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Enlarged molecules from excited atoms in nanochannels
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The resonance interaction that takes place in planar nanochannels between pairs of excited-state atoms is
explored. We consider interactions in channels of silica, zinc oxide, and gold. The nanosized channels induce
a dramatically different interaction from that in free space. Illustrative calculations for two lithium and cesium
atoms demonstrate that there is a short-range repulsion followed by long-range attraction. The binding energy is
strongest near the surfaces. The size of the enlarged molecule is biggest at the center of the cavity and increases
with channel width. Since the interaction is generic, we predict that enlarged molecules are formed in porous
structures, and that the molecule size depends on the size of the nanochannels.
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How molecular interactions and energy transfer are affected
by the shape and size of cavities and modulated by the surfaces
that confine them is of interest in catalysis. Little work has
been done in this area. Zeolites, mesoporous silicas, and
their use for oil cracking may be one of the largest of all
industries. Despite this, there is still no general agreement on
the mechanisms of adsorption of enzymes and other molecules
in mesoporous silica, and their excited-state interactions. [1].
An investigation of how molecular interactions and energy
transfer are affected by the shape and size of cavities and of the
surfaces that confine them is then of interest. Hopmeier et al.
[2] have demonstrated experimental evidence for enhancement
of dipole-dipole interaction in a microcavity and Agarwal and
Gupta [3] have demonstrated this in theory. An inhibition to
such work has been that the standard theoretical expression for
the resonance interaction between excited-state ground-state
atoms is incorrect [4–7].

In this Brief Report we demonstrate how resonance interac-
tions between excited atoms are strongly modified at nanoscale
dimensions when the atoms interact inside planar channels. We
show that the containment effects on the interaction can lead to
the formation of peculiar enlarged molecules. As compared to
our previous work [5] the present contains a deeper analysis of
the phenomenon. This includes an account for the origin of the
short-range repulsive and long-range attractive interaction via
spectral plots of interactions from different excitation branches
and detailed studies of the effects due to different locations
of the atomic species and different cavity sizes. The binding
energy is strongest near the surfaces. The size of the enlarged
molecule is biggest in the center of the cavity. We use lithium
and cesium atoms and channels in silica, zinc oxide, and gold
as examples. We first briefly rehearse the (correct) theory of
the resonance interaction energy in channels and in free space.
With that established we present some illustrative results. We
compare the very different interactions of atoms in free space
and in nanochannels.
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We have shown previously [4,5] that, due to too drastic ap-
proximations, the underlying theory of resonance interactions
derived from perturbative quantum electrodynamics (QED) is
only correct in the nonretarded limit. To see this we recall the
standard argument: Consider two identical atoms where one
initially is in its ground state and the other is in an excited
state. This state can also be represented by a superposition of
states: one symmetric and one antisymmetric with respect to
interchange of the atoms. While the symmetric state is likely
to decay into two ground-state atoms, the antisymmetric state
can be quite long lived. The system can thus be trapped in
the antisymmetric state [4,8]. The energy migrates back and
forth between the two atoms until either the two atoms move
apart or a photon is emitted away from the system. First-order
dispersion interactions are caused by this coupling of the
system (i.e., the energy difference between the two states is
separation (ρ) dependent). After writing down the equations of
motion for the excited system it is straightforward to derive the
zero temperature Green function for two identical and isotropic
atoms [4,5,9]. The resonance frequencies (ωr ) of the system
are given by the following equation [9]:

1 − α(1|ω)α(2|ω)T (ρ|ω)2 = 0, (1)

where the atom polarizability is taken to have the form (for
lithium and cesium)

α(j |ω) ≈ α(j |0)

ω2
j − ω2 − iωγj

. (2)

The parameters for Li and Cs were obtained [10] through a fit
of the van der Waals and Casimir asymptotes to the results from
a full ab initio quantum mechanical calculation by Marinescu
and You [11]. The fitting procedure for this single-oscillator
model works very well for all combinations of alkali-metal
dimers in vacuum. For dimers immersed in a medium one may
expect that a more realistic form of the polarizabilities are
needed.
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In a vacuum the field susceptibility matrix, T(ρ|iω), has
the following nonzero matrix elements [5],

T 0
xx(iω) = 2

(
1

ρ2
+ ω

ρc

)
e−ωρ/c

ρ
,

(3)

T 0
yy(iω) = T 0

zz(iω) = −
(

ω2

c2
+ ω

ρc
+ 1

ρ2

)
e−ωρ/c

ρ
,

when the atoms are aligned along the x axis. The susceptibili-
ties in a cavity with dielectric walls were used by Rahmani et al.
[12] to discuss fluorescence lifetimes. If the two molecules
are at the distance z from one of the channel boundaries
the corrections to the free-space results when the atoms are
symmetrically excited involve the change in the trace of the
matrix, T 1

xx + T 1
yy + T 1

zz, where

T 1
xx + T 1

yy = −
∫ ∞

0

dqqJ0(qρ)

γ0

{[
γ 2

0

1 − �2
pe−2γ0d

]

× (
�pe−2γ0z + �pe−2γ0(d−z) + 2�2

pe−2γ0d
)

+
[

(ω/c)2

1 − �2
s e

−2γ0d

](
�se

−2γ0z + �se
−2γ0(d−z)

− 2�2
s e

−2γ0d
)}

(4)

T 1
zz = −

∫ ∞

0

dqq3

γ0

J0(qρ)�p

1 − �2
pe−2γ0d

× (
�pe−2γ0z + �pe−2γ0(d−z) − 2�2

pe−2γ0d
)
.

