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Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror
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We describe a scheme that allows for the transfer of a quantum state between a trapped atomic Bose condensate
and an optomechanical end mirror mediated by a cavity field. Coupling between the mirror and the cold gas arises
from the fact that the cavity field can produce density oscillations in the gas which in turn acts as an internal
Bragg mirror for the field. After adiabatic elimination of the cavity field we find that the coherent dynamics of the
atomic condensate–mirror hybrid system is described by an effective state transfer beam-splitter Hamiltonian.
The state transfer fidelity is limited principally by the quantum noise associated with the intracavity field.
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Cavity optomechanics is rapidly developing into a major
area of research. Several groups have now achieved cooling
of the center-of-mass motion of micromechanical systems
close to the ground state [1–3], and the coherent exchange
of excitation between phonons and photons characteristic of
the strong-coupling regime has also been demonstrated [1,4,5].
In a parallel development, Bose-Einstein condensates (BECs)
trapped inside high-Q optical resonators have been shown to
behave under appropriate conditions much as optically driven
mechanical oscillators, offering an alternative, “bottom-up”
route to study the optomechanical properties of mesoscopic
systems [6–10]. Of particular interest are hybrid systems
consisting of mechanical systems in the quantum regime
coupled to atoms [11–15], molecules [16], or artificial atoms
[1,17,18], as they merge the robust and scalable infras-
tructure provided by nanoelectromechanical system (NEMS)
and microelectromechanical system (MEMS) devices with
the remarkable precision measurement and quantum control
capabilities of atomic physics.

A recent breakthrough in the study of quantum degenerate
atomic gases is the ability to manipulate single atoms, opening
up a number of possibilities in several frontier topics, including
the control and simulation of strongly correlated quantum
systems [19–22] and quantum information. Alternatively,
one could think of generating macroscopic cat states in
mechanical systems [1]. As such it would be of considerable
interest to transfer quantum states between ultracold atomic
systems and mechanical oscillators, as this would offer an
intriguing route to study the quantum dynamics of truly
macroscopic systems and the quantum-to-classical transition.
One particularly attractive aspect of quantum-state transfer
between micromechanical structures and atomic Schrödinger
fields is that both subsystems can have extremely low dis-
sipation and decoherence rates compared to optical fields in
resonators.

While there are now well understood optomechanical
quantum-state transfer protocols between optical and phonon
fields and between electromagnetic fields of different fre-
quencies [23–26], this is not yet the case for state transfer
between Schrödinger fields and phonon fields (see, how-
ever, Refs. [27–29]). This Rapid Communication describes
a scheme that achieves that goal for the case of single-mode
fields in a hybrid system consisting of an atomic Bose-Einstein
condensate (BEC) trapped inside a Fabry-Pérot cavity with a
suspended end mirror or equivalent micromechanical analog.

While most many-body states of interest in condensed matter
physics involve multimode fields, achieving single-mode state
transfer is an essential first step, and developments in cavity
optomechanics are proceeding to the control of multimode
fields in the near future.

A key result of our analysis is that under appropriate
conditions our hybrid system can be described by an effective
beam-splitter Hamiltonian with a quantum noise source due to
the eliminated optical field. The beam-splitter Hamiltonian is
well known as a paradigm for state transfer between subsys-
tems and its appearance in our hybrid system opens the door to
state transfer between a BEC and a micromechanical element.

The interaction between the oscillating end mirror, the
(noninteracting) BEC, and the single-mode intracavity field
is described by the Hamiltonian

H = h̄ωcÂ
†Â + ih̄η(Â†e−iωl t − Âeiωl t )

+
∫

dxψ̂†(x)

[
− h̄2

2ma

d2

dx2
+ h̄g2Â†Â

�a

cos2(kx)

]
ψ̂(x)

+ p̂2

2mm

+ 1

2
mm�2

mq̂2 − h̄ξ Â†Âq̂ + Hd. (1)

Here Â and Â† are the bosonic annihilation and creation
operators of the intracavity light field, p̂ and q̂ are the
momentum and position operators of the mirror of effec-
tive mass mm and frequency �m, η = √

