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Simulation methods based on stochastic realizations of state vector evolutions are commonly used tools to
solve open quantum system dynamics, both in the Markovian and non-Markovian regimes. Here, we address the
question of the waiting time distribution (WTD) of quantum jumps for non-Markovian systems. We generalize
Markovian quantum trajectory methods in the sense of deriving an exact analytical WTD for non-Markovian
quantum dynamics and show explicitly how to construct this distribution for certain commonly used quantum
optical systems.
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I. INTRODUCTION

An open quantum system interacting with its environment
undergoes nonunitary evolution and typically loses its quantum
properties, such as entanglement, due to decoherence [1].
Whilst the theory of Markovian dynamics in terms of semi-
groups and completely positive trace preserving maps is fairly
well understood since the pioneering work of Lindblad, Gorini,
Kossakowski, and Sudarshan [2,3], non-Markovian quantum
dynamics displaying memory effects has come under active
study during the recent years. The advances here include
the development of simulation schemes [4–16], the limits
for the existence of physically valid dynamical maps [17],
the discussion about the applicability of different types of
master equations [18], the very definition and quantification
of quantum non-Markovianity [19–21], and the role of initial
correlations between the system and its environment [22–27].
Moreover, it is also possible to control and quantify experimen-
tally the non-Markovian features of quantum dynamics [28,29]
and the influence of initial system-environment correlations
[30,31]. Subsequently, this progress allows one to look for
ways how non-Markovian features with memory effects can
be exploited for quantum information processing [32], and for
quantum control and engineering tasks [33,34].

Here, our focus is on fundamental aspects of non-
Markovianity and, in particular, on the jumplike stochastic
unravellings, or simulation schemes, for open system dy-
namics [5,9–14,35,36]. For Markovian systems, some of the
most popular stochastic schemes include the Monte Carlo
wave function (MCWF) [37,38] and quantum trajectory (QT)
[39–41] methods. In both of these methods the time evolution
of a single realization consists of periods of continuous
deterministic evolution interrupted by stochastic jumps, i.e.,
both methods simulate a piecewise deterministic stochastic
process (PDP). In the MCWF method, the time evolution of
a single realization progresses in a stepwise fashion, e.g.,
during each time step we decide whether the realization
evolves deterministically or jumps. The mean time evolution
of the ensemble of realizations, over small time increments,
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matches with the solution of a Markovian master equation
for the density matrix (for the first order in time increment).
The central concept for the QT methods, in turn, is the
waiting time distribution (WTD). The random jump time of
the realization can be sampled from the WTD, and the state
vector is directly evolved deterministically till this point. The
solution to the Markovian master equation is formed from the
weighted average over all possible stochastic evolutions that
the realizations might take. Generally speaking, the MCWF
method exploits the increments of the WTD while the QT uses
the full exact form of the WTD.

A few years ago the MCWF was generalized to the
non-Markovian region by the Non-Markovian quantum jump
method (NMQJ) [13,14,35]. In the NMQJ, the evolution of the
ensemble average over a time step δt matches with the solution
given by the local in time master equation with possibly
temporarily negative rates. The central ingredient of the NMQJ
method is a quantum jump which can restore coherence, e.g.,
by returning the stochastic realization to the superposition
which was destroyed earlier. Formally, the probability of
the reverse jump can be calculated using the concept of
positive definite jump probability density [36]. However, to
the best of our knowledge, the QT methods—without using
the auxiliary extensions of the state space of an open quantum
system—have not yet been extended to the non-Markovian
region. The main obstacle here has been the fact that the
WTD for non-Markovian systems, when calculated along
the Markovian line of reasoning, displays oscillations which
render its physical meaning invalid and prevent the technical
implementation of the simulations, whilst the mathematical
calculation of the WTD still is, in some sense, correct.

With the help of the insight provided by the NMQJ method
and the concept of positive definite jump probability density,
we derive a general analytical form of the waiting distribution,
which is both physically and mathematically correct for non-
Markovian quantum dynamics. This is the main result of our
paper. We thereby generalize the QT formalism into the non-
Markovian regime and show explicitly how to construct the
WTD for some commonly used quantum optical systems. It
is worth keeping in mind here that, as already featured in
the NMQJ method, the stochastic realizations depend on each
other as a consequence of the memory effects. Moreover, it has
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been recently argued that non-Markovian unravelings can not
be interpreted as stemming from a continuous measurement of
the environment [42] despite of some attempts in that direction
[43,44]. It seems to us that the functional form of the derived
non-Markovian WTD indicates the former choice of answers.

