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Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states
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We consider the problem of establishing a two-qubit entangled state of optimal fidelity across a noisy quantum
channel when only a single use of the channel and local postprocessing by trace-preserving operations are
allowed. We show that the optimal fidelity is obtained only when part of an appropriate nonmaximally entangled
state is transmitted through the channel. The entanglement of this state can be vanishingly small when the channel
becomes very noisy. Moreover, in the optimal case no further local processing is required to enhance the fidelity.
We further show that local postprocessing can enhance fidelity if and only if the amount of noise is larger than
a critical value and entanglement of the transmitted state is bounded from below. A notable consequence of
these results is that the ordering of states under an entanglement monotone can be reversed even when the states
undergo the same local interaction via a trace-preserving, completely positive map.
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Introduction. Quantum entanglement [1] between two
distant observers (Alice and Bob) has now been established
as a physical resource for quantum information processing.
It enables tasks such as quantum teleportation [2], super-
dense coding [3], quantum cryptography [4], and distributed
quantum computation [5] that would otherwise be impossible
classically. Shared entanglement, however, is not a given
resource and must be prepared a priori by sending pure
entanglement across quantum channels that are typically noisy.
The mixed states thus obtained are subsequently subjected to
local processing to enhance their purity [6–9] so that they can
be useful for tasks such as teleportation. Thus the problem
of establishing an entangled state of high purity through a
noisy quantum channel is of fundamental interest in quantum
information theory.

The purity of a mixed state ρ is expressed by its fidelity or
fully entangled fraction [7,9,10]. It is defined as the maximum
overlap of the state with a maximally entangled state:

F (ρ) = max
�

〈�|ρ|�〉, (1)

where the maximization is taken over all maximally entangled
states |�〉. Fidelity also assumes a central role in quantum
teleportation and entanglement distillation. For two-qubit
systems F (ρ) is related to the optimal teleportation fidelity
f (ρ) via the following relation [10]:

f (ρ) = 2F (ρ) + 1

3
. (2)

Let us note that without shared entanglement the best possible
fidelity for teleportation (classical fidelity) of a completely
unknown qubit is given by 2/3 [11]. Therefore, to outperform
a classical strategy with shared entanglement ρ, the condition
F (ρ) > 1/2 must be satisfied. In the context of entanglement
distillation the same condition, i.e., F (ρ) > 1/2, determines
whether ρ can be distilled by the existing distillation protocols
[7,9,12].
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Typically, questions related to entanglement distillation and
fidelity presuppose that Alice and Bob already share a single
copy of a mixed entangled state ρ or many copies of it. In this
Rapid Communication we take a step backward and ask the
following: Given a quantum channel �, what is the maximum
achievable fidelity and what is the best strategy to establish an
entangled state for which this optimal fidelity is attained? We
consider these questions when only a single use of the channel
and local postprocessing by trace-preserving operations are
allowed. The first condition implies that we are only interested
in establishing a single copy of an entangled state, and the
second condition ensures that there is no particle loss under
local operations. The purpose of this Rapid Communication
is to explicitly demonstrate the counterintuitive nature of the
answers that may be obtained in this setting.

Before we get to our results it is necessary to recall
some very useful results on fidelity. For separable states it
is known that F = 1/2. Surprisingly there exist entangled
states for which F � 1/2 [13–15], implying that such states
are not directly useful for teleportation. Nevertheless, by local
filtering, fidelity of such entangled states can be brought above
1/2 so that they become useful for both teleportation and
distillation [6]. Local filtering [16,17], however, is not trace
preserving: It succeeds only with some nonzero probability and
in case of a failure the state becomes separable. Interestingly,
in Refs. [14,15] examples of mixed entangled states with
F � 1/2 were given whose fidelity can be increased beyond
1/2 by trace-preserving local operations and classical commu-
nication (TP LOCC). Subsequently, it was proved that a state
of two qubits is entangled if and only if under TP LOCC its
fidelity exceeds 1/2 [18]. This led the authors in Ref. [18] to
define the maximum achievable fidelity F ∗(ρ) for any 2 ⊗ 2
density matrix ρ as

F ∗(ρ) = max
TP LOCC

F (ρ) � F (ρ). (3)

While the exact analytical expression F ∗ (ρ) is not known, it
can be obtained by solving a convex semidefinite program [18].
Moreover, F ∗ (ρ) was shown to be an entanglement monotone;
in particular, it quantifies the minimal amount of mixing
required to destroy the entanglement of ρ [18]. Here one should
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note that fidelity F (ρ) is not an entanglement monotone as it
can increase under TP LOCC.