Here J0(qρ) is a Bessel function of the first kind, γi =√
q2 + εiω2/c2 and

�p = γ1 − γ0ε1

γ1 + γ0ε1
; �s = γ1 − γ0

γ1 + γ0
. (5)

The resonance energy in narrow channels can be calculated
if the dielectric function, ε1(iω), of the wall materials is
known. In the present work we need the dielectric functions
for silica (SiO2), zinc oxide (ZnO), and gold (Au). The
complex dielectric functions of the oxides were therefore
determined employing a first-principles approach within the
GW method based on the density functional theory [13].
The dielectric function of gold was determined from optical
data [14].

In the case of two identical atoms the above resonance
condition can be separated in one antisymmetric and one
symmetric part. Since the excited symmetric state has a much
shorter lifetime than the antisymmetric state the system can be
trapped in an excited antisymmetric state [4]. The resonance
interaction energy of this antisymmetric state is,

U (ρ) = h̄[ωr (ρ) − ωr (∞)]. (6)

Since the relevant solution of Eq. (1) really is the pole of the
antisymmetric part of the underlying Green function we can
in a standard way [14] deform a contour of integration around
this pole to obtain a both simple and exact expression for the
resonance interaction energy,

U (ρ) = (h̄/π )
∫ ∞

0
dξ ln[1 + α(1|iξ )T (ρ|iξ )]. (7)

To account for the temperature (T ) dependence we simply
replace the integration over imaginary frequencies by a
summation over discrete Matsubara frequencies [14,15],

h̄

2π

∫ ∞

0
dξ → kBT

∞∑
n=0

′
, ξn = 2πkBT n/h̄, (8)

where kB is the Boltzmann constant and the prime indicates
that the n = 0 term should be divided by 2. Focusing first on
what happens in free space we find that the correct leading
term, at large separations, when the modes in the (±;x) branch
are excited, is

U (ρ,T ) � ±2kBT

ρ3

∞∑
n=0

′
α(iξn)e−xn[1 + xn + x2n2], (9)

where x = 2πkBTρ/(h̄c). We can replace the polarizability
with α(0) at intermediate and large separations. Within this
approximation the resonance free energy is,

U (ρ,T ) � ± 2kBT α(0)

2ρ3(ex − 1)3 [1 + e3x − ex(1 + 2x − 2x2)

+ e2x(−1 + 2x + 2x2)]. (10)

For intermediate values of x (see the middle portion of the full
result in Fig. 1) this free energy of resonance interaction varies
as 1/ρ4,

U (ρ) � ±4h̄cα(0)/(πρ4). (11)

This represents the dominating term in the interaction energy
for oscillators in an excited configuration at zero temperature.
However, for any finite temperature at sufficiently large
distances the long-range interaction is dominated by the n = 0

FIG. 1. (Color online) Full interaction energy between two
lithium atoms [when the modes in the (±; x) branch are excited]
and various limiting results as functions of separation, ρ. The full
result from Eq. (9) is shown as the thick solid curve with circles;
the large separation asymptote from Eq. (10) is represented by a thin
curve with vertical bars; the T = 0 K version of this asymptote from
Eq. (11) is represented by the steepest of the two dotted straight lines;
the other dotted line is the n = 0 term from Eq. (12); the nonretarded
full result is given by the solid straight line. All results are in atomic
units (i.e., the energies in Hartree units and the separation in Bohr
radii).
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FIG. 2. (Color online) Full interaction energy between two
symmetrically excited lithium atoms and between two symmetrically
excited cesium atoms at the center of a 1 nm planar channel in silica.

term. This term is here

U (ρ,T )n=0 = ±kBT α(0)/ρ3. (12)

This is the correct asymptotic long-range resonance interaction
at any finite temperature (see the rightmost portion of the full
result in Fig. 1.).

As a first illustration of the full result and of several limiting
expressions we present, in Fig. 1, the results for two lithium
atoms in free space when the modes in the (±; x) branch are
excited.

An interesting case studied in Fig. 2 is when the lithium or
cesium atoms are excited symmetrically (i.e., when they are
averaged over all possible orientations into a symmetric final
state). The total resonance interaction produces short-range
repulsion and long-range attraction creating the possibility to
have bound states. In other words very large molecules can be
formed inside pores. As we show in the figure the attractive
potential well is about twice as deep when lithium atoms are
replaced by cesium atoms.