The structure of the paper is the following. In Sec. II
we introduce the PDP corresponding to the NMQJ method
and most importantly the positive definite jump probability
density. In Sec. III, we give the general form of the waiting
time distribution and connect it to the PDP defined in Sec. II.
In Sec. IV we present some quantum optical examples that
illustrate the general construction of the WTD and the effects
of non-Markovianity, in Sec. V we present some further
discussion about our results, and we conclude in Sec. VI.

II. PIECEWISE DETERMINISTIC PROCESS FOR
NON-MARKOVIAN SYSTEM

In this section we formulate the non-Markovian piecewise
deterministic process for pure states ψ [13,14,36]. The reduced
state of the system, ρ, is obtained as an ensemble average

ρ(t) = E[|ψ〉〈ψ |] =
∫

dψP [ψ,t]|ψ〉〈ψ |, (1)

where dψ = DψDψ∗ is a singular volume element of the
Hilbert space of the system, and P [ψ,t] is the time dependent,
phase invariant probability density functional concentrated on
the surface of a unit sphere (||ψ || = 1). ρ(t) solves also the
following time convolutionless (TCL) master equation [1]

ρ̇(t) = −ih̄−1[HS (t),ρ(t)]

+
∑

i

�i(t)

(
Ciρ(t)C†

i − 1

2
{ρ(t),C†

i Ci}
)

= −ih̄−1 [HS (t),ρ(t)]

+
∑

j

�+
j (t)

(
Cjρ(t)C†

j − 1

2
{ρ(t),C†

jCj }
)

−
∑

k

�−
k (t)

(
Ckρ(t)C†

k − 1

2
{ρ(t),C†

kCk}
)

, (2)

where �i(t) is time dependent decay rate. After the second
equality sign, we have split the decay rates into two compo-
nents �±

j (t) = [|�j (t)| ± �j (t)]/2 to account better for the
overall sign of the decay rate [14]. However, note that �±

j (t)
are non-negative for all times t . From now on we assume
that h̄ = 1. Operators Cj are called jump operators and we
make a simplifying assumption that they are time invariant.
Un-normalized states are labeled with ψ̃ and normalized with
ψ . We formulate the process for pure initial states only, since
mixedness adds no novelty here.

Between two subsequent jumps at times T and t = T + τ

(τ > 0), pure states evolve deterministically according to an
effective non-Hermitian Hamiltonian

Heff(t) = HS (t) − i

2

∑
j

�j (t)C†
jCj , (3)

such that state ψ(t) is expressed as

ψ(t) = ψ(T + τ ) = ψ̃T (τ )

||ψ̃T (τ )|| , (4)

where ψ̃T (τ ) satisfies the Schrödinger equation ˙̃ψT (τ ) =
−iHeff(T + τ )ψ̃T (τ ) with the initial condition ψ̃T (0) = ψ(T ).

The discontinuous part of the process consists of jumps
between different pure states. Given that the process is in
pure state ψ , the conditional jump probability density from a
source state ψ to a target state φ using a channel k during a
time interval [T ,T + δt] is [36]

pk[φ|ψ,T ] = δt�+
k (T )||Ckψ(T )||2δ

[
φ(T ) − Ckψ(T )

||Ckψ(T )||
]

+ δt�−
k (T )

P [φ,T ]

P [ψ,T ]
||Ckφ(T )||2

× δ

(
ψ(T ) − Ckφ(T )

||Ckφ(T )||
)

. (5)

Above, δ functional satisfies
∫

dφ δ(ψ − φ)F [φ] = F [ψ],
where F is an arbitrary smooth functional. The δ functionals
in Eq. (5) give a temporal channelwise stochastic connection
between different regions of projective Hilbert space (the
global phase of the states is irrelevant). The connection of
the positive part (i.e., part proportional to �+

k ) is of one-to-one
type: ψ → Ckψ

||Ckψ || , which corresponds to Markovian quantum
jumps. Interestingly, connection of the negative part is one-to-
many type: Each source state ψ may jump to one of the states
{φ} that satisfy ψ = Ckφ

||Ckφ|| provided that the corresponding
jump probability is nonzero. It follows that the connec-
tion provided by the negative part requires the knowledge
of the different states in the pure state decomposition of ρ,
since the range of the one-to-many mapping is not obtainable
from the structure of Eq. (2). To summarize, a negative
channel induces a one-to-many mapping for the pure states,
and, therefore, in general, one decay channel connects several
different regions of the projective Hilbert space stochastically.

