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Quantum resonance, Anderson localization, and selective manipulations in molecular mixtures
by ultrashort laser pulses
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We show that the current laser technology used for field-free molecular alignment via impulsive Raman
rotational excitation allows for observing long-discussed nonlinear quantum phenomena in the dynamics of
the periodically kicked rotor. This includes the scaling of the absorbed energy near the conditions of quantum
resonance and Anderson-like localization in the angular momentum. Based on this, we show that periodic trains
of short laser pulses provide an efficient tool for selective rotational excitation and alignment in a molecular
mixture. We demonstrate the efficiency of this approach by applying it to a mixture of two nitrogen isotopologues
(14N2 and 15N2), and show that strong selectivity is possible even at room temperature.
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Despite its simplicity, the periodically kicked rotor has
attracted much attention in recent decades. One of the major
reasons for the interest in this system is the search for quantum
chaos. In the classical regime, the periodically kicked rotor
can exhibit truly chaotic motion. On the other hand, in the
quantum-mechanical framework, this chaotic motion is only
observed on a short time scale. On a longer time scale,
suppression of chaotic behavior [1] and Anderson localization
in angular momentum space [2] occur. Quantum resonance
[1,3] is another distinct feature of the quantum kicked rotor.
If a rotor is kicked at a period that is a rational multiple of
the rotational revival time [4], its energy grows quadratically
with the number of kicks. Experimentally, the periodically
kicked quantum rotor was realized with ultracold atoms in
periodic potentials [5,6]. However, the nondiscrete character
of the atomic momentum hinders the observation of certain
phenomena such as quantum resonances and chaos-assisted
tunneling. To some degree, this was overcome by using a
very narrow initial momentum distribution [7–9]. Periodically
kicked molecules circumvent this problem, since the quanti-
zation of the angular momentum ensures discreteness of the
levels. In the past, it was proposed to use polar molecules
interacting with microwave pulses [10] for this purpose.
Recently, more proposals appeared [11,12] for controlling
chaos in polar molecules. However, due to the complexity
of generating the required pulse trains, these schemes are hard
to realize.

In this Rapid Communication, we draw attention to the
fact that the long-awaited tool [10,13,14] for exploring the
dynamics of the periodically kicked quantum rotor in a
molecular system is readily provided by current technology
that is being used for laser molecular alignment [15,16]. Here,
short laser pulses induce molecular alignment via impulsive
Raman-type rotational excitation. The electric field of the
pulse induces anisotropic molecular polarization, interacts
with it, and tends to align the molecular axis along the laser
polarization direction. An ultrashort laser pulse acts as a kick,
and the alignment is observed under field-free conditions after
the pulse [16–19]. Recently, a periodic train of eight pulses was
used for inducing enhanced molecular alignment by repeated
kicking under the condition of quantum resonance [20]. We
show that experimental techniques similar to the one used

by Cryan et al. [20] finally allow for observing effects such
as scaling of the absorbed energy near the quantum resonance
[21] and Anderson localization [2] in a real rotational system, a
diatomic molecule. Moreover, we show that these phenomena
provide a toolbox for selective rotational laser manipulations
in molecular mixtures [22,23]. To illustrate, we propose
and discuss a scheme for selective alignment of molecular
isotopologues, using the aforementioned effects.

We consider the interaction of linear molecules with a
periodic train of linearly polarized laser pulses. The pulses are
far off-resonant from any molecular transition. The interaction
potential is given as

V = −1

4
�α cos2 θ

N−1∑

n=0

E2(t − nτ ). (1)

Here, E(t) is the temporal envelope of a single laser pulse,
�α = α‖ − α⊥, where α‖ is the polarizability along the
molecular axis and α⊥ is the polarizability perpendicular to
it, N is the number of pulses, τ is the period of the train,
and θ is the angle between the laser polarization axis and the
molecular axis. The pulses are assumed to be much shorter
than the rotational time scale of the molecules, so we treat
them as δ kicks. We introduce the effective interaction strength
P = �α/(4h̄)

∫
E2(t)dt . It reflects the typical change of the

molecular angular momentum (in units of h̄) induced by a
single laser pulse. We measure the energy in units of 2B and the
time in units of h̄/(2B), where B = h̄2/(2I ) is the rotational
constant and I is the moment of inertia. The wave function
right after interaction with a single pulse is given as

|�(t+)〉 = eiP cos2 θ |�(t−)〉, (2)

where t+ and t− are the time instants just after the pulse and
before it, respectively. We expand the wave function in the
eigenfunctions of the free rotating molecule:

|�(t)〉 =
∑

J,M

cJ,Me−iEJ t |J,M〉. (3)

We include the centrifugal distortion term in the rotational
levels EJ = J (J + 1)/2 − DJ 2(J + 1)2/(2B), where D is
the centrifugal distortion constant. In the rigid-rotor approx-
imation, the frequencies of rotational transitions form an
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equidistant series with the spacing of 2B/h. Therefore, the
wave packet (3) revives after the revival time trev = 2π [in
units of h̄/(2B)]. Due to the centrifugal distortion, this revival
is not exact. The transformation of the cJ,M coefficients due
to a kick is obtained by the numerical procedure described in
Ref. [24]. Thermal averaging over the initial molecular states is
done to account for thermal effects. For symmetric molecules
such as N2 we take into account the effects of nuclear-spin
statistics [25].