Pκ/h̄ωl describes
the external driving of the optical cavity, where P and ωl are
the laser power and frequency, ωc is the cavity frequency,
L its length, and κ its decay rate, and ξ = ωc/L is the
optomechanical coupling constant. The second term in the
square brackets describes the off-resonant dipole coupling
between the condensate atoms and the intracavity light field
of wavelength λ = 2π/k, in the form of an optical potential
of period λ/2. Here, g is the resonant Rabi frequency and
�a = ωl − ωa is the detuning between the light field and
the atomic transition, assumed large enough that the upper
electronic state can be adiabatically eliminated. Finally ψ̂(x)
is the Schrödinger field operator for the condensate of atoms
of mass ma , and Hd describes the coupling of the optical
field, the condensate, and the optomechanical mirror to thermal
reservoirs. In what follows we neglect the dissipation of the
matter-wave and mechanical modes, as they are orders of
magnitude slower than the optical decay rate.
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The cavity field propagating along the x axis can predomi-
nantly impart a photon recoil 2h̄k to the initial zero-momentum
cold atoms via Bragg scattering, and we assume that phase-
matching limits the production of higher scattering orders.
Restricting our analysis to one dimension (x) for simplicity
we may expand the Schrödinger field as

ψ̂(t) ≈ ĉ0ψ0(x) + ĉ2ψ2(x), (2)

where ψ0 = √
1/L and ψ2 = √

2/L cos 2kx, with ĉ
†
0ĉ0 +

ĉ
†
2ĉ2 = Na , the total number of atoms. Substituting this form

into the atom-light part of the Hamiltonian (1) gives

Ha−l = h̄(2k)2

2ma

ĉ
†
2ĉ2 + h̄g2

2�a

Â†Â(ĉ†0ĉ0 + ĉ
†
2ĉ2)

+ h̄g2

�a

√
8
Â†Â(ĉ†0ĉ2 + ĉ

†
2ĉ0). (3)

Assuming that the depletion of the zero-momentum compo-
nent of the condensate is small, we treat it classically via
the replacement ĉ0,ĉ

†
0 → √

Na . Then, neglecting unimportant
constant terms, the total Hamiltonian becomes

H = h̄ω̃cÂ
†Â + ih̄η(Â†e−iωl t − Âeiωl t )

+ h̄�mĉ†mĉm + h̄�2ĉ
†
2ĉ2 + h̄Â†Â[−ξm(ĉ†m + ĉm)

+ ξ2(ĉ†2 + ĉ2)] + Hd, (4)

where ω̃c = ωc + g2Na/2�a is the cavity frequency shifted by
the presence of the atomic medium, q̂ = √

h̄/2m�m(ĉm + ĉ
†
m),

�2 = 2h̄k2/ma is four times the recoil frequency of the atoms,
ξm = √

h̄/2m�mξ , and ξ2 = h̄g2
√

2Na/(4�a).
The operator (ĉ2 + ĉ

†
2) can be interpreted as the dimen-

sionless “position” of the recoiled condensate side mode in
Eq. (2). Hence, the last nondissipative term in Eq. (4) is
an optomechanical term where the position of the recoiled
condensate component is subjected to the radiation pressure
of the intracavity light field. The Hamiltonian (4) therefore
describes the interaction of the light field with two oscillating
mirrors, one real and one effective. The sign difference
between the optomechanical coupling of the suspended mirror
and the condensate results from the fact that while the mirror
is pushed by radiation pressure, the atoms in the condensate
can be either attracted to regions of high-field intensity or of
low-field intensity, depending on the laser’s detuning from the
atomic transition, as apparent from the definition of ξ2.

In a frame rotating at laser frequency ωl and with â(t) =
Â(t)eiωLt , the Heisenberg-Langevin equations of motion are

dâ

dt
= (i�̃c + i�̂ − κ/2)â + η + √

κâine
iωl t , (5)

dĉm

dt
= −i�mĉm + iξmâ†â, (6)

dĉ2

dt
= −i�2ĉ2 − iξ2â

†â, (7)

where �̃c = ωl − ω̃c is the cavity detuning and

�̂ ≡ [ξm(ĉ†m + ĉm) − ξ2(ĉ†2 + ĉ2)] (8)

is the combined optomechanical phase shift of the recoiled
condensate and the moving mirror.

We now introduce the dimensionless position and momen-
tum variables x̂j = (ĉj + ĉ

†
j )/2 and p̂j = i(ĉ†j − ĉj )/2, where

j = {m,2}. In order to adiabatically eliminate the dynamics of
the optical field, we proceed by first linearizing the system of
operator equations around the classical steady state, with

x̂j → 〈x̂j 〉 + δx̂j , p̂j → 〈p̂j 〉 + δp̂j , â → 〈â〉 + δâ, (9)

and â†â ≈ 〈a†a〉 + 〈â†〉δâ + 〈â〉δâ†. The equation of motion
for the expectation value 〈â〉 of the intracavity field is then

d〈â〉
dt

= i�′〈â〉 + η, (10)

with a steady-state value 〈â〉s = −η/i�′, where we have
introduced the complex detuning �′ = �̃c + 〈�〉 + iκ/2,
which accounts for the optomechanical frequency shift. The
fluctuations about the steady state are given in the usual
input-output formalism by Ref. [30]

dδâ

dt
= i�′δâ + iδ�̂〈â〉s + √

κâin. (11)

