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Spatiotemporal fermionization of strongly interacting one-dimensional bosons
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Building on the recent experimental achievements obtained with scanning electron microscopy on ultracold
atoms, we study one-dimensional Bose gases in the crossover between the weakly (quasicondensate) and the
strongly interacting (Tonks-Girardeau) regime. We measure the temporal two-particle correlation function and
compare it with calculations performed using the time-evolving block decimation algorithm. More pronounced
antibunching is observed when entering the more strongly interacting regime. Even though this mimics the onset
of a fermionic behavior, we highlight that the exact and simple duality between one-dimensional bosons and
fermions does not hold when such a dynamical response is probed. The onset of fermionization is also reflected in
the density distribution, which we measure in situ to extract the relevant parameters and to identify the different
regimes. Our results show agreement between experiment and theory and give insight into the dynamics of
strongly correlated many-body systems.
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Interactions between particles are of particular importance
in one-dimensional (1D) systems as they lead to strong
quantum correlations. For ultracold bosonic atoms, reduced
dimensionality and control of interactions can be achieved
experimentally by quantum optics tools. This has lead to
the observation of the strong-interaction regime of bosonic
atoms [1,2]. One-dimensional ultracold gases offer moreover
a unique test bench for theory, as they are among the few many-
body systems which can be described on the basis of integrable
Hamiltonians such as the Lieb-Liniger (LL) model [3,4]. While
the integrability provides exact benchmarks for a comparison
with experiments, important quantum characteristics such as
higher-order correlation functions remain a challenge [5,6].
Their measurement would provide important information
about the many-body system beyond that accessible from
density profiles in coordinate or momentum space [7]. Only
local second- and third-order correlation functions, g(2)(0,0)
and g(3)(0,0), have been experimentally investigated in 1D
via indirect diagnostics [8–10]. Of even larger interest are
temporal correlations as they probe the nature of excitations,
which goes beyond the characterization of quantum properties
of the ground or thermal state of the system. In order to directly
access correlation functions in situ, spatially resolved single-
atom-sensitive detection methods are well suited [11,12]. In
this Rapid Communication, we use scanning electron mi-
croscopy to study one-dimensional tubes of ultracold bosonic
atoms in the crossover between the weakly and the strongly in-
teracting regime. We characterize the 1D systems by perform-
ing in situ measurements of the spatial density distribution,
which allows for the determination of the relevant parameters
and the identification of the different interaction regimes. The
complete temporal two-particle correlation function,

g(2)(ξ = x − x0,τ = t − t0)

= 〈�̂†(x0,t0)�̂†(x,t)�̂(x,t)�̂(x0,t0)〉
〈�̂†(x0,t0)�̂(x0,t0)〉〈�̂†(x,t)�̂(x,t)〉 , (1)

is then measured for ξ = 0. Here �̂ are the bosonic field
operators and 〈· · · 〉 indicates the quantum mechanical
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average. The results are finally analyzed on the basis of the
LL model, solved by numerical methods.

The usual classification of the 1D regimes for trapped
Bose gases, under conditions that justify the local den-
sity approximation (LDA), is based on the dimensionless
interaction parameter γ (x) at the trap center and on the
temperature T [13,14]. The space-dependent LL parameter
is defined as γ (x) = mg/h̄2ρ(x), with m the mass of the
particle, ρ(x) the density and g � 2ah̄ωr the 1D coupling
constant for |a| < ar , where a is the three-dimensional s-wave
scattering length, ωr the frequency of the radial harmonic
confinement, and ar = √

h̄/mωr . For γ (0) � 1 and T below
the degeneracy temperature Td = h̄2ρ2(0)/2mkB [14], with kB

the Boltzmann constant, a weakly interacting quasicondensate
phase is predicted. The spatial density profile in a harmonic
trap is expected to be well described by a Thomas-Fermi
(TF) parabola [13] and g(2)(0,0) ≈ 1 [14]. In the opposite
limit, γ (0) � 1, the 1D gas is strongly interacting and
approximates a Tonks-Girardeau (TG) gas. The density profile
is a square root of a parabola and g(2)(0,0) � 1, which
indicates an effective reduction in the overlap of the particle
wave functions, resembling the fermionic exclusion principle.