Next we sketch the stepwise progression of the PDP; more
details may be found in Refs. [35,36]. During an interval I =
[T + τ,T + τ + δt], a realization of the process in state ψ

may either jump or evolve deterministically. The total jump
rate away from state ψ during the interval I is the total jump
probability to any other state via any channel divided by the
length of the interval

�[ψ,T + τ ] = 1

δt

∫
dφ

∑
k

pk[φ|ψ,T + τ ]. (6)

Therefore, with probability 1 − �[ψ,T + τ ]δt , the realization
does not jump away from state ψ but evolves deterministi-
cally. Deterministic evolution is governed by the Schrödinger
equation and Eq. (3). With probability �[ψ,T + τ ]δt , the
realization jumps; the target state of the jump is chosen from
the probability distribution pk [φ|ψ,T +τ ]

�[ψ,T +τ ]δt . After the stochastic
evolution of the ensemble over a small time step, the average
over the ensemble provides us Eq. (2) for the first order in δt .

III. WAITING TIME DISTRIBUTION FOR
NON-MARKOVIAN SYSTEM

In this section we derive the general form of the waiting time
distribution, which is valid also for non-Markovian systems,
starting from the positive definite jump probability density. We
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also provide a formula for estimating the WTD from a sample
of realizations.

A. Analytical WTD

By definition, the waiting time distribution F (τ |ψ,T ) is a
conditional probability distribution function which gives the
probability for the next jump to occur during a time interval
[T ,T + τ ] conditioned on that at time T the state of the
realization is known to be ψ [1].

The probability for a jump to occur during a short time
interval I = [T + τ,T + τ + δt] away from state ψ is then
δF (τ |ψ,T ) ≡ F (τ + δt |ψ,T ) − F (τ |ψ,T ), which is equal
to the probability of having no jumps before T + τ and
a jump during the following δt , i.e., δF (τ |ψ,T ) = [1 −
F (τ |ψ,T )]�[ψ,T + τ ]δt . Dividing both sides by δt and taking
the limit δt → 0, we obtain the following differential equation
that every valid WTD must satisfy [1]:

d

dτ
F (τ |ψ,T ) = [1 − F (τ |ψ,T )]�[ψ,T + τ ]. (7)

This can be solved formally with an initial condition
F (0|ψ,T ) = 0, such that

F (τ |ψ,T ) = 1 − exp

{
−

∫ T +τ

T

ds�[ψ,s]

}
. (8)

Then, by using Eqs. (5), (6), and (8) we can obtain the
following form for the generic WTD corresponding to Eq. (2):

F (τ |ψ,T ) = 1 − exp

{
−

∫ T +τ

T

ds

∫
dφ

×
∑

k

(
�+

k (s)||Ckψ(s)||2δ
[
φ(s) − Ckψ(s)

||Ckψ(s)||
]

+ �−
k (s)

P [φ,s]

P [ψ,s]
||Ckφ(s)||2

× δ

[
ψ(s) − Ckφ(s)

||Ckφ(s)||
] )}

. (9)

Terms proportional to �+
k depend only on the state of the

particular realization, its deterministic time evolution, and the
quantities obtainable from Eq. (2). Terms proportional to �−

k

are more complicated, since they depend on the probability
functionals and on the deterministic time evolution of other
states to which the realization might jump via a channelwise
one-to-many mapping.

Random waiting time τ 	 is sampled from the waiting
time distribution by comparing a random number η to
the WTD: τ 	(η) = min{τ |F (τ |ψ,T ) > η} [1]. Probabilities
P [ψ,s] appear on the right hand side of Eq. (9), and they are
modified each time a jump occurs in the ensemble.

When all decay rates �i(t) for all times t are non-negative in
Eq. (2), the total jump rate away from pure state ψ is �[ψ,t] =∑

k �k(t)||Ckψ(t)||2. Inserting this into Eq. (9) and taking
into account the deterministic evolution of ψ , we obtain the
following familiar Markovian limit for the WTD [1,39,40,45]:

F (τ |ψ,T ) = ||ψ̃T (0)||2 − ||ψ̃T (τ )||2
||ψ̃T (0)||2 . (10)

Details of the derivation of the Markovian limit can be found
in the Appendix A.

B. Estimation of WTD

We assume that the reduced state of a non-Markovian open
quantum system can be expressed at all times as a linear
combination of a finite number of, in general, nonorthogonal
pure state projectors. Then we can write Eq. (1) as

ρ(t) =
∑

α

Pα(t)|ψα〉〈ψα|. (11)

Assume that we have a sample of NS realizations from the PDP
in Sec. II over a time interval [t0,ts] divided into Nt time steps.
The samples are collected to an Nt × NS matrix M where the
element Mi,j = β means that a realization j is in state ψβ at
time ti = (i − 1)δt + t0. The set of column indices I

β

i of row
i of M give the indices of the realizations which are in state β

at time ti . Hence each set I
β

i has NS elements, where the kth
element is 1 if realization k is in state β at time ti ; otherwise
the kth element is 0. |Iβ

i | = ∑NS

k=1(Iβ

i )k is the total number of
realizations in state β at time i.