We start with considering rotational excitation in close
proximity to the quantum resonance, i.e., τ = 2π + ε, where
|ε| is small. Here we adopt an approach used previously for
obtaining a scaling law for the resonances of cold atoms in
a pulsed optical standing wave [21]. For simplicity, here we
restrict ourselves to the case of a rigid rotor at zero temperature.
The one-period evolution operator is

Û = eiP cos2 θ e−iεĴ 2/2. (4)

Here, Ĵ is the angular momentum operator. We scale the
interaction strength as P̃ = |ε|P and the angular momentum
as Î = |ε|Ĵ and obtain

Û = eiP̃ cos2 θ/|ε|e−iÎ 2/(±2|ε|), (5)

where ± is the sign of ε. In Eq. (5), |ε| can be regarded as
an effective Planck’s constant [21]. Therefore, if |ε| � P , the
quantum dynamics of (5) can be described by an effective
classical mapping. It is given as

θn+1 = θn ± In, In+1 = In − P̃ sin(2θn+1). (6)

Since we assume zero temperature here, no rotations around
the z axis are excited. If the change of the angle θ with
each pulse is much smaller than 2π (i.e., when the kick
strength is sufficiently low), we can make use of the pendulum
approximation [26] to write the classical mapping (6) as
differential equations:

dθ/dn = ±I, dI/dn = −P̃ sin(2θ ). (7)

By rescaling the angular momentum to Ĩ = √|ε|PI and the
time to x = √|ε|Pn, Eqs. (7) become parameterless, apart
from the sign of ε. We obtain Ĩ (x) via the Jacobi elliptic
functions. The final rotational energy is given as

E(ε,P,N ) = Ĩ 2
±(x)P

2|ε| , (8)

where ± indicates the dependence on the sign of ε. We average
over the initial angle θ0, which has the distribution f (θ0) =
0.5 sin(θ0). The averaged value of the absorbed energy is
normalized by the energy absorbed in the case of resonant
kicking, which is

1
2 〈0|e−iNP cos2 θ Ĵ 2eiNP cos2 θ |0〉 = 4

15N2P 2. (9)

The scaled average energy is therefore given by

R(ε,P,N ) = 〈Ĩ 2
±(x)〉P
2|ε|

15

4N2P 2
= 15

8

〈Ĩ 2
±(x)〉
x2

. (10)

Here, the angular brackets denote averaging over θ0. As can be
seen, the scaled energy is a function of the combined scaling
variable x = √|ε|PN alone, and not of the three parameters
ε, P , and N independently. A similar result was previously
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FIG. 1. (Color online) Scaled energy R(x) calculated by Eq. (10)
(solid line) and by direct quantum-mechanical simulations (circles).
The latter are done for 15N2 at T = 10 K, for random values
of the interaction parameters ε, P , and N in the intervals |ε| ∈
[0.0001π,0.025π ], N ∈ [4,40], with the total interaction strength
Ptot = NP limited to 4 � Ptot � 24. The inset shows the data
corresponding to a pulse train with ε = −0.05 and P = 3, for which
the absolute energy is shown in Fig. 2 (diamonds).

obtained for the kicked cold atoms [21] with the same scaling
variable but with a different scaled energy R(x). In Fig. 1
the scaled energy obtained by the effective classical mapping
is compared to exact quantum-mechanical calculations for
nonrigid 15N2 at a temperature of T = 10 K. The qualitative
agreement between both is rather good, despite the fact that
the effective classical result was derived for a rigid rotor at
zero temperature.

We now present the results of simulations for the rotational
excitation of the isotopologue 15N2, interacting with a periodic
train of identical laser pulses. We show two cases. First, we
consider excitation at quantum resonance (ε = 0) and near it
(|ε| � 1), i.e., in the regime of the scaling law (10). Second, we
simulate far off-resonant excitation in the regime of Anderson
localization. For the latter scenario we consider ε = −0.44,
as it represents the difference in the revival times of 14N2 and
15N2. The kick strength is set to P = 3, which is comparable
to the pulses used in experiment [20]. In the simulations, we
account for centrifugal distortion and thermal effects, with
temperature T = 10 K.

In Fig. 2 the absorbed energy is shown as a function of the
number of pulses N . As expected, for kicking on resonance
(circles) the absorbed energy grows initially as the square of
N . At N ≈ 8, this growth saturates and eventually the energy
starts oscillating, which is due to the centrifugal distortion.
For the near-resonant case (diamonds), the absorbed energy
follows the predictions by the scaling law. This is also shown
by the inset in Fig. 1. For far off-resonant kicking (crosses),
only a very weak absorption of energy is observed.

