2 − 60h̄2αβ2 + 5β4) 

[

1
4

]
6144

√
πα5/4 


[
3
4

] ,

b18 = 77(488h̄6α3 − 636h̄4α2β2 + 90h̄2αβ4 − 3β6) 

[

3
4

]
245 760

√
πα7/4 


[
1
4

] ,

b24 = −1105(5648h̄8α4 − 6304h̄6α3β2 + 1064h̄4α2β4 − 56h̄2αβ6 + β8) 

[

1
4

]
58 720 256

√
πα9/4 


[
3
4

] .

Next we derive the series expansion of J (E) for
the non-Hermitian PT -symmetric “wrong-sign” quartic
Hamiltonian:

H (x,p) = p2 − gx4 + bx. (14)

The wrong-sign quartic potential is handled in a slightly
different manner from the quartic potential. In this case

we let ε = E−1/4 and y = g1/4εx. Then (4) becomes, after
simplification,

ĥε5 ∂P (y,ε)

∂y
+ ε4P 2 (y,ε) = 1 + y4 − Byε3, (15)
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where ĥ = h̄
i
g1/4 and B = b

g1/4 . Next we expand P (y,ε) as a
power series in ε,

P (y,ε) = εs

∞∑
k=0

ak (y) εk, (16)

where ak and s are determined below. Substituting (16) in
Eq. (15) and equating coefficients of ε0, we obtain s = −2
and a0 =

√
1 + y4, and Eq. (15) becomes

ĥ

∞∑
k=0

εk+3 dak

dy
+

∞∑
i=0

∞∑
j=0

aiaj ε
i+j = 1 + y4 − Byε3, (17)

and assuming ak = 0 when k < 0 and rearranging terms, we
obtain

ĥ

∞∑
k=1

dak−3

dy
εk +

∞∑
k=1

k−1∑
i=1

aiak−iε
k + 2a0

∞∑
k=0

akε
k

= 1 + y4 − Byε3 (18)

for k > 0. Then coefficients ak are given by

ak = −1

2a0

[
k−1∑
i=1

aiak−i + Byδk,3 + ĥ
dak−3

dy

]
(19)

for k > 0. In the above formula ak = 0 ∀ k < 0. Now J can
be written as

J (E) =
∞∑

k=0

bkE
−(k−3)

4 , (20)

where

bk = 1

2π

∫
γ

akdy (21)

and can be determined analytically in terms of g and b. The
contour γ encloses the two branch points of

√
1 + y4 (i.e., eiπ/4

and e3iπ/4) in the complex plane. The quantization condition
J (E) = nh̄ determines the eigenenergies of V (x) = −gx4 +
bx.

Using (19) and evaluating integral (21) analytically, we
obtain the series expansion of J (E). Then the eigenenergy
expansion becomes

J (E) =
∞∑

k=0

bkE
−(k−3)

4 . (22)

The first six nonzero bk’s are

b0 = 

[

1
4

]
3g1/4

√
2π 


[
3
4

] , b3 = −h̄

2
, b6 = − (b2 + 2gh̄2) 


[
3
4

]
8g3/4

√
2π 


[
1
4

] , b12 = − (5b4 + 60b2gh̄2 + 44g2h̄4) 

[

1
4

]
6144g5/4

√
2π 


[
3
4

]
b18 = −77(3b6 + 90b4gh̄2 + 636b2g2h̄4 + 488g3h̄6) 


[
3
4

]
245 760g7/4

√
2π 


[
1
4

] ,

b24 = −1105(b8 + 56b6gh̄2 + 1064b4g2h̄4 + 6304b2g3h̄6 + 5648g4h̄8) 

[

1
4

]
58 720 256g9/4

√
2π 


[
3
4

] .

In order to obtain equivalent Hamiltonians we impose the
condition that expressions of action variable J (E) in Eqs. (13)
and (22) must be identical.

III. DERIVATION OF EQUIVALENCE CONDITION

Before we impose conditions on J (E) to obtain equiva-
lent Hermitian Hamiltonians corresponding to non-Hermitian
systems, it would be useful to examine the accuracy of the
above expansions. For this purpose we examine expressions
of J (E) for non-Hermitian Hamiltonian H1 = p2 − gx4 and
the conventional Hermitian Hamiltonian h1 = p2 + 4gx4 −
2h̄

√
gx with exact energies obtained by numerical methods.