If we know that the realization r is in state α at time ti , then
the discrete sample estimate for the probability to jump away
from state α during the discrete time interval [ti ,tj ] is

Wr (tk|ti ,α) = 1 −
k∑

l=i+1

|Iα
l−1 ∩ Iα

l |
|Iα

i | . (12)

Naturally we have that Wr (ti |ti ,α) = 0. The meaning of this
equation is that the intersection of two sets consists of the
indices of those realizations that were in a state α at the
previous time and are still there at the present time. The number
of such realizations is divided by the number of the realizations
in α at time ti (beginning of the time interval).

IV. CONSTRUCTION OF WTD FOR QUANTUM
OPTICAL SYSTEMS

In this section we construct the waiting time distribution
explicitly for a few simple quantum optical systems interacting
with a leaky cavity mode. In Fig. 1 we have presented
schematically the different systems that we shall study.

(a) (b) (c)

FIG. 1. Schematic figures of the different systems. (a) Two level
system, (b) 
 system, and (c) ladder system.
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A. Two level system

The orthonormal basis for the Hilbert space of the system
is {|0〉,|1〉}, where |1〉 is the ground state and |0〉 is the excited
state of a two level atom (TLA) [see Fig. 1(a)]. The initial
state is ψ0(t0) = c0(t0)|0〉 + c1(t0)|1〉, which is the only state
with nontrivial deterministic evolution. The state of the system
is decomposed for all times t as ρ(t) = P0(t)|ψ0〉〈ψ0| +
P1(t)|ψ1〉〈ψ1|, where ψ1 is the ground state. The detailed
description of the system is given in Appendix (B1).

The non-Hermitian Hamiltonian generating the determin-
istic pieces of the time evolution is obtained from Eq. (3) (see
details in the Appendix (B1)). The total rate away from the
deterministic state ψ0(t) is

�[ψ0,t] =
{
�(t)||Cψ0(t)||2, �(t) � 0,

0, �(t) < 0,
(13)

and the total rate away from the state ψ1 is

�[ψ1,t] =
{

0, �(t) � 0,

|�(t)|P0(t)
P1(t) ||Cψ0(t)||2, �(t) < 0.

(14)

Inserting the rates (13) and (14) as well as the analytical
solutions of Appendix (B1) for the probabilities P0(t) and
P1(t) into Eq. (7), we may solve a formal expression for the
WTD. The solution depends on the particular path that one
realization might take. For example, the WTD is different
for a jump ψ0 → ψ1 somewhere in the interval [T ,T + τ ] if
the realization has made zero or two transitions before time
T . We illustrate this in Fig. 2, where we have plotted the
decay rate �(t), three sample realizations, and the WTDs for
each realization solved from Eq. (7) and also from Eq. (12).
The initial state is ψ0(0) = |0〉 and we use parameter values
γ0 = 5λ and δ = 8λ (see Appendix (B1)) and a sample size
of 105. Points of discontinuity in the waiting time distribution
in panel (e) of Fig. 2 correspond to jumps, and since the state
of the realization changes, the waiting time distribution also
changes. We see that during periods of negative decay rate, the
derivative of WTD is zero for realizations that are in state ψ0,
since the jump rate is zero.

This system is the simplest one since it has only one decay
channel, and the pure state decomposition of Eq. (11) consists
of two states. Jump paths between the different states in the
pure state decomposition show that both the positive and the
negative channels act as a one-to-one map in the projective
Hilbert space of the system.

It is interesting to consider the WTD for a realization, which
jumps at some time during the first positive decay rate region
and then makes a reverse jump during the first negative region.
For the first positive region [t0,t1), we obtain

F (τ |ψ0,t0) =
∣∣∣∣ψ̃0

t0
(0)

∣∣∣∣2 − ∣∣∣∣ψ̃0
t0

(τ )
∣∣∣∣2∣∣∣∣ψ̃0

t0 (0)
∣∣∣∣2 , (15)

and for the first negative region [t1,t2)

F (τ |ψ1,t1) =
∣∣∣∣ψ̃0

t0
(t1 + τ − t0)

∣∣∣∣2 − ||ψ̃0
t0

(t1 − t0)
∣∣∣∣2

1 − ∣∣∣∣ψ̃0
t0 (t1 − t0)

