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Noncyclic Berry phase and scalar Aharonov-Bohm phase for the spin-redirection
evolution in an atom interferometer
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Using a magnetic-field-insensitive two-photon transition, the phase shift of atomic interference fringes and the
frequency shift of the resonance spectrum were examined for a noncyclic rotation of a magnetic field during
the interrogation time of an atom interferometer. We observed a phase shift proportional to the rotation angle of
the magnetic field when the initial state and the final state were subjected to interference. We confirmed that the
phase shift is equivalent to the scalar Aharonov-Bohm phase due to the geometrical potential. On the other hand,
we demonstrated that the noncyclic Berry phase defined by the geodesic gauge is measurable using a strategy that
the magnetic field rapidly returns to the initial direction during the interrogation time of the atom interferometer.
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I. INTRODUCTION

In 1984, Berry predicted that in a cyclic adiabatic process,
in which the slowly time-varying Hamiltonian returns to its
original form via a circuit C, a quantum state may acquire a
“geometrical” phase factor eiγ = exp[−im�(C)], where m is
the spin component and � is the solid angle, in addition to
the normal “dynamical” phase factor [1]. Since then, many
experimental identifications of the Berry phase have been
carried out in various fields of physics [2], and the Berry phase
has been generalized to nonadiabatic evolution by Aharonov
and Anandan [3]. In 1988, Samuel and Bhandari pointed
out that the Berry phase appears in a more general context,
such as noncyclic evolution [4], on the basis of the work of
Pancharatnam [5]. In noncyclic evolution, the initial state and
final state are not orthogonal. Samuel and Bhandari insisted
that the noncyclic Berry phase between the initial state and final
state can be expressed as a line integral, where the contour C is
given by the actual evolution from the initial state to the final
state and back along any geodesic curve joining the final state
to the initial state, since a phase difference does not occur for a
line integral along the geodesic curve. The phase difference is
clearly a gauge-invariant quantity and measurable. Thus, the
noncyclic Berry phase should be given by the area of the foliage
enclosed by the locus of rotation and the geodesic curve, as
shown in Fig. 1. In 1990, Weinfurter and Badurek reported
the first measurements of the noncyclic Berry phase using
polarized neutrons and observed a linear increase in phase
shift with increasing rotation angle [6]. However, Wagh and
Rakhecha indicated that this result was incorrect and proposed
a correct method of measurement for a noncyclic SU(2) evolu-
tion with interferometry [7] or with polarimetry [8]. Recently,
the noncyclic SU(2) evolution has been verified experimentally
without ambiguity [9,10]. However, the noncyclic Berry phase
for the spin-redirection evolution of a spinning particle has not
yet been demonstrated experimentally.

In 2005, we reported a phase shift for a partial rotation of
a magnetic field using a two-photon-stimulated Raman atom
interferometer, with which two phases for different spin states
were compared [11]. The observed phase shift ϕ for a partial
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rotation of angle φ is given by

ϕ = −m�
φ

2π
, (1)

which is the same as that obtained by Weinfurter and Badurek
[6]. After that, we showed that the noncyclic Berry phase de-
fined by a geodesic gauge can be deduced from the phase shift
measured by another gauge using the rotation of a polarization
azimuth of linearly polarized light in a partially wound optical
fiber over the surface of a cylinder [12]. Recently, we have
demonstrated a clear atomic Berry phase without a dynamical
phase shift for a whole turn of the magnetic field at a magic
magnetic field using a magnetic-field-insensitive two-photon
“clock” transition between the lower m = −1 state and the
upper m = 1 state [13]. Furthermore, we demonstrated that
the linear evolution of the Berry phase with time induces
a frequency shift of the resonance transition between two
eigenstates [14]. This fact means that the Berry phase for a
whole rotation can also be interpreted as the scalar Aharonov-
Bohm (SAB) effect due to the time-dependent scalar potential
[15,16] caused by the linear evolution of the Berry phase with
time. When the period for a whole rotation is T ,

γ ≡ −m� =
∫ T

0
−m�

T
dt ≡ ϕSAB. (2)

Namely, the SAB phase ϕSAB for a whole rotation is identical
to the Berry phase γ . These recent results show that our
result in 2005 might be explained as the SAB phase for the
noncyclic evolution of a magnetic field. If this is the case, how
we can measure a noncyclic Berry phase defined by geodesic
gauge directly?