This equation can be formally integrated to give

δâ(t) = δâ(0)ei�′t + i〈â〉s
∫ t

0
dt ′δ�̂(t ′)ei�′(t−t ′)

+√
κ

∫ t

0
dt ′âin(t ′)ei�′(t−t ′). (12)

For times long compared to κ−1, and a cavity decay rate much
faster that the inverse response time of both the effective
and mechanical mirror (characterized by their oscillation
frequencies), the first term on the right-hand side of this
equation decays to zero, and the operator δ�̂(t ′) can be
evaluated at t to give

δâ(t) = δâ(0)ei�′t − iη(1 − ei�′t )

�′2 δ�̂(t) + f̂ (t), (13)

with f̂ (t) being the last term in Eq. (12). Since âin is a noise
operator with [âin(t),â†

in(t ′)] = δ(t − t ′) (we take the thermal
photon number nth = 0 for optical frequencies) we have, for
t1 < t2,

[f̂ (t1),f̂ †(t2)] = e−i�′(t2−t1)(e−κ(t2−t1) − e−κt2 ), (14)

with a similar form for t1 > t2. This commutator vanishes
rapidly over the characteristic time scale of the mirror
dynamics (1/�m) for large κ , except for t1 = t2. Over that
time scale, f̂ (t) can therefore be thought of as a δ-correlated
noise operator as far as the mirror motion is concerned, with

[f̂ (t1),f̂ †(t2)] ≈ κ

[(�̃c + 〈�̂〉)2 + κ2/4]
δ(t1 − t2). (15)

A more detailed analysis that includes resonator memory
effects results in the familiar optical spring effect and cold
damping description. In the Doppler regime �m 	 κ consid-
ered here, cold damping is however negligible (of the order
of 30 Hz for the examples discussed below), and likewise the
optical spring effect does not significantly modify the rate of
quantum-state transfer.

From now on we consider the situation where the steady-
state value of the phase shift is 〈�〉 = 0. With e−κt/2 → 0, the
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linearization ansatz (9) then results in the equations of motion

δ ˙̂cm = −i�mδĉm + iξm(〈â〉sδâ† + 〈â†〉sδâ),
(16)

δ ˙̂c2 = −i�2δĉ2 − iξ2(〈â〉sδâ† + 〈â†〉sδâ),

with

〈â〉sδâ† + H.c. = − 2|〈â〉s |2�̃c

�̃2
c + κ2/4

δ�̂(t) + (〈â†〉s f̂ (t) + H.c.).

Specifically, consider a system prepared such that the shifted
frequencies of the two oscillators �′

m and �′
2 are equal, where

�′
j = �j + ξ 2

j (2|〈â〉s |2�̃c)/(�̃2
c + κ2/4), j = {m,2}. In an

interaction picture with the time variation due to the shifted
frequencies of the two oscillator operators removed, under the
rotating-wave approximation, and neglecting constant terms,
we can then describe the coupling between the mechanical
oscillator and the BEC by the effective Hamiltonian

Heff = −h̄[�STδc†mδc2 − 〈â†〉s f̂ (t)δ�̂ + H.c.] + Hd, (17)

resulting in the equations of motion

d

dt

⎡
⎢⎣

δx̂2

δp̂2

δx̂m

δp̂m

⎤
⎥⎦=�ST

⎡
⎢⎣

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎤
⎥⎦

⎡
⎢⎣

δx̂2

δp̂2

δx̂m

δp̂m

⎤
⎥⎦ + χ̂ ′

⎡
⎢⎣

0
−ξ2

0
ξm

⎤
⎥⎦,

where �ST = 2|〈â〉s |2�̃cξ2ξm/(�̃c
2 + κ2/4), and

χ̂ ′ = 2[〈â†〉s f̂ (t) + 〈â〉s f̂ †(t)]. (18)

The coherent part of the Hamiltonian (17) has a beam-splitter
form, resulting in the periodic exchange of correlations
between the real and effective mirrors. The appearance of
the beam-splitter Hamiltonian is the key result of this Rapid
Communication and follows from the quantum fluctuations of
the cavity field. The coupling between the real and effective
mirrors is reminiscent of the Casimir force between two
mirrors that arises from vacuum field fluctuations. In our case,
however, there is no average net force between the mirrors
but rather the cavity field fluctuations serve to dynamically
exchange fluctuations in the quadratures of the two mirrors
at the state transfer frequency �ST. The term proportional to
χ ′ is a noise term due to random momentum kicks arising
from cavity field fluctuations. (Note that if the optical field is
treated classically the quantum states of the two “mirrors” are
uncoupled, although their oscillation frequencies depend on a
common classical intracavity intensity, which in turn depends
on the expectation value 〈�̂〉 of the optomechanical phase
shift.)