∣∣∣∣2 . (16)

When comparing the WTD of Eq. (15) for the positive jumps
to the WTD of Eq. (16) for the negative jumps, we see that

−0.2
0

0.2
0.4
0.6

0 0.5 1 1.5 2
0

0.1

0.2

0.3

(t)

(a)

(b)

(c)

(d)

(e)

units of

WTD # 1
WTD # 2
WTD # 3

FIG. 2. (Color online) Initial state is |ψ0(0)〉 = |0〉, parameters
are γ0 = 5λ and δ = 8λ, and sample size was 105. In panel (a) we
have the decay rate, and in (b)–(d) we have three different realizations.
In panel (e) we have WTDs for the realizations. Line styles and
color coding match with the sample realizations. Lines are for exact
numerical solutions and markers for sample estimates.

they are complementary: in the numerator the norm decrease
of the state ψ̃0 in the positive region is switched to a norm
increase in the negative region, and the denominator in the
negative region is the complement of the denominator in the
positive region.

Equations (15) and (16) provide a simple way of doing a
simulation for the TLA. For example, during the kth negative
region we could calculate the random waiting time using
Eq. (16) with substitution t1 → tk , for each realization that is in
the ground state. During the kth negative period, realizations
that are not in the ground state do not have a possibility to
jump. During the kth positive period, we would use Eq. (15)
with t0 → tk−1 for jumps away from the state ψ0.

B. � system

Let us indicate the basis for the Hilbert space of the system
with {|0〉,|1〉,|2〉}, where |1〉 and |2〉 are the ground states and
|0〉 is the common excited state. A schematic representation of
this system is in Fig. 1(b). Initial state is ψ0(t0) = c0(t0)|0〉 +
c1(t0)|1〉 + c2(t0)|2〉, which is the only state with nontrivial
deterministic evolution (see Appendix (B2) for more details).

Deterministic evolution is generated by Heff(t) [see Eq. (3)
and Appendix (B2)]. The state of the system ρ(t) can be
decomposed for all times t as ρ(t) = ∑2

k=0 Pk(t)|ψk〉〈ψk|.
States ψk ≡ |k〉, with k = 1,2, are the ground states of the
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system. The probabilities appearing in the decomposition are
explicitly calculated in the Appendix (B2).

Since we have two decay rates, we have four possible
combinations of the decay rate signs. For each pure state
of the decomposition, we only present the decay rate sign
combinations which lead to a nonzero jump rate away from
the state under consideration. Other sign combinations would
produce zero rate. The jump rate away from the state ψ0 is

�[ψ0,t] =
{∑

i �i(t)||Ciψ
0(t)||2, �1,�2 � 0,

�i(t)||Ciψ
0(t)||2, �i � 0 ∧ �j < 0.

(17)

The jump rate away from the ground state ψk is

�[ψk,t] = |�k(t)|P0(t)

Pk(t)
||Ckψ

0(t)||2, (18)

when �k(t) < 0. This is the case irrespective of the sign of the
other decay rate.

Both channels, irrespective of the sign of the decay rate, are
one-to-one maps. However, when both channels are positive,
ψ0 may be mapped to ψ1 or ψ2 when considering the effect
of both channels. All rates are proportional to ||Ckψ

0(t)||2 =
|c0(t)|2.

Some realizations are plotted together with their WTD
in Fig. 3. The initial state is ψ0(0) = |0〉, and we use
parameter values γ

(1,2)
0 = 5λ, δ(1) = 4λ, and δ(2) = 8λ (see

Appendix (B2)) and a sample size of 105. We obtain an

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2
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1
(t)

2
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WTD # 1
WTD # 2
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FIG. 3. (Color online) Initial state is |ψ0(0)〉 = |0〉, parameters
are γ

(1,2)
0 = 5λ, δ(1) = 4λ, and δ(2) = 8λ, and sample size was 105.

In panel (a) we have the decay rate, and in (b)–(d) we have three
different realizations. In panel (e) we have WTDs for the realizations.
Line styles and color coding match with the sample realizations. Lines
are for exact numerical solutions and markers for sample estimates.

interesting expression for the WTD for a reverse jump ψ1 →
ψ0, if we let �1(t) < 0 during time intervals [s1

1 ,s
1
2 ], [s1

3 ,s
1
4 ],

etc. If a jump to the state ψ1 occurred at time T ∈ [t0,s1
1 ], then

the probability for a jump away from ψ1 somewhere in the
interval [t0,T + τ ], where T + τ ∈ [s1

2n−1,s
1
2n], is

F (τ |ψ1,T ) = 1 − P1
(
s1

2

)
P1

(
s1

1

) P1
(
s1

4

)
P1

(
s1

3

) · · · P1(T + τ )

P1
(
s1

2n−1

) . (19)

Since �1(t) < 0 when t ∈ [s1
2n−1,s

1
2n], the probabilities

P1(s1
2n) < P1(s1

2n−1). Therefore, each fraction is smaller than
unity and F (τ |ψ1,T ) is a monotonically increasing function.