In this study, we first examine the geometric frequency
shift during the rotation of a magnetic field. Next, we confirm
the previous phase shift observed for a partial rotation of a
magnetic field using a magnetic-field-insensitive two-photon
transition and show that a phase shift proportional to the
rotation angle is equivalent to a scalar Aharonov-Bohm phase
due to the geometrical potential. Finally, we demonstrate a
noncyclic Berry phase measured along a geodesic curve by the
strategy that the direction of the magnetic field rapidly returns
to the initial direction using a magnetic-field-insensitive two-
photon transition.
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II. PRINCIPLES

A. Noncyclic Berry phase

Let us consider a sphere moving in the direction of a
magnetic field with a spinor particle located at its center O, as
shown in Fig. 1. We define the rotation axis of the magnetic
field as the z axis (polar axis). P is the zenith of the sphere.
The magnetic field is initially in the x-z plane and the angle
between the magnetic field and the z axis is θ , which is called
the semiangle. In this paper, we assume that the magnetic field
rotates around the z axis from the initial point to the final point
with a rotation angle φ. Then the tip of the magnetic field traces
an arc AB on the sphere. For a whole rotation (φ = 2π ), the
solid angle is � = 2π (1 − cosθ ), while for a partial rotation,
the solid angle depends on the gauge, as discussed in Ref. [12].
For example, if we use a gauge fixed at the zenith, the solid

angle becomes the area of the spherical triangle connecting A,
B, and P, namely, � = φ cosθ .

According to Samuel and Bhandari, the Berry phase
between the initial state |ψ(0)〉 at A and the final state |ψ(tB)〉
at B is expressed as the integral

γ =
∮

Asds =
∮

C

Im

〈
ψ(t)

∣∣∣∣ dψ(t)

dt

〉/
〈ψ(t) | ψ(t)〉 , (3)

where the closed loop C is given by the actual evolution of
|ψ(t)〉 from |ψ(0)〉 to |ψ(tB)〉 and back along any geodesic
curve joining |ψ(tB)〉 to |ψ(0)〉 [4]. A great circle passing
through both A and B is determined uniquely owing to the
geodesic rule, as shown in Fig. 1. The solid angle can be
expressed as the area of the foliage, enclosed by the locus of
rotation and the geodesic curve. Then, the Berry phase for a
partial rotation is given by

γ (θ,φ) = −m

⎧⎪⎪⎨
⎪⎪⎩

2 sin−1
[

sin(φ/2)√
1+tan2 θ cos2(φ/2)

]
− φ cos θ, 0 � φ � π

2
{
π − sin−1

[
sin(φ/2)√

1+tan2 θ cos2(φ/2)

]}
− φ cos θ, π � φ � 2π.

(4)

Therefore, to measure a noncyclic Berry phase, we must add
the second operation of the magnetic field back along the
geodesic curve from the final point to the initial point to form
a cyclic evolution. Next, we must experimentally consider how
to operate the direction of the magnetic field along the geodesic
curve. We consider that the evolution along the geodesic curve
is equivalent to the instantaneous return of the direction of the
magnetic field to the initial state.

B. Two-photon atom interferometer

Atom interferometers are composed of two different mag-
netic quantum states, which are the superposition from the
initial ground state at the first π/2 resonance pulse and are
superimposed into the excited state (or the ground state) at the
second π/2 resonance pulse after the interrogation time [17].
The phase difference arising between the two states during
the interrogation time is obtained by measuring the population

FIG. 1. (Color online) Sphere of the direction of the magnetic
field B. Atoms are located at the center O. P is zenith of the sphere.
The total magnetic field B, which is composed of Bx and Bz, rotates
from A to B with a semiangle θ from + z axis and a rotation angle φ.
Dot and dashed line is the geodesic curve passing through A and B.

probability of the excited state (or the ground state) after being
superimposed. However, there are two essential problems in
noncyclic rotation, one of which is the orthogonality between
the initial state and the final state, and the other is the dynamical
phase shift due to the Zeeman effect.

In the noncyclic spin-redirection phase, the magnetic field
is rotated during the interrogation time and the state vector
is also rotated during this time. In this case, the final state is
not orthogonal to the initial state. However, using the above-
mentioned atom interferometer, we measure the phase shift
with the second excitation pulse in the same direction as the
first one. When the state returns to the initial point along
the geodesic curve, the noncyclic Berry phase shift between
the initial state and the final state is measurable using the
same excitation pulse.