In our experiment, a Bose-Einstein condensate (BEC) of
about 8 × 104 87Rb atoms is created in the optical dipole trap
realized by a focused CO2 laser beam. Once the BEC is pro-
duced, its final atom number is accurately adjusted by scanning
the electron beam on the outer part of the cloud. In this way we
control the atom number and we selectively discard the warmer
particles, effectively reducing the temperature of the sample
(to less than 10 nK). For the experiments reported here, we
prepared two different sets of BEC samples with 10(2) × 103

and 60(5) × 103 atoms, respectively. In order to create the 1D
atomic tubes, we adiabatically superimposed to the CO2 dipole
trap a two-dimensional (2D) blue-detuned optical lattice,
realized by a pair of retroreflected laser beams with wavelength
774 nm and waist 630 μm (see Fig. 1). The final frequencies in
the tubes for the two sets of measurements are ωa/2π = 8 Hz,
ωr/2π = 56 kHz [10(2) × 103 atoms] and ωa/2π = 11 Hz,
ωr/2π = 40 kHz [60(5) × 103 atoms], where ωa is due to
the axial confinement of the dipole trap. The number of tubes
created varies from ∼100 to 280, with a maximum occupation

021601-11050-2947/2012/86(2)/021601(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.021601


RAPID COMMUNICATIONS

VERA GUARRERA et al. PHYSICAL REVIEW A 86, 021601(R) (2012)

FIG. 1. (Color online) Schematic of the experiment. The 2D blue-
detuned lattice realizes a system of parallel 1D tubes of ultracold
bosons. When the electrons (blue/dark gray line) collide with the
atoms, they lead to the production of ions which are subsequently
detected. The inset shows a zoom on the sum of 100 images of the 1D
tubes. The integrated density along the x direction is also presented.
In this picture the total atom number is ∼104, the current of the
electron beam is 20 nA, and its FWHM 	 = 120(10) nm.

number in the center of about 170 and 500 atoms, respectively.
Changing the density of the initial three-dimensional system
and the radial confinement ωr , we are thus able to experimen-
tally access two different 1D regimes in the crossover between
the strongly and the weakly interacting limit: γ (0) � 2 in the
central tube for the set with 10(2) × 103 atoms and γ (0) � 0.5
for the set with 60(5) × 103 atoms.

In order to characterize in detail our experimental 1D
systems, we image the entire cloud by scanning it with an elec-
tron beam of 6-keV energy, 60-nA current, and FWHM 	 =
240(10) nm [15]. At the end of the scan the number of atoms re-
maining in the trap is probed by time-of-flight absorption imag-
ing and the BEC is checked to be pure. For each set of measure-
ments ∼300 images of the cloud are summed. Each scanning
line of the image along the x direction corresponds to the sum
of the density profiles of the 1D tubes displaced in a vertical
row along the direction of the electron beam (see Fig. 1).

For the two sets of measurements, the density profiles
of the central row of the images, corresponding to the sum
of respectively approximately 8 and 11 tubes along the z

direction, are shown in Fig. 2. The results are first compared
with the exact Yang-Yang (YY) solution, where the only free
parameters are the total atom number and the temperature.
We numerically solve the YY equations for a uniform 1D
gas, for a given temperature, and we then apply the LDA
to account for the axial confinement V (x) = mω2

ax
2/2 [14].

The resulting density profile is then obtained as a sum over
the different tubes, where the number of tubes and atoms per
tube are determined on the basis of the TF distribution of the
initial BEC. The final curves show excellent agreement with
the experimental data. Notably this allows for an accurate
determination of γ (0) for the different tubes and of the
temperature of the system. For the first set of measurements
[10(2) × 103 atoms] we find that γ (0) ranges from 2.2(2) to
13(1) in the different tubes along the z direction, resulting in

the weighted average γ (0) = 2.7(3). The fitting parameters
are N = 9.3(0.7) × 103 atoms and T = 9(1) nK. For the
second set [60(5) × 103 atoms], γ (0) = 0.58(5)–2.3(2) and
γ (0) = 0.76(7) with N = 52(5) × 103 and T = 22(2) nK.
For further confirmation of the extracted temperatures, we
additionally measure T in two ways: with a Gaussian fit of
the density in the outermost tubes along the y direction and
by calculating the average degeneracy temperature at which
the density profile of the outer tubes starts to match with a
normal distribution, when moving along the y axis. We find
T = 10(2) and 8(1) nK for 10(2) × 103 atoms, and T = 27(6)
and 28(5) nK for 60(5) × 103 atoms. In Figs. 2(a) and 2(b), we
also show numerical solutions for the LL theory at T = 0 with
LDA, calculated for the same γ (0) values extracted from the
YY fit. The two models agree well, showing only a small
discrepancy at the wings. This is due to the fact that the
measured temperatures T are below the weighted average of
Td over the tubes, i.e., T/Td = 0.7(1) [10(2) × 103 atoms]
and T/Td = 0.3(1) [60(5) × 103 atoms]. To better clarify
the regime of our measurements, in Figs. 2(c) and 2(d) we
compare the profiles obtained with the LL model with those
calculated by solving the Gross-Pitaevskii equation in the TF
approximation and by solving the TG model, with the same
atom number [13]. For the lower γ , Fig. 2(d), the actual density
profile is very close to the TF, while the TG distribution is
significantly distant: The system lies in the weakly interacting
TF limit. Increasing γ above 1, Fig. 2(c), the experimental data
and the exact 1D theory start to significantly deviate from the
TF distribution. The TG profile, conversely, becomes closer:
An intermediate regime towards the TG limit and the complete
fermionization has been entered.