In Fig. 3 the population of the rotational levels J after a train
of eight pulses, tuned on or close to the quantum resonance, is
shown. Due to the selection rules of the Raman-type excitation
(�J = 0, ± 2), the subsets of even and odd rotational levels
evolve independently, so for clarity we show only the even
ones. The population of the odd levels behaves similarly, with
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FIG. 2. (Color online) Absorbed rotational energy of 15N2 at T =
10 K after interacting with a periodic train of ultrashort laser pulses
with P = 3. The results are shown for different detunings ε.

a correction by a constant factor arising from nuclear-spin
statistics [25]. Under the condition of exact resonance, the
distribution is divided into a flat (in logarithmic scale) plateau
region, and a fast decay after some cutoff value of J . The
cutoff marks the maximum angular momentum supplied by N

pulses to a classical rotor (for a rigid rotor this is J = NP ),
and the fast decay is due to the “tunneling” into the classically
forbidden region. When the detuning is increased, one can see
a monotonous deformation of the population curve, while the
general shape (plateau and fast decay after a cutoff) remains
intact.

For larger detuning, shown in Fig. 4, the distribution is
completely different and reflects Anderson localization in the
system. Instead of the plateau, a clear linear (in logarithmic
scale) decay over several orders of magnitude is seen, starting
from J = 0. We have verified by additional simulations that
this part of the distribution is quite insensitive to variations
of the detuning, in contrast to the case of near-resonance
kicking (Fig. 3). This is an intrinsic property of Anderson
localization in the periodically kicked rotor [2]. The deviations
from linearity for J � 20 are mainly due to the finite number
of pulses.

The dependence of the rotational excitation on the detuning
ε can be used for isotope-selective rotational excitation,
as reflected in transient beats of molecular alignment. The
alignment is quantified by the expectation value of cos2 θ
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FIG. 3. (Color online) Population of the rotational levels of 15N2

at T = 10 K after interaction with a train of eight pulses with P = 3,
for resonant (ε = 0) and near-resonant (|ε| � 1) kicking.
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FIG. 4. (Color online) Population of the rotational levels of 15N2

at T = 10 K after interaction with a train of eight pulses with P = 3,
for an off-resonant pulse train (ε = −0.44). The dashed line indicates
the exponential decay caused by Anderson-like localization.

(alignment factor). As an example, we consider the two
nitrogen isotopologues 14N2 and 15N2, with the rotational
revival times 8.35 and 8.98 ps, respectively. If the pulse train
is resonant to 14N2, the detuning for 15N2 is ε = −0.44, which
corresponds to the far off-resonant case considered above.

In Fig. 5(a) we show the alignment signal for the two
isotopologues interacting with a train of eight pulses. For
the resonantly kicked 14N2, strong alignment builds up, in
agreement with Ref. [20]. On the other hand, for 15N2

the alignment signal is considerably weaker, and therefore
selective alignment is achieved.

A remarkable effect can be seen in Fig. 5(b), showing
the results at T = 298 K. While at T = 10 K the difference
between the peak alignment and the isotropic value (1/3) is
three times larger for 14N2 than for 15N2, at T = 298 K it is
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FIG. 5. (Color online) Alignment factors of 14N2 (dark curve)
and 15N2 (light curve) molecules, interacting with a train of laser
pulses. (a) shows the results for T = 10 K, and (b) for T = 298 K.
The pulses are applied with a constant time delay τ , which is equal
to the rotational revival time of 14N2 (8.35 ps for T = 10 K, 8.37 ps
for T = 298 K).
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even six times larger for 14N2. Therefore, the selectivity of the
alignment process is improved at high temperature. The reason
is that the resonant species constructively accumulates the
effect of the kicking pulses even at high temperature under the
conditions of quantum resonance [20], whereas the coherent
excitation of the off-resonant isotopologue is hindered strongly
due to the excitation randomization caused by fast thermal
rotation between subsequent kicks.

Summarizing, we showed that the current laser technology
used for nonadiabatic field-free molecular alignment via
impulsive Raman-type rotational excitation is sufficient for
observing several fundamental phenomena in the dynamics of
the periodically kicked quantum rotor. We derived a scaling
law for the energy absorption for a molecule kicked close to
the quantum resonance, similar to the one that was previously
discussed in the context of atom optics [21]. Moreover, we
showed that Anderson-like localization can be observed in
diatomic molecules, using experimentally feasible pulse trains.

We applied the discussed phenomena to the challenging
task of selective rotational excitation in a molecular mixture. A
scheme for isotopologue-selective alignment, which is based
on Anderson localization in periodically kicked systems, is
proposed.

The results of this work may stimulate experimental
observations of quantum dynamical effects in the periodically
kicked quantum rotor, using a real rotational system, a
molecule. Moreover, our results may pave the way to methods
for selective manipulation in mixtures of molecular species by
means of the above-mentioned phenomena.

Recently an experimental work by Zhdanovich et al. [28]
was done, in which a train of about six periodic (although
not identical) pulses was used in a scheme along the lines
of the preprint [27] of the present Rapid Communication.
By changing the spacing between the pulses, isotopologue-
selective rotational excitation in a mixture of 14N2 and 15N2

was achieved. Moreover, by scanning the train period around
a fractional revival, Zhdanovich et al. achieved selective
rotational excitation of different nuclear-spin isomers of 15N2.
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