In order that no dynamical phase shift is induced by the
perturbation of the magnetic field during the interrogation
time, we should use a transition frequency between the two
states that is insensitive to the magnetic field. The two-
photon microwave radio-frequency transition from the F = 1,
mF = −1 state to the F = 2, mF = 1 state is effective, as
shown in our previous paper [13].

Figure 2(a) shows an energy diagram of the ground-state
hyperfine levels of 23Na with the Zeeman splitting depending
on the strength of the magnetic field and the three two-photon
transitions. The g factors of the F = 1 and F = 2 states
are −1/2 and 1/2, respectively. According to the Breit-
Rabi equation, the resonance frequency ν−1,1 between the
|F = 1, mF = −1〉 and |F = 2, mF = 1〉 states is minimum
at B0 = 67.7 μT, which is called the “magic” magnetic
field, and it is 762.3 Hz lower than the resonance frequency
ν0 = 1.771 626 129 × 109 Hz between the F = 1 and F = 2
states at zero magnetic field [18]. Therefore, the resonance
frequency ν−1,1 is insensitive to the variation of the magnetic
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FIG. 2. (Color online) (a) Zeeman splitting of the ground hy-
perfine state of 23Na under the magnetic field of 67.7 μT, together
with two-photon microwave–radio-frequency (MW-rf) transitions.
(b) Spectra of the |1,−1〉→|2, 1〉, |1, 0〉→|2, 0〉, and |1, 1〉→|2,−1〉
two-photon transitions as a function of radio frequency.

field around B0. On the other hand, at strengths of the magnetic
field B (in the unit of μT) around the magic value, the
resonance frequency ν0,0 between the |1, 0〉 and |2, 0〉 states
is given by ν0 + 0.2218B2 Hz, and the resonance frequency
ν1,−1 between the |1, 1〉 and |2,−1〉 states is given by ν0 −
762.3 + 0.1664(B + B0)2 Hz.

At the magic magnetic field, the Zeeman splitting frequency
is 474 kHz. We apply a pulse of microwave (MW) radiation,
whose frequency is 420 kHz less than ν0, along with an
rf field of approximately 420 kHz. This two-photon MW-rf
transition connects the |1,−1〉 state to the |2, 1〉 state by
σ+ − σ+ polarized fields [19]. The three typical spectra of
the two-photon transitions plotted against radio frequency are
shown in Fig. 2(b).

III. EXPERIMENTAL APPARATUS AND PROCEDURES

Our experimental setup was almost the same as that
described in a previous paper [13]. Here, we summarize
it briefly. Sodium atoms were trapped in a dual-operated
magneto-optical trap (MOT) [20] and cooled by polarization
gradient cooling. The temperature of the sodium atoms was
approximately 200 μK and the number of trapped atoms was
109 with a peak density of 1011 atoms/cm3. A few milliseconds
after the release of atoms from the trap, the magnetic field Bx

was applied in the x direction. All the atoms were initialized
to the F = 1 state by optical pumping. The three magnetic
sublevels of the |1, 1〉, |1, 0〉, and |1,−1〉 states were populated
with equal population probabilities. Next, the magnetic field
Bz was applied in the z direction. The semiangle θ of the total
magnetic field from the z axis was cos θ = Bz/

√
B2

x + B2
z .

The time-domain atom interferometer was composed of
two two-photon MW-rf pulses with pulse widths of 0.8 ms,
which were separated by 5 ms. By tuning the radio frequency
to approximately 420 kHz, Ramsey fringes with a cycle of
172 Hz were obtained with a visibility of 60% at a constant
magnetic field. During the two pulses, the magnetic field Bx

was adiabatically rotated in the x-y plane with a constant

frequency f (or a period of T = 1/f ). Bx was adjusted
to the magic magnetic-field strength (67.6 ± 0.1 μT), which
corresponds to a Larmor frequency of 470 kHz. Magnetic
fields along the x and y axes were produced by two mutually
orthogonal Helmholtz coils [21]. The coils were driven by
alternating currents with a relative phase shift of 90◦. The
wave forms of the currents were produced by multifunction
synthesizers. During the rotation, the amplitude of each
alternating current was adjusted so that the Zeeman frequency
shifts of the resonance for magnetic-field-sensitive transitions
were 67.7 ± 0.1 μT. The rotation frequency used in this study,
f = 200 Hz, was sufficient to satisfy the adiabatic condition.
Finally, the population probability of atoms in the excited
state after excitation by the second two-photon pulse was
measured by the absorption of a probe laser whose frequency
was resonant with the excited state.