C. Ladder system

We label the orthonormal basis for the Hilbert space of the
system with {|0〉,|1〉,|2〉}, where |0〉 is the excited state, |1〉 is
the middle state, and |2〉 is the ground state. A schematic
representation of this system is in Fig. 1(c). The initial
state is of the form ψ0(t0) = c0(t0)|0〉 + c1(t0)|1〉 + c2(t0)|2〉.
The deterministic evolution is generated by Heff(t) [see
Appendix (B3) and Eq. (3)]. For all times t the state of the sys-
tem ρ(t) may be decomposed as ρ(t) = ∑2

k=0 Pk(t)|ψk〉〈ψk|,
where ψk = |k〉, with k = 1,2, are the middle and the ground
states, respectively. Analytical expressions for the probabilities
Pi(t) are in Appendix (B3). For this system, the only state
invariant in respect to Heff is ψ2 (see Appendix (B3)).

As in Sec. IV B we write down only those combinations of
the decay rates that give a nonzero jump rate. For the initial
state ψ0(t), we have

�[ψ0,t] =
{∑

k �k(t)||Ckψ
0(t)||2, �1,�2 � 0,

�i(t)||Ciψ
0(t)||2, �i � 0 ∧ �j < 0,

(20)

and for the middle state ψ1(t), we have

�[ψ1,t] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�2(t), �1,�2 � 0,

�2(t)

+|�1(t)|P0(t)
P1(t) ||C1ψ

0(t)||2, �2 � 0 ∧ �1 < 0,

|�1(t)|P0(t)
P1(t) ||C1ψ

0(t)||2, �1,�2 < 0,

(21)

and for the ground state ψ2, we have

�[ψ2,t] = |�2(t)|
(

P0(t)

P2(t)
||C2ψ

0(t)||2 + P1(t)

P2(t)

)
, (22)

when �2(t) < 0 irrespective of the sign of �1(t).
Channel 1 maps ψ0 to ψ1 and channel 2 maps ψ0 to ψ2

and ψ1 to ψ2. When decay rates are negative, channel 1 maps
ψ1 to ψ0. However, channel 2 maps ψ2 to ψ1 or ψ0 when
negative. Therefore, when a jump to channel 2 occurs when
it is negative, we still have a probability distribution over the
two different target states from which, we have to choose the
actual target state for the jump.

In Fig. 4 we have plotted decay rates and three realizations
with their respective WTDs. There, the initial state we use
is ψ0(0) = |0〉, the parameters are γ

(1,2)
0 = 5λ, δ(1) = 8λ, and

δ(2) = 4λ (see Appendix (B3)), and we used a sample size
of 106.
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FIG. 4. (Color online) Initial state is |ψ0(0)〉 = |0〉, parameters
are γ

(1,2)
0 = 5λ, δ(1) = 8λ, and δ(2) = 4λ, and sample size was 106.

In panel (a) we have the decay rate, and in (b)–(d) we have three
different realizations. In panel (e) we have WTDs for the realizations.
Line styles and color coding match with the sample realizations. Lines
are for exact numerical solutions and markers for sample estimates.

It has been shown in Ref. [35] that for some parameter
values the approximations made while obtaining the master
equation for this level scheme fail, which is manifested by
the breakdown of positivity. This is due to the fact that the
population of the ground state ψ2 is drained completely while
the decay rate �2(t) is still negative. This causes Eq. (22)
to diverge. Let us assume that �2(t) < 0 during intervals the
[t2

1 ,t2
2 ], [t2

3 ,t2
4 ], etc. and that at time T ∈ [t0,t2

1 ) the realization
jumps to state ψ2. Assuming that T + τ ∈ [t2

2n−1,t
2
2n], then the

analytical form for WTD reads

F (τ |ψ2,T ) = 1 − P2
(
t2
2

)
P2

(
t2
1

) P2
(
t2
4

)
P2

(
t2
3

) · · · P2(T + τ )

P2
(
t2
2n−1

) . (23)

From Eq. (23) we see that if limt ′→T +τ P2(t ′) = 0, the waiting
time distribution reaches unity in a finite time but it is still well
defined. Dynamical consequences of this are that a simulation
method utilizing a full WTD would not break down. Instead,
population of the state ψ2 would go to zero, and the total
population is distributed between the pure states ψ0 and ψ1.