When we proceed to the measurement of g(2)(τ ), the differ-
ences between the two experimental situations outlined above
become even more evident. The observation of interaction-
induced antibunching in the two-particle correlation function is
the most direct indication of a fermionic behavior emerging in
an ensemble of bosonic particles. The experimental procedure
is similar to the one described in our earlier work [11].
Once the 1D systems are prepared, we investigate them by
focusing the electron beam at the center of the cloud. What we
measure is the average correlation function of two ionization
events g(2)

av (τ ) obtained by probing simultaneously 8 or 11
different tubes. For these measurements we set the electron
beam current to 20 nA and FWHM 	 = 120(10) nm. The
spatial resolution, set by the FWHM of the electron beam, is
smaller than the minimum estimated spatial correlation length
for the probed systems, i.e., 440 nm [10(2) × 103 atoms] and
170 nm [60(5) × 103 atoms]. The g(2)

av (τ ) is measured on the
ion signal collected in 50 ms. This is the longest holding time
at which the system is still a pure BEC. We compute the
correlation functions over about 12 000 [10(2) × 103 atoms]
and 2000 [60(5) × 103 atoms] repetitions of the experiment.
In Fig. 3(b) we report the details of the measured g(2)

av (τ ) for
the set with 10(2) × 103 atoms, where antibunching is visible
with an amplitude 1 − g(2)

av (τ = 0) = 0.05(1). For τ > 0 the
shape of the signal suggests the existence of two time scales
on which the correlations relax: a short one (∼100 μs) and a
longer one (∼500 μs). We first discuss the longer time scale
and, to this purpose, we show the data with 80-μs bin time in
Figs. 3(c) and 3(d). From these data, using an exponential
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FIG. 2. (Color online) In situ spatial density distribution summed over 8 and 11 tubes for the measurement sets with 10(2) × 103 atoms [(a)
and (c)] and 60(5) × 103 atoms [(b) and (d)], respectively. Data (red dots) are the result of the sum of ∼300 pictures. In (a) and (b) the green
solid lines are fits using YY theory and the dashed black lines are T = 0 LL profiles. In (c) and (d) the T = 0 LL profiles are compared with
those calculated with the TF (magenta dotted line) and with the TG theory (blue dashed-dotted line).

fitting, we extract the correlation times tc = 240(80) μs
[10(2) × 103] and 100(40) μs [60(5) × 103], defined as the
times corresponding to the 1/e reduction of 1 − g(2)

av (τ ).
The g(2)(ξ,τ ) function in the ground state can be theo-

retically calculated for each single tube, by simulating the
dynamics of the system using exact numerical methods. We
note that the use of a T = 0 theory is justified in this case
since the majority of the investigated tubes are below Td [16].
In order to perform the simulations, we discretize the LL model
[17]. This lattice problem can then be treated using the time-
evolving block decimation (TEBD) algorithm [18], which is
one of the extensions of the density matrix renormalization
group to time evolution [19] and is based on a matrix product
state (MPS) ansatz [20]. We perform the calculation on a gas of
N = 25 particles confined in a harmonic potential. g(2)(ξ,τ )
is evaluated in the center of the tube at x0 = 0, according
to the experiment. The numerical procedure consists of first
calculating the interacting ground state |0〉 at fixed particle
number N [17]. We then apply the annihilator at x0 = 0,
which is straightforward in the discretized MPS representation,
resulting in a N − 1 particle state |�0〉 = �̂|0〉. This state
is finally propagated in time. The spatiotemporal correlation
function g(2)(ξ,τ ) = ρ−2 〈�τ |ρ̂(x)|�τ 〉 is then the expectation
value of the local density operator ρ̂(x) = �̂†(x)�̂(x) in the
time-evolved state |�τ 〉 = exp(−iĤ τ/h̄)|�0〉, where Ĥ is the
Hamiltonian of the system. The finite size of the system turns
out to have no influence because all the excitations, traveling
with the speed of sound, reach the edges of the cloud only at
a time when the antibunching structure in g(2)(τ ) has already
decayed. In addition, we take into account the finite width
of the electron beam by averaging over its Gaussian profile
W (x ′): g̃(2)(τ ) = ∫ ∞