IV. RESULTS AND DISCUSSION

A. Frequency shift during rotation

In a previous experiment [14], we confirmed that the center
frequency of a spectrum excited by a two-photon pulse with
a pulse width longer than the period T of rotation, shifts
by γ /(2πT ) due to the linearly evolving Berry phase with
time. Here, we examine the shift of the center frequency of a
spectrum excited by a pulse with a period shorter than T . The
timing diagram of the measurements is shown in Fig. 3(a). The
direction of the magnetic field was rotated continuously with a
frequency of 200 Hz. The temporal spectrum for the transition
between the |1,−1〉 state and the |2, 1〉 state was measured
using a two-photon pulse with a pulse width of 2 ms by
shifting the irradiation time of the pulse by 0.5 ms. The center
frequency of ν−1,1 is plotted in Fig. 3(b) for semiangles of 76◦,
90◦, and 104◦. The three center frequencies vary sinusoidally.
As the frequency for a semiangle of 90◦ should not be shifted
by the evolution of the Berry phase, this sinusoidal shift arises
from the Doppler shift due to the rotation of the magnetic
field [14]. Therefore, the other two curves involve the same
Doppler shift and we can obtain the actual frequency shifts due
to the evolution of the Berry phase by extracting the results
for 90◦ from the other results. In this way, the frequency shifts
due to the evolution of the Berry phase were obtained, as
shown in Fig. 3(c). These results verify that frequency shift
due to the Berry phase is also constant to γ /(2πT ) during
rotation, although there is still some offset. However, note that
the frequency shift of ν−1,1 during rotation is the sum of the
frequency shift due to the evolution of the Berry phase and the
Doppler shift due to the rotation.

B. Phase shift for noncyclic rotation

In a previous experiment [11], the direction of the mag-
netic field was partially rotated between two Raman pulses,
constituting a Ramsey atom interferometer, and we observed
that the phase shift increased proportionally to the rotation
angle φ under a large dynamical phase shift. We examined
whether or not the results could be reproduced using the
present two-photon atom interferometer without the dynamical
phase shift.
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FIG. 3. (Color online) (a) Timing diagram of the irradiation time
of pulse under the rotation of the magnetic field. (b) Observed
center frequencies for some semiangles versus the irradiation time T .
(c) Frequency differences from the center frequency for θ = 90◦.

We used two two-photon pulses with a pulse width of
0.8 ms, which were separated by 5 ms. During the interrogation
time, the direction of the magnetic field was partially rotated
by φ, as shown in Fig. 4(a). The Ramsey fringes around
the resonance frequency obtained for a semiangle of 76◦ and
various rotation angles are shown in Fig. 4(b). The center
frequency of the fringes becomes lower, namely, the phase of
the fringes is shifted to the positive side, as φ increases. In
contrast, the phase of the fringes for a semiangle of 104◦ was
shifted to the negative side.

The obtained phase shifts are plotted in Fig. 5(a) for
semiangles of 76◦, 90◦, and 104◦. Similarly to in Sec. III A,
the phase for a semiangle of 90◦ is not constant at 0 rad for
different rotation angles. Therefore, we subtracted the phase
for 90◦ from the phases for 76◦ and 104◦. The results lie on
straight lines, as shown in Fig. 5(b). Thus, the phase shifts are
proportional to the angle of rotation φ, namely, ϕ = 2φ cos θ .
As the Berry phase of the |1,−1〉 and |2, 1〉 states for a whole
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FIG. 4. (Color online) (a) Timing diagram of two two-photon
MW-rf pulses and wave forms for magnetic fields of Bx and Bz. φ is
a rotation angle of the magnetic field during two pulses. (b) Observed
Ramsey fringes for rotation angles under a semiangle θ = 76◦. (◦)
φ = 0; (�) φ = 2π/5; (�)φ = π ; (�) φ = 8π/5.

rotation is γ = 4πcosθ , the relation becomes

ϕ = γφ/2π. (5)

This confirms our previous results. Thus, the solid angle is
the area of the spherical triangle enclosed by the arc AB and
the great circles PA and PB. Namely, it means the phase was
measured using a polar gauge as discussed in Ref. [12].