Since both �ST and the noise term depend on the same
system parameters, these must be chosen carefully to optimize
the fidelity of state transfer. For resonant frequencies �′

2 =
�′

m, and equal optomechanical couplings ξ2 = ξm, we find
that 〈χ̂ ′χ̂ ′†〉/�ST ≈ κ/�̃c.

As an example we consider an oscillating mirror of mass
mm = 5 ng and frequency �m = 2π × 100 kHz forming the
end mirror of a Fabry-Pérot cavity of length 190 μm and
cavity decay rate κ = 6 × 106 rad/s−1. The cavity is filled
with a small 23Na condensate with Na = 5 × 104 atoms. The
incident laser light, with �̃c = 6κ and η = 20κ , is detuned by
�a = −2π × 461 GHz from the D2 transition line (whose

FIG. 1. State transfer fidelity of a condensate coherent state to
an oscillating end mirror initially in its ground state of center-of-
mass motion as a function of detuning �̃c in units of κ . The system
parameters are given in the text.

recoil frequency is 25 kHz). These parameters result in
ξ2 = ξm = 6.90 × 104 Hz and a state transfer frequency of
�ST = 2.90 kHz.

We first consider a Gaussian state described by the Wigner
function,

W (x,p) = 1

2πσxσp

exp

[
− (x − x0)2

2σ 2
x

− (p − p0)2

2σ 2
p

]
, (19)

and evaluate specifically the state transfer fidelity of a coherent
state of the BEC (σx = σp = 0.5) with x0 = 1,p0 = 0 as a
function of �̃c/κ by evaluating the overlap between this and
the membrane state after time t = π/(2�ST) (see Fig. 1).
While the fidelity increases for larger detunings, we note that
eventually the state transfer frequency becomes very low (e.g.,
�ST = 865 Hz for �̃c/κ = 9). Also, care must be taken to
avoid reaching a regime where the behavior of the mechanical
system may become bistable. The example of Fig. 2 shows
the state transfer from the mechanical membrane to the BEC
side mode of the Schrödinger cat state 1√

N (|α〉 + |−α〉), with

α = 2/xzp, xzp = √
h̄/2mm�m being the width of the mirror

ground state, and N a normalization constant. The upper
plot is the initial Wigner distribution W (xm,pm,t = 0) for
the mirror, and the lower plot is the corresponding Wigner
distribution W (x2,p2,t) of the BEC at time t = π/(2�ST).
The similarity of the initial and transferred states indicates
that the cat state nature of the initial state has been mostly
preserved. The fidelity of the state transfer (the magnitude
of the overlap between the two Wigner functions) is 0.835.
Everything else being equal, the reduction in state transfer
fidelity for a cat state, as compared to a coherent state, is a
result of its faster decoherence from the quantum noise of
the optical field. This suggests that in that case the fidelity
could be improved by driving the resonator with a field with
squeezed quantum fluctuations in the appropriate quadrature,
which will be confirmed in a future publication [31]. In general,
though, it is a nontrivial task to predict the dependence of
state transfer fidelity on the specific quantum state under
consideration. As would be intuitively expected, we also
confirmed numerically that next to controlling quantum noise
the most important condition to achieve a high state transfer
fidelity is that �′

2 = �′
m. While in the specific example of 23Na

BEC considered here we have �2 = �m and ξ2 = ξm, this dual
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FIG. 2. (Color online) Transfer of cat states: Wigner distribution
functions of (a) initial state of membrane 1/

√
N (|α〉 + |−α〉), where

α = 2 in our dimensionless units, and (b) BEC after an interaction
time of t = π/(2�ST).

equality does not have to be satisfied in general. The resonance
condition �′

2 = �′
m can be realized by independently adjusting

ξ2 and ξm, e.g., by changing the atomic detuning, the length of
the cavity, and/or the number of atoms (at the cost of unequal
noise in the two mirrors). We finally remark that our analysis
ignored the dissipation and decoherence of both the BEC and
the mechanical oscillators, as well as the additional damping
term resulting from the adiabatic elimination of the optical
field. This is an appropriate approximation for high enough
�ST and low bath temperatures, and in the Doppler regime κ 

�̃c. A more detailed discussion of these noise mechanisms,
including an extension of this work to the resolved sideband
regime where they may become more important, as well as
the analysis of the use of squeezed light to improve state
transfer fidelity will be the subject of a future publication
[31]. We also plan to extend these ideas to multimode state
transfer as appropriate to condensed matter systems, to add
many-body effects, and to use quantum control and dark
state approaches for improving the fidelity of state transfer.
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