−∞ dx ′ W (x ′) g(2)(x ′,τ ) [see Fig. 3(a)].
As the experiment measures several independent tubes at
the same time, we calculate g(2)

av (τ ) by averaging over the
g̃(2)(τ ) corresponding to each tube [21]. The uncorrelated
signal coming from different independent tubes is responsible
for the reduction of the antibunching amplitude from the
value of 1 − g̃(2)(0) � 0.60 (0.40) for the single tube to the
global calculated 1 − g(2)

av (0) � 0.07 (0.03) in the systems
with 10(2) × 103 [60(5) × 103] atoms. Concerning the longer
time scale, the agreement of the averaged theoretical curves

with the experimental data in Fig. 3(b) is fairly good. For
a quantitative comparison, we show in Figs. 3(e) and 3(f)
the experimentally derived correlation times and amplitudes
together with their theoretical counterparts. The correlation
time tc rescaled by 1/ρ2 is independent on ρ and is strongly
depending on γ in the regime of our measurements: Increasing
the interactions above γ = 1 we observe a significant decrease
of tc. This behavior is in good agreement with our experimental
findings. The interpretation of 1 − g(2)

av (0) as a function of
γ in the regime that we consider is mainly complicated by
the average over a different number of tubes. This effect
is indeed contributing to the increase of the amplitude for
the higher value of γ . Anyway, the comparison between the
experimental and theoretical amplitudes is compatible within
the error bars. We note that finite temperature effects cannot
have a significant role in the reduction of the amplitude
[16].

It is well known [22–24] that 1D bosons can be mapped
to interacting fermions for arbitrary interaction strengths. As
a consequence the density distribution and density-density
correlations of bosons are identical to that of the corresponding
fermions. Conversely, this simple Bose-Fermi duality breaks
down when the temporal pair correlation function is probed:
The theoretical curves in Figs. 3(a) and 3(e) show indeed
a notable difference between the fermionic and the bosonic
case, which is confirmed by the experimental data. The
observable measured and calculated in this work, i.e., g(2)(ξ,τ ),
is fundamentally different from the dynamical density-density
correlations previously derived in Ref. [25] because the
bosonic field operators do not commute at different times.
This is also the reason for Bose-Fermi duality to fail. We
finally discuss the shorter time scale visible in Fig. 3(b), which
corresponds to an additional modulation of the signal with
frequency ∼5 kHz. The energy scale introduced by the electron
beam can be roughly estimated to be h̄2/2m	2 � h × 4 kHz,
suggesting it to be the origin of such an oscillation. We note
that a similar modulation is not visible, within the error bars,
in the weakly interacting case and was never observed in
a three-dimensional degenerate sample [11]. This suggests
this behavior could be associated to the presence of strong
correlations between the particles when γ > 1.
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. (Color online) (a) g(2)(τ ) calculated using the TEBD algorithm together with the respective Fermionic counterpart for the single
central tube. (b) Measured g(2)

av (τ ) for 10(2) × 103 atoms. The solid line is obtained from TEBD numerical calculations of the independent
tubes [21]. The theoretical curve has no free parameters, since they are determined from the analysis of the density profiles. (c), (d) Measured
g(2)

av (τ ) with binning time of 80 μs for 10(2) × 103 and 60(5) × 103. The solid lines are exponential fits to the data. (e) Correlation time tc as a
function of γ . The dotted lines are bare TEBD calculations, the solid line includes averaging over the electron beam size, and the dashed line
shows the fermionic theory. (f) Amplitude as a function of γ . The uniformly solid and patterned areas are the theoretical calculations according
to [21]. The extension of the area is due to an uncertainty ±1 on the number of tubes.

In summary, we have performed in situ high-resolution
measurements of the density profiles of few 1D tubes in
the crossover between the weakly (γ � 0.76) and the more
strongly (γ � 2.7) interacting regimes. We find excellent
agreement in the comparison with a model based on the YY
solutions and LDA, allowing us to extract the γ (0) values
of the tubes, the global atom number, and the temperature.
Comparison with the T = 0 LL, TF, and TG models allows
us to clearly define the regimes of the measurements and
to circumscribe the role of temperature. We measured the
temporal two-particle correlation function, observing genuine
antibunching in correspondence to the entering of the more
strongly interacting regime, characterized by evident fermion-
ization of the bosonic particles already at intermediate values

of γ . We have numerically calculated g(2)(ξ,τ ) and we find
fairly good agreement with the experimental data, showing
the exact duality following the Bose-Fermi mapping does
not hold for this observable. This work paves the way to the
study of complex dynamics as those resulting from quenches
[26] and to the investigation of thermalization processes
in 1D [27].

We thank B. Schmidt for fruitful discussions and P. Würtz
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