V. DISCUSSION

The positive definite jump probability density of Eq. (5)
shows that there is a correlation between the different regions
of the projective Hilbert space. Therefore, a general form of
the WTD in Eq. (9) is complicated since it takes the correlation

into account cumulatively. On the other hand, it confirms that
the realizations of the PDP considered in this paper do not form
a trajectory, i.e., a continuous measurement interpretation can
not be necessarily made. This happens because it is not possible
to express the WTD for a given realization in terms of that
particular realization only. This is the argument used already
by Gambetta and Wiseman in the context of non-Markovian
quantum state diffusion [8], but it can be also applied here. For
further discussion on this highly nontrivial topic, we refer the
reader to Refs. [42,44,46].

In the case that there is a state ψk in the pure state
decomposition of ρ(t) that acts only as a source state for jumps
for some period [T ,T + τ ], then the WTD is quite simple over
this period. During this period, the probability of the state
ψk in the pure state decomposition changes only by jumps
away from that state. Hence, we have the following identity
Pk(T + τ ) = Pk(T ) − F (τ |ψk,T )Pk(T ) from which we can
solve

F (τ |ψk,T ) = Pk(T + τ ) − Pk(T )

Pk(T )
, (24)

where Pk(T ) �= 0 is assumed. In the examples that we
considered in this work, this happens in the TLA always; in
the 
 system always for ground states and for the state ψ0,
when the decay rates have the same signs; and in the ladder
system for the ground state always, for the middle state when
the decay rates have the opposite signs, and for the state ψ0

when the decay rates rates have equal signs.
For a short time interval δt we can approximate the full

WTD as

F (δt |ψ,T ) ≈ �[ψ(T ),T ]δt =
∫

dφ
∑

k

pk[φ|ψ]. (25)

Thus, for a short time interval the total jump rate is resolvable
in (channel, target state) pairs: each channel maps a source state
to a target state (a one-to-one relation for the Markovian jumps
and a one-to-many for the non-Markovian jumps). During this
short interval, the occurrence of a jump excludes the possibility
of another jump at the same interval to another channel.
In WTD-based methods these individual contributions are
cumulatively gathered together. The process may be reset after
any time interval �t , after which a new random number must
be drawn. In the limit �t → δt , a stepwise method emerges.

VI. CONCLUSIONS

We have derived a general waiting time distribution of
quantum jumps for open quantum systems following non-
Markovian dynamics. In this sense, our results generalize the
QT methods into the non-Markovian regime. The distribution
is a well defined conditional probability distribution function
which takes into account in a proper manner the bidirectional
probability flow between different regions of the projective
Hilbert space of the system. The WTD includes probabilities
which are present in the pure state decomposition of the
reduced system state, i.e., the realizations of the process
depend on each other—a feature stemming from the memory
effects and present already in the NMQJ method. Our results
seem to confirm the view that the realizations of the PDP, that
the WTD governs, do not form a trajectory; therefore the PDP
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can not be interpreted in terms of a continuous measurement
of the environment. We have constructed the WTD explicitly
for some quantum optical systems and also discussed the cases
when the calculation of the WTD can be simplified.

Our work complements the theory of Monte Carlo methods
for non-Markovian systems, and the WTD concept familiar
from the Markovian regime is now also well defined for non-
Markovian systems. We hope that this work stimulates further
research into non-Markovian dynamics and especially inspires
new directions in the development of simulation tools for open
quantum systems.
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APPENDIX A: MARKOVIAN LIMIT

In the Markovian limit, decay rates �i(t) � 0, for all times
t . Then, the jump rate away from state ψ at time T + s is

�[ψ,T + s] =
∑

i

�i(T + s)||Ciψ(T + s)||2

=
∑

i

�i(T + s)
||Ciψ̃T (s)||2
||ψ̃T (s)||2 , (A1)

where we have used the notation of Eq. (4). On the other hand,

d

ds
||ψ̃T (s)||2 = −

∑
i

�i(T + s)||Ciψ̃T (s)||2, (A2)

where we have used the Schrödinger equation and Eq. (3).
Therefore, the total jump rate is

�[ψ,T + s] = −
d
ds

||ψ̃T (s)||2
||ψ̃T (s)||2 = − d

ds
ln ||ψ̃T (s)||2. (A3)