By substituting b = 0 in J (E) expansion of H and α = 4g

and β = −2
√

gh̄ in J (E) expansion of h we find both J (E)
expansions are identical (up to the first 100 terms) and are
given by (22) with

b0 = 

[

1
4

]
3g1/4

√
2π 


[
3
4

] , b3 = −h̄

2
, b6 = −g1/4h̄2 


[
3
4

]
4
√

2π 

[

1
4

] ,

b12 = − 11g3/4h̄4 

[

1
4

]
1536

√
2π 


[
3
4

] , b18 = − 4697g5/4h̄6 

[

3
4

]
30 720

√
2π 


[
1
4

] ,

b24 = − 390 065g7/4h̄8 

[

1
4

]
3 670 016

√
2π 


[
3
4

] .

Next we apply the quantization condition J (E) = nh̄ to ob-
tain the eigenspectrum. Table I shows the eigenvalues obtained
by quantizing J (E). For comparison purposes eigenspectra of
the above system were obtained numerically by diagonalizing
the Hamiltonian in the Harmonic oscillator basis. Results are
shown in the Table I.

TABLE I. Comparison between calculated energy eigenvalues
with J (E) expansion and EExact, which is obtained by the matrix diag-
onalization method for the Hamiltonian H = p2 + 4gx4 − 2h̄

√
gx.

The calculation was carried out for g = 1.0. Units of energy is chosen
such that h̄ = 1 and m = 1/2.

n EJ (E) EExact

0 1.6590745 1.4771498
1 6.003393 6.0033861
2 11.802434 11.802434
3 18.458819 18.458819
4 25.791792 25.791792
5 33.694280 33.694280
6 42.093808 42.093808
7 50.937404 50.937404
8 60.184331 60.184331
9 69.802098 69.802098
10 79.764086 79.764086
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Except for the ground state and the first excited state, all
the eigenvalues obtained by quantizing J (E) agree well with
corresponding numerical values over eight significant figures.
The accuracy of this expansion method has been tested for
various systems, and for more details please refer to [18–21].
Having shown the accuracy of the action variable method, now
we obtain the main result of this paper.

In order to find equivalent Hermitian Hamiltonians corre-
sponding to non-Hermitian systems, we find b,α, and β in
terms of g and h̄ by imposing the condition that the terms of
J (E) expansion in Eqs. (13) and (22) are equal. The first four
terms of the expansion produce the following conditions:

α = 4g, b(b2 + 16gh̄2) = 0, 2b2 + β2 = 4h̄2g. (23)

There are two solutions for α,b and β:

α = 4g, b = 0, β = ±2h̄
√

g (24)

or

α = 4g, b = ±4ih̄
√

g, β = ±6h̄
√

g. (25)

The first solution (24) corresponds to the equivalent Hamilto-
nians H1 = p2 − gx4 and h1 = p2 + 4gx4 − 2h̄

√
gx as found

by Jones et al. [1–3]. The second solution corresponds to new
equivalent Hamiltonians H2 = p2 − gx4 ± 4ih̄

√
gx and h2 =

p2 + 4gx4 ± 6h̄
√

gx. Note that linear terms in H2 and h2 are
also anomalous. For α = 4g, b = ±4ih̄

√
g, and β = ±6h̄

√
g,

the individual terms in the J (E) expansions of Hamiltonians
H2 and h2 are found to be identical (over hundreds of
terms). Further these two Hamiltonians were studied by
using numerical methods. In Table II we present the first ten
eigenenergies of H2 and h2, which have been determined by
direct numerical integration of the Schrödinger equation. The
Schrödinger equation for the Hamiltonian h2 was solved along
the real axis while the contour in Refs. [1–3] was used for
integrating the Schrödinger equation for Hamiltonian H2.

It is evident from Table II that both Hamiltonians H2 and
h2 have the same eigenspectra for the first ten eigenstates.
On the other hand, expansion of J (E) is very accurate for
large eigenvalues, and both Hamiltonians have identical J (E)
expansions. Therefore we claim that both H2 and h2 have the
same eigenspectra.

TABLE II. The first ten exact eigenenergy values of h2 = p2 +
4x4 + 6x and H2 = p2 − x4 + 4ix and approximate eigenvalues EJ

obtained by the J (E) expansion method with nine terms. Units of
energy is chosen such that h̄ = 1 and m = 1/2.

n Eh2 EH2 EJ

0 <10−10 <10−9 1.806738380
1 5.624339342 5.624339342 5.624445087
2 11.53474946 11.53474946 11.53474922
3 18.24541905 18.24541904 18.24541904
4 25.61148849 25.61148849 25.61148849
5 33.53663215 33.53663215 33.53663215
6 41.95281550 41.95281549 41.95281550
7 50.80926445 50.80926444 50.80926445
8 60.06646405 60.06646403 60.06646405
9 69.69266253 69.69266252 69.69266254
10 79.66170147 79.66170147 79.66170149

Further it was found that the equivalent Hamiltonians H =
p2 + μ2

2 x2 − gx4 and h = p2 − 2h̄
√

gx + 4g(x2 − μ2

8g
)2 pro-

duced identical J (E) expansions. Further we claim that there
are no other non-Hermitian PT -symmetric Hamiltonians with
a −x4 term and a linear term equivalent to a Hermitian
Hamiltonian with x4 and a linear term (h = p2 + 4gx4 +
λx, λ ∈ C). The reason for this claim is that except for the
parameters in Eqs. (24) and (25), no other parameter values
can make J (E) of both Hamiltonians identical.