Formulation of the problem. To answer the questions raised
in the beginning of this Rapid Communication it is necessary
to consider a two-step process. In the first step, Alice prepares
a two-qubit pure entangled state, say, |χ〉, and sends the second
qubit through the quantum channel �. This results in a mixed
state, possibly entangled, ρ (χ,�) shared between them. As it
is possible to enhance the fidelity F (ρ(χ,�)) of this state
by TP LOCC, the second step constitutes Alice and Bob
performing optimal trace-preserving local operations to attain
the maximum fidelity. Let us therefore define the quantity of
interest:

F (�) = max
|χ〉

F ∗(ρ(χ,�)). (4)

We call the quantity F (�) maximum achievable fidelity or
optimal fidelity for the channel �. Clearly, given a quantum
channel �, the objective of Alice and Bob is to maximize
F (ρ(χ,�)) over all TP LOCC and |χ〉. Here we want to
emphasize that it is important to distinguish F (�) from the
channel fidelity considered in Ref. [10]. From Eq. (2) we can
also obtain the optimal teleportation fidelity for a single use of
the channel �:

f (�) = 2F (�) + 1

3
.

Amplitude damping channel. The quantum channel considered
in this work is the amplitude damping channel. The action of
an amplitude damping channel � on a qubit σ is given by

σ → � (σ ) = M0σM
†
0 + M1σM

†
1, (5)

where M0 and M1 are the Krauss operators defined by

M0 =
[

1 0
0

√
1 − p

]
, M1 =

[
0

√
p

0 0

]
, (6)

with the real parameter 0 � p � 1 characterizing the strength
of the channel. The channel is trace preserving, that is,∑

i=0,1 M
†
i Mi = I. For the noise-free case p = 0, otherwise

0 < p � 1. For p = 1 the channel is entanglement breaking
[19]. Therefore, throughout this Rapid Communication we
only consider values of 0 < p < 1. We note that F (�) is a
function of p alone.

Summary of the results. Intuition suggests that for any
channel � the best strategy to obtain optimal fidelity is to
send part of a maximally entangled state across the channel
plus local postprocessing, i.e., the relation

F(�) = F ∗(ρ(�+,�)), (7)

where |�+〉 = 1√
2

(|00〉 + |11〉) should be true. But, as will
be demonstrated here, the above relation does not hold in
general. We show that the maximum achievable fidelity F (�)
is attained for nonmaximally entangled states for all p,
0 < p < 1; i.e.,

F (�) = F ∗(ρ(χ0,�)) > F ∗(ρ(�+,�)), (8)

where |χ0〉 is a nonmaximally entangled state. And when
the channel is very noisy, that is, p ≈ 1, the entanglement
of |χ0〉 becomes vanishingly small, and yet it gives the
optimal value for fidelity over all transmitted states, including

maximally entangled under trace-preserving local operations.
Surprisingly, we find that to achieve the optimal value, local
postprocessing is not be required: i.e.,

F (�) = F ∗(ρ(χ0,�)) = F (ρ(χ0,�)). (9)

Thus the preprocessed fidelity obtained simply by sending one
half of the appropriate nonmaximally entangled state through
the channel is actually optimal.

A consequence of the first result is that the ordering of
entangled states under some entanglement monotone can
be reversed even though the states undergo identical local
interaction via a trace-preserving, completely positive map.
The argument goes as this. Before the second qubit underwent
interaction with the channel �, we had trivially F ∗(�+) �
F ∗(χ0). Now after the interaction our first result implies that

F ∗(ρ(χ0,�)) > F ∗(ρ(�+,�)). (10)

The conclusion now follows by noting that F ∗ is an entan-
glement monotone. It is interesting that the ordering does not
change for any pair of transmitted states under concurrence.
For example, we find that C(ρ(�+,�)) > C(ρ(χ0,�)), where
C is the concurrence [20].