Now, using Eq. (8) we obtain

F (τ |ψ,T ) = 1 − exp

{∫ τ

0
ds ln ||ψ̃T (s)||

}

= 1 − exp

{
ln

( ||ψ̃T (τ )||2
||ψ̃T (0)||2

)}

= ||ψ̃T (0)||2 − ||ψ̃T (τ )||2
||ψ̃T (0)|| . (A4)

APPENDIX B: SYSTEM DEFINITIONS

We are considering two- and three-level atoms interacting
with a leaky cavity mode. The spectral density of the cavity is

J (ω) = 1

2π

γ0λ
2

(ω − ωc)2 + λ2
, (B1)

where γ0 is the coupling constant, λ is the width of the
Lorentzian, and ωc is the cavity resonance frequency. Another
important parameter is the detuning of the atom from the cavity

resonance: δ = ωa − ωc, where ωa is one of the transition
frequencies of the atom.

The time convolutionless master equations for the example
systems in Sec. IV are all special cases from the following
general form

ρ̇(t) = −i

[ ∑
k

sk(t)C†
kCk,ρ(t)

]

+
∑

k

�k(t)

(
Ckρ(t)C†

k − 1

2
{ρ(t),C†

kCk}
)

, (B2)

where sk(t) is the time dependent Lamb shift, �k(t) are the
time dependent decay rates, and Ck are the time independent
jump operators. For simplicity, we have assumed in the
actual calculations that sk(t) = 0. We use the 4th order time-
convolutionless result for the decay rate [1] corresponding to
a spectral density of Eq. (B1):

�(t) = γ0λ
2

λ2 + δ2

[
1 − e−λt

(
cos(δt) − δ

λ
sin(δt)

)]

+ γ 2
0 λ5e−λt

2(λ2 + δ2)3

{ [
1 − 3

(
δ

λ

)2
]

[eλt − e−λt cos(2δt)]

− 2

[
1 −

(
δ

λ

)4
]
λt cos(δt) + 4

[
1 +

(
δ

λ

)2
]
δt sin(δt)

+ δ

λ

[
3 −

(
δ

λ

)2
]

e−λt sin(2δt)

}
. (B3)

1. Two level system

Master equation:

ρ̇(t) = −is(t)[|0〉〈0|,ρ(t)] + �(t)|1〉〈0|ρ(t)|0〉〈1|
− 1

2�(t){ρ(t),|0〉〈0|}. (B4)

Jump operator:

C = |1〉〈0|. (B5)

Solution for the probabilities in the pure state decomposition
of Sec. IV A:

P0(t) = ∣∣∣∣ψ̃0
t0

(t − t0)
∣∣∣∣2

, (B6)

P1(t) = 1 − ∣∣∣∣ψ̃0
t0

(t − t0)
∣∣∣∣2

. (B7)

2. � system

Master equation:

ρ̇(t) = −is1(t)[|0〉〈0|,ρ(t)] − is2(t)[|0〉〈0|,ρ(t)]

+�1(t)
[|1〉〈0|ρ(t)|0〉〈1| − 1

2 {ρ(t),|0〉〈0|}]
+�2(t)

[|2〉〈0|ρ(t)|0〉〈2| − 1
2 {ρ(t),|0〉〈0|}]. (B8)

Jump operators:

C1 = |1〉〈0|, (B9)

C2 = |2〉〈0|. (B10)
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Solution for the probabilities in the pure state decomposition
of Sec. IV B:

P0(t) = ||ψ̃0
t0

(t − t0)||2,
(B11)

Pj (t) =
∫ t

t0

ds �j (s)|c̃0(s)|2,

for j ∈ {1,2}.

3. Ladder system

Master equation:

ρ̇(t) = −is1(t)[|0〉〈0|,ρ(t)] − is2(t)[|1〉〈1|,ρ(t)]

+�1(t)
[|1〉〈0|ρ(t)|0〉〈1| − 1

2 {ρ(t),|0〉〈0|}]
+�2(t)

[|2〉〈1|ρ(t)|1〉〈2| − 1
2 {ρ(t),|1〉〈1|}]. (B12)

Jump operators:

C1 = |1〉〈0|, (B13)

C2 = |2〉〈1|. (B14)

Solution for the probabilities in pure state decomposition of
Sec. IV C:

P0(t) = ∣∣∣∣ψ̃0
t0

(t − t0)
∣∣∣∣2

, (B15)

P1(t) = e−D2(t)
∫ t

t0

ds �1(s)e−D1(s)+D2(s)||C1ψ
0(t0)||2, (B16)

P2(t) = (1 − e−D2(t))||C2ψ
0(t0)||2 +

∫ t

t0

ds �2(s)P2(s),

(B17)

where Di(t) = ∫ t

t0
ds �i(s).
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