This result can be also interpreted as the SAB phase due to
the geometrical potential, namely, the phase is the time integral
of the potential divided by h̄ up to the rotation angle φ at time t ,

ϕSAB = 4π cos θ
t

T
= 2φ cos θ. (6)

Therefore, the phase shift increases proportionally with φ

during the rotation of the magnetic field. The SAB phase
shifts due to the geometric potential are modified by the SAB
effect due to the Doppler effect, as seen in Fig. 5(a).

C. Noncyclic Berry phase with rapid return

To measure the noncyclic Berry phase, Samuel and Bhan-
dari proposed that the actual noncyclic evolution is followed
by its return along the geodesic curve joining the final state
to the initial state. Thus, the line integral along any geodesic
curve from the final state to the initial state is zero. However,
it will be difficult to rotate the direction of the magnetic field
along the geodesic curve connecting the initial and final states
experimentally. Instead of a geodesic curve, we assumed a
strategy that the direction of the magnetic field rapidly returns
to the initial state. Figure 6(a) shows the timing diagram with
wave forms for the magnetic-field components Bx and By .
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FIG. 5. (Color online) (a) Observed phase shift versus rotation
angle for some semiangles. (b) Phase differences from the phase for
θ = 90◦.

After their evolution, Bx and By return to the initial values Bx0

and By0, respectively. However, a change of less than 1 μs
caused a large ringing, resulting in a marked reduction of the
visibility of the fringes. Therefore, a jump with a time constant
of 60 μs was used.

The obtained Ramsey fringes for a semiangle of 76◦ are
shown in Fig. 6(b). In contrast to the former experiment,
the phase shifts in the negative direction as φ increases
[cf. Fig. 4(b)]. The obtained phase shifts for various semiangles
are summarized in Fig. 7. The phase shift, except for when
θ = 90◦, changes abruptly from 0 at approximately φ = π and
reaches the value at φ = 2π :

ϕ =
{−2mπ + 4π cos θ 0 < θ < 90◦

2mπ + 4π cos θ 90◦ < θ < 180◦,
(7)

where m is positive number. Unfortunately, the Ramsey fringes
disappeared at φ = π , because A and B are connected by plural
geodesic curves and fringes interfere destructively. When we
supposed m = 2, the obtained phase shifts are well described
by the curves calculated using Eq. (4) taking the g factor into
consideration [13]. The phases for θ = 90◦ were almost 0 for all
φ; however, the calculation for θ = 90◦ suggests that the phase
jumps by ± 4π at φ = π . In the experiment using an optical
fiber, we reduced the noncyclic Berry phase from the phase
shift measured using the other gauge [12]. The present results
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FIG. 6. (Color online) (a) Timing diagram of two two-photon
MW-rf pulses and wave forms for magnetic fields of Bx and Bz.
After rotation of φ, the direction of the magnetic field returns to the
initial direction rapidly. (b) Observed Ramsey fringes for rotation
angles under a semiangle θ = 76◦. (◦) φ = 0; (�) φ = π/4; (�)
φ = 3π/4; (�) φ = 5π/4.

are in agreement with the theoretical results of Eq. (4), except
for the ambiguity of 4π . Therefore, we could demonstrate
that the noncyclic Berry phase defined by the geodesic gauge
proposed by Samuel and Bhandari can be realized using an
atom interferometer by a strategy that the direction of the
magnetic field rapidly returns from the final direction to the
initial direction after rotation.
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FIG. 7. (Color online) Observed phase for various θ versus
rotation angle. For φ > π , the experimental values are shifted in 4π

for θ > π/2 and in −4 π for θ < π/2. The solid lines are theoretical
curves calculated for the noncyclic Berry phase defined by a geodesic
gauge.
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V. CONCLUSION

Using an atom interferometer formed by a magnetic-field-
insensitive two-photon transition between sodium hyperfine
levels, the phase shift of interference fringes was investigated
under noncyclic rotation of a magnetic field. First, we
examined that the geometric frequency shift is constant during
a linear rotation of the magnetic field with time. Next, we
confirmed the previous phase shift observed for a noncyclic
rotation of the magnetic field and showed that the phase shift
is proportional to the rotation angle and corresponds to the
phase shift measured using a fixed gauge in a direction sphere.
It is also equivalent to the scalar Aharonov-Bohm phase due
to the linear evolution of the geometrical potential with time.

Finally, we demonstrated the measurement of the noncyclic
Berry phase along the geodesic curve, whose solid angle is
the area of the foliage enclosed by the locus of rotation and
the geodesic curve, by a strategy that the direction of the
magnetic field rapidly returns to the initial direction during the
interrogation time.
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