We further show that local trace-preserving operations can
enhance the fidelity of the states ρ(χ,�) if and only if p0 <

p < 1 and C(χ (q)) < C(χ ) � 1, where q is a function of p.
The first condition implies that if p � p0, then F (ρ(χ,�))
cannot be increased by TP LOCC for any |χ〉. The second
condition, on the other hand, shows that when p > p0, fidelity
can be increased only for a subset of states ρ(χ,�): in
particular, those resulting from the transmission of states |χ〉
with relatively higher entanglement.

Remark. In the above results both F(�) and |χ0〉 are
functions of the channel parameter p. This means that for
different values of p different optimal values of fidelity are
obtained. The corresponding nonmaximally entangled states
are different as well.

Details of the results. We shall now prove the results.
Alice prepares a two-qubit pure entangled state |χ〉 = α|00〉 +
β|11〉, where α,β are real and satisfy the conditions α � β > 0
and α2 + β2 = 1. She sends the second qubit through the
amplitude damping channel defined by Eq. (5). We therefore
have

ρ(χ ) → ρ(χ,�) =
∑
i=0,1

(I ⊗ Mi)ρ(χ )(I ⊗ M
†
i ), (11)

where ρ(χ ) = |χ〉〈χ |. We first obtain the fidelity F (ρ(χ,�))
before any postprocessing is performed. Define a real 3 × 3
matrix T whose elements are given by tij = Tr[ρ(χ,�)σi ⊗
σj ], where σi’s are the Pauli matrices. In our case T is diagonal
and det T is negative. For the states with diagonal T and
det T < 0, F is given by [14]

F = 1

4

(
1 +

∑
i

|tii |
)

, (12)

which in our case turns out to be

F (ρ (χ,�) ) = 1
2 (1 + 2αβ

√
1 − p − pβ2). (13)

The concurrence [20] of ρ(χ,�) is given by C = 2αβ
√

1 − p.
It is easy to check that F is not always greater than 1/2 even
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though C(ρ(χ,�)) is always nonzero as long as p 	= 1. For
example, if |χ〉 = |�+〉, then for all values p � 2(

√
2 − 1),

F � 1/2.
The useful observation to be made here is that the maximum

of F (for any p, 0 < p < 1) is not obtained when |χ〉 = |�+〉.
In particular,

Fmax = F (ρ(χ0,�)) = 1 − p

2
, (14)

where

|χ0〉 = 1√
2 − p

|00〉 +
√

1 − p

2 − p
|11〉. (15)

It is worth noting that Fmax is the maximum eigenvalue of
the density matrix ρ(�+,�), and |χ0〉 is the corresponding
eigenstate. Indeed, for any quantum channel $, the maximum
pre-processed fidelity is given by the maximum eigenvalue of
the density matrix ρ(�+,$) and is obtained by sending one
half of the corresponding eigenstate through the channel (see
Ref. [21] for details).

Equation (14), while surprising, is not conclusive because
the maximum achievable fidelity F may still be obtained
for |χ〉 = |�+〉 after Alice and Bob perform trace-preserving
LOCC: i.e., the possibility of F(�) = F ∗(ρ(�+,�)) cannot
be ruled out immediately. The following proposition, however,
negates this possibility.

Proposition 1. F(�) > F ∗(ρ(�+,�)) for any p, where
0 < p < 1.