We show in Figs. 3 and 4 how different modes contribute
to a total repulsive short-range interaction and a long-range
attraction. In the free-space case attractive and repulsive inter-
actions from the different branches cancel out in the nonre-
tarded case. However, a different scenario occurs when the
modes are confined. The different branches are squeezed out
differently when the atoms are within a planar cavity. The
x branch is directed between the atoms while the z branch
is perpendicular to the plates (the y branch is perpendicular
to the z and x branches). The short-range repulsion between
two atoms in the cavity comes from the repulsive y and z

branches being larger than the attractive x branch. As the
distance between the atoms increases only the y branch gives
repulsion and the total interaction is attractive.

The depth of the attractive potential well is much larger
if the atoms move away from the center of the channel and
approach one of the boundaries. This is illustrated in Fig. 5. The
attractive potential well is much larger for atoms in between
gold surfaces as compared to between silica or zinc oxide
surfaces. In Fig. 6 we show that the binding energy increases
as the atoms move closer to one of the gold surfaces. The

FIG. 3. (Color online) Contribution from each term n for the
system shown in Fig. 2 for a case when the total interaction energy is
repulsive (ρ = 20a0). The frequency decomposition of the interaction
energy from T 1

xx , T 1
yy , T 1

zz contributions and from the sum of these sur-
face corrections, U 1

xx , U 1
yy , U 1

zz, and U 1
wall = U 1

xx + U 1
yy + U 1

zz, respec-
tively, is shown. Also shown is the total interaction energy contribu-
tion, U 1

total, including both surface corrections and the free-space result
from different frequencies. The discrete frequencies are shown at the
top and at the bottom as circles. Note that for illustrative purposes the
zero frequency contribution has been moved to the vertical axis.

size of the molecule is largest at the center of the cavity and
increases with channel width. However, for too large cavities
the binding energy in the center will be too small to effectively

FIG. 4. (Color online) Same as Fig. 3 but for a larger separation
(ρ = 40a0) between the lithium atoms so that the total interaction
energy is attractive.
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FIG. 5. (Color online) Full interaction energy between two
symmetrically excited lithium atoms in a 1 nm planar channel in
silica (dashed curves), in zinc oxide (solid curves), and in gold (dotted
curves). Here the atoms are positioned at the distance z from one of
the walls.

bind the atoms together. Close to surfaces, independent of
channel width, there will be sufficient attractive interaction to
bind atoms together.

The focus of this paper is on resonance interactions
when excited atom pairs are inside nanochannels (e.g. inside
porous silica or between gold walls). Resonance interactions
can be suppressed inside channels when the excitation is
not symmetric. For a symmetric excitation in free space
the resonance interaction energy averages to zero in the
nonretarded limit. A very different scenario evolves inside
a planar nanochannel. Here there can be short-range repulsion
followed by long-range attraction creating a possibility to
have a bound state. This means that there can be very
large molecules with a size that depends on the channel
width. The binding energy is dramatically enhanced close to
one of the two surfaces. Casimir-Polder interaction between
atoms and surfaces drives the pair towards the surface where
the size of the molecules decreases. The analysis of the
resonance interactions undertaken here and its application to
our particular case of atoms in a nanochannel show some
features of interactions in confined geometries. Interactions in,
e.g., cylinders can be tackled straightforwardly by available
semiclassical techniques [15]. Already, it is clear from the
example we have studied that confinement geometry at
nanoscales can produce qualitatively different results. We have
confined the study to two atoms at the same distance from the
surfaces. An extension of the work would be to investigate how
the effects are modified when one atom is closer to a surface

FIG. 6. (Color online) Minus the full interaction energy between
a pair of lithium atoms in a symmetrically excited final state between
two gold surfaces distances d = 1 nm and d = 2 nm apart.

than the other. One knows that the decay rate of a dipole
changes in a cavity and depends on the orientation [3]. The
formation of these large-scale molecules requires two atoms
where one is in an excited state. This could be difficult to
achieve in a cavity with thick walls especially if they are made
of gold. One way to manage this for a metallic cavity could
be to excite the atoms outside, before they enter the cavity.
Another way might be to have one wall made of glass coated
by a thin indium tin oxide (ITO) layer or of ZnO where the inner
surface layer is heavily doped; this wall would be transparent in
the visible and ultraviolet parts of the spectrum and behave as a
metal for lower frequencies. Then the atoms could be excited
with a laser through this prepared wall. To describe this an
extended Green tensor for stratified media has to be used. This
is available in the literature [16]. The observed effects could
possibly be studied and verified using gas chromatography
with new filter types.

Finally we may speculate in some possible applications of
the observed phenomena: design of more effective lubricants;
better selection of molecules for electronic noses; more ef-
fective surface reactions for H2 generation; pressure sensitive
filtering of gas flow in nanomaterials; and new materials for
gas chromatography.
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