By direct numerical integration of the Schrödinger equa-
tion, it was revealed that H2 and h2 have zero-energy ground
states (Table II). This will enable us to obtain exact wave
functions of the ground states of both Hamiltonians. In the next
section we obtain exact ground-state wave functions as well as
the supersymmetric (SUSY) partners of these Hamiltonians.

IV. GROUND-STATE WAVE FUNCTIONS
AND SUSY PARTNERS

In this section we find the exact wave functions of the zero
ground state of Hamiltonians H2 and h2. First we consider
the Hermitian Hamiltonian h2. For the ground state, the
Schrödinger equation becomes (assume h̄ = 1 and 2m = 1)

−d2ψ0

dx2
+ (4x4 + 6x)ψ0(x) = 0.

Let ψ0(x) = u0 (x) e− 2
3 |x|3 . Then the solution u0(x) is found

by the series expansion method:

u0 (x) = 1F1

(
5

2
,
2

3
,
4x3

3

)
,

where 1F1 is the confluent hypergeometric function and
has the series expansion 1F1(a,b,z) = ∑∞

n=0
a(n)zn

b(n)n! and a(n) =
a(a + 1)(a + 2) · · · (a + n − 1) and b(n) = b(b + 1)(b + 2) ·
· · (b + n − 1).

The ground-state wave function of non-Hermitian Hamil-
tonian H2 is obtained by using the method developed by Dorey
et al.[24]. The ground-state wave function 
0(x) is found as


0(x) = ixe
i
3 x3

,

where the quantization contour starts and ends at |x| = ∞,
joining sectors S−1 and S1, where

Sk =
{
x :

∣∣∣∣ arg(x) − πk

3

∣∣∣∣ <
π

6

}
.

Having found the exact wave functions, now we determine
the SUSY partners of both Hamiltonians, which will also be
isospectral. First we find the superpotential WH (x) [25] of
H2.

WH2 (x) = −1 + ix3

x
,

and hence the supersymmetric partner potential VH2 is

VH2 (x) = −x4 + 2

x2
.

However, supersymmetric partners for the potential 4x4 + 6x

cannot be found as a simple expression as above. The
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superpotential for this problem is

Wh2 (x) = x2[2 − 5φ (x)],

where φ(x) = 1F1( 11
6 , 5

3 , 4x3

3 )

1F1( 5
6 , 2

3 , 4x3
3 )

. Hence the supersymmetric partner

potential Vh2 is

Vh2(x) = 4x4 − 6x + 10x4φ(x)[5φ(x) − 4].

Hence the Hamiltonian h3 = p2 + Vh2 (x) is the isospectral
Hermitian equivalent of the non-Hermitian Hamiltonian H3 =
p2 + VH2 (x).

V. SUMMARY AND CONCLUDING REMARKS

In this paper we showed that the complex non-Hermitian
PT -symmetric Hamiltonian p2 − gx4 + 4ih̄

√
gx and the

conventional Hermitian Hamiltonian p2 + 4gx4 + 6h̄
√

gx

have the same eigenspectra. We utilized a method based on
series expansion of the quantum action variables J (E) in
rational powers of reciprocal of energy. The J (E) expansions
of these two Hamiltonians were found to be identical. More-
over, the Schrödinger equation for these Hamiltonians was
solved numerically to determine the quantum eigenspectrum.
Both Hamiltonians produced almost the same eigenvalues (up
to ten significant figures) for the first ten states. The J (E)-
based quantization method produces accurate eigenvalues for
the higher eigenstates. Therefore we claim that Hamiltonians
p2 + 4gx4 + 6h̄

√
gx and p2 − gx4 + 4ih̄

√
gx have the same

spectra and they have zero-energy ground states. We have
obtained the exact ground-state wave functions and hence
proved analytically that the ground states of these two
Hamiltonians are in fact zero-energy ground states. Although
we did not present a rigorous proof for the equivalence, we
believe that identical J (E) and numerical evidence strongly
support our claim.
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