Proof. The result can be proved by computing
F ∗(ρ(�+,�)) [see Eqs. (18) and (19)]. Here we give an al-
ternative proof which does not require computing it explicitly.
We first note that by definition F(�) � Fmax, where Fmax

is given by (14). Now, for any density matrix ρ, F ∗(ρ) �
1
2 (1 + N (ρ)), where N (ρ) = max[0, − 2λmin(ρ�)] and ρ� is
partial transpose of ρ [13]. Importantly, the equality is achieved
if and only if the eigenvector corresponding to the negative
eigenvalue of ρ� is maximally entangled [13]. It can be easily
checked that the eigenvector corresponding to the negative
eigenvalue of ρ�(�+,�) is not maximally entangled unless
p = 0. It therefore follows that

F ∗(ρ(�+,�)) <
1

2
[1 + N (ρ(�+,�))]

= 1 − p

2
= Fmax � F (�) . (16)

This concludes the proof.
Remark. As we have explained before, the above result

shows that a trace-preserving, completely positive map can
reverse the ordering of entangled states for the entanglement
monotone F ∗. Here we simply note that this reversal is not
present when the entanglement measure is concurrence. It is
easy to see that for any pair of pure states |χ1〉,|χ2〉, if C (χ1) �
C (χ2), then after the interaction C(ρ(χ1,�)) � C(ρ(χ2,�)),
where C(ρ(χ,�)) = 2αβ

√
1 − p.

We will now obtain an exact expression for F ∗(ρ(χ,�))
for any |χ〉. In Ref. [18] it was shown that for any given 2 ⊗ 2
density matrix ρ the maximum achievable fidelity F ∗ (ρ) by
TP LOCC can be found by solving the convex semidefinite

program: Maximize

F ∗ = 1
2 − Tr(Xρ�) (17)

under the constraints

0 � X � I4, − I4

2
� X� � I4

2
,

where X is a 4 × 4 matrix and � denotes partial transposition.
Moreover, the optimal X is of rank 1. Solving the above in our
case using the symmetries of the state ρ (χ,�), we obtain the
following expressions for maximum achievable fidelity:

F ∗(ρ(χ,�)) = F ∗
1 = 1

2
(1 + 2αβ

√
1 − p − pβ2)

if
p2

1 − p + p2
� α2 < 1, (18)

F ∗(ρ(χ,�)) = F ∗
2 = 1

2

(
1 + α2 1 − p

p

)

if
1

2
� α2 <

p2

1 − p + p2
. (19)

Maximum achievable fidelity for any ordered pair (p,|χ〉) can
be obtained from the above equations. Let g (p) = p2

1−p+p2 . We
first observe that the cases corresponding to F ∗

2 arise only when
g (p) > 1

2 , or equivalently p > 1
2 (

√
5 − 1) = p0. Therefore,

when p � p0, then for any state |χ〉, we have F ∗ = F ∗
1 = F ,

where the last equality follows by comparing Eqs. (13) and
(18). In these cases, therefore, there is no benefit from local
processing of the states ρ (χ,�). On the other hand, when
p > p0, the question of enhancing the fidelity of ρ (χ,�)
depends on entanglement of the state |χ〉. For any p, where
p0 < p < 1, the transmitted states |χ〉 fall in two distinct
classes: (a) those satisfying 1

2 � α2 < g (p) or equivalently
C(g(p)) < C (χ ) � 1, and (b) those for which g (p) � α2 < 1
or equivalently 0 < C (χ ) � C(g(p)). Now every state in class
(a) is more entangled than every state in class (b). Therefore,
when p > p0, the fidelity of the resulting mixed states can
only be increased if the transmitted state belongs to class (a),
that is, the class of states with relatively higher entanglement.
Summarizing the above we have the next proposition.

Proposition 2. Local trace-preserving operations can en-
hance the fidelity of the states ρ (χ,�) if and only if p0 <

p < 1 and C(χ (q)) < C(χ ) � 1, where q = g (p).
Equations (18) and (19) contain all information that we

need to know to obtain F(�). Let us denote

F1 (�) = max
|χ〉

F ∗
1 ,

where the maximum is taken over all pure states |χ〉, satisfying
the condition g (p) � α2 < 1, and

F2 (�) = max
|χ〉

F ∗
2 ,

where the maximum is taken over all pure states |χ〉, satisfying
the condition 1

2 � α2 < g (p). Thus the optimal fidelity for the
channel is given by

F (�) = F1 (�) if p � p0, (20)

F (�) = max {F1 (�) ,F2 (�)} if p > p0, (21)

where p0 = 1
2 (

√
5 − 1).
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FIG. 1. (Color online) Concurrence of |χ0〉 vs channel parameter p.

Proposition 3. The maximum achievable fidelity F(�) is
given by Fmax = 1 − p

2 for all p, 0 < p < 1.
Proof. From Eqs. (20) and (21) it is clear that two cases have

to be considered. We first consider the case when p � p0. First
observe that F ∗

1 = F (ρ(χ,�)). Therefore,

F1 (�) = max
|χ〉

F ∗
1 = max

|χ〉
F (ρ(χ,�)),

where the maximum is taken over all pure states |χ〉 such that
α2 � g(p). But Fmax is obtained for the state |χ0〉 given by
Eq. (15), which already satisfies the condition α2 = 1

2−p
>

g(p) for any p, 0 < p < 1. Thus we have proven that, for
p � p0,

F (�) = Fmax = 1 − p

2
.

We now consider the case when p > p0. From Eq. (19) we
can get an upper bound on F2(�),

F2(�) <
1

2

(
1 + g(p)

1 − p

p

)
.

It is now easy to check that Fmax > 1
2 (1 + g(p) 1−p

p
) for

every p, 0 < p < 1. Thus Fmax > F2 (�). This implies that
if p > p0, the optimal fidelity is not attained by any pure
state satisfying 1

2 � α2 < g (p). Instead the optimal fidelity is
obtained, once again, for the state |χ0〉. Noting that F1 = Fmax,
we have therefore proven that, for p > p0,

F (�) = Fmax = 1 − p

2
.

This concludes the proof.

Remark. The maximum achievable fidelity F (�) being
equal to Fmax shows that postprocessing by TP LOCC is not
necessary to achieve the optimal value as long as the appro-
priate nonmaximally entangled state |χ0 (p)〉 is transmitted.
This also suggests that enhancing of fidelity by TP LOCC
is possibly a suboptimal phenomenon. While TP LOCC can
certainly increase fidelity for some states, it may not be the
case that the optimal fidelity for the channel is obtained that
way.

Remark. The concurrence of |χ0〉 for which the optimal
fidelity is obtained is given by C (χ0) = 2

√
1 − p/ (2 − p).

Because C (χ0) is a monotonically decreasing function of p,
this shows that if the channel is very noisy, that is, p ≈ 1,
the concurrence of the state |χ0〉 becomes arbitrarily close to
zero. Perhaps more interesting is the behavior of C (χ0) with
p. Figure 1 shows that the concurrence decreases with p rather
slowly until p enters the “very noisy” domain, wherein it starts
to fall quite rapidly. For example, for p = 0.75, C (χ0) = 0.8,
whereas for p = 0.999, C (χ0) = 0.063.

Discussions. Several interesting questions arise in the
context of the results reported. For example, for which other
quantum channels can similar results be observed? A possible
way to explore this is to characterize the quantum channels
where the maximum fidelity (before any postprocessing by
TP LOCC) is obtained by nonmaximally entangled states. The
channels that show this behavior are those with the property
that the eigenvector corresponding to the maximum eigenvalue
of ρ(�+,$) ($ is a quantum channel) is not maximally
entangled [21]. The amplitude damping channel belongs to
this class but phase damping and depolarizing channels do not.
Thus if the channel is phase damping or depolarizing, then the
maximum preprocessed fidelity is always attained by sending
part of a maximally entangled state through the channel.
Despite these observations, a complete characterization of
channels exhibiting properties such as the ones presented here
should be an interesting problem for future studies. Another
question of interest is whether similar results can be observed
in the regime of finite copies. The regime of finite copies is
nonasymptotic but of considerable practical interest because
such cases may be realized experimentally.

Conclusions. To conclude, we have investigated the ques-
tion of optimal fidelity for a given quantum channel and what
is the best protocol to achieve the optimal value. While the
results presented in this Rapid Communication illustrate many
interesting features that go against conventional intuition, it is
likely that they are not generic features of quantum channels.
Nevertheless we certainly hope that they would contribute to
our understanding of quantum channels and fidelity.
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