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Shape resonance in the Ps− system
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We have searched for S-wave shape resonances in the Ps− system. The calculations are carried out in the
framework of the complex-coordinate rotation method using both Hylleraas-type wave functions involving
powers of interparticle coordinates, and the exponential correlated wave functions. We have located an S-wave
shape resonance lying above the Ps (N = 2) threshold. By changing the mass of the positively charged particle
from one unit of the electron mass to infinitely heavy, we have traced this resonance pole from Ps− to H−. Results
for the shape resonance in H− are comparable with the available results in the literature.
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There have been continued experimental [1–8] and theo-
retical investigations [9–26] on the positronium negative ion
(Ps−), one of the simplest three lepton systems interacting
through Coulomb forces. The doubly excited states of Ps−
behave like an X-Y -X triatomic molecule [14,16]. The
importance of investigation for such a three-body system
with various angular momentum and parity states has been
highlighted in earlier works [16]. In the present work, we are
interested in researching S-wave shape resonance states for
Ps− and H−. According to the Feshbach projection formalism,
resonance states arising from the closed channel segment
of the scattering wave functions are commonly known as
Feshbach resonances or closed channel resonances, and those
arising from the open channel segment of the scattering wave
functions are known as shape resonances or open channel
resonances. A shape resonance in e−-Ps scattering is the
result of the incoming electron being temporarily trapped by a
potential well formed by the attractive static and polarization
potentials between the incoming electron and the Ps atom,
and a repulsive angular momentum barrier. Such a potential
well may be able to support both Feshbach-type resonances
lying below the excitation threshold of the Ps atom, and
shape resonances lying above. In the present work, we have
investigated a shape resonance for the S state of Ps− above
the N = 2 Ps threshold using Hylleraas-type wave functions
and correlated exponential wave functions. The complex-
coordinate rotation method (CRM) is employed to extract
resonance parameters [27]. We have found a shape resonance
lying above the N = 2 Ps threshold that, to our knowledge, has
not been reported before. We have traced this resonance pole
from the positronium negative ion to the hydrogen negative
ion, by varying the mass of the positively charged particle
from one unit of the electron mass to infinitely heavy.

The nonrelativistic Hamiltonian (in atomic units) describ-
ing a system having two electrons and a positively charged
particle having mass M is given by
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2
∇2

1 − 1

2
∇2

2 − 1

2M
∇2

3 − 1

r13
− 1

r23
+ 1

r12
,

(1)

*skar@hit.edu.cn
†ykho@pub.iams.sinica.edu.tw

where 1, 2, and 3 denote the two electrons 1, 2 and the
positively charged particle, respectively, and rij is the relative
distance between the particles i and j . For the system Ps−,
M = 1 and for the system H−, M→∞.

For S states we have used the following Hylleraas-type
wave functions to describe the proposed systems:
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In Eq. (1) we also have k + m + n � �, where �,l,m, and
n are positive integers or zero. In the present work, wave
functions with up to � = 21 (Nb = 1078) are used. We have
also carried out calculations using exponential correlated wave
functions,

� =
∑

i

Ci{exp[(−αir13 − βir23 − γir12)ω] + (1 ↔ 2)};

(3)

the nonlinear variational parameters αi,βi , and γi are generated
in a quasirandom manner:

Xi =
[

1

2
i(i + 1)

√
pX

]
(A2,X − A1,X) + A1,X, (4)

where [x] designates the fractional part of x; [A1,X,A2,X],
with (X = α,β,γ ), are real variational intervals which need
to be optimized. pα , pβ , and pγ are some prime numbers. So
the number of parameters depends on the size of the basis.
However, we have effectively optimized six parameters, A1,α ,
A2,α , A1,β , A2,β , A1,γ , and A2,γ . Here ω is an overall scaling
factor.

The present calculations have been performed within the
framework of the complex-coordinate rotation method. In
the complex-rotation method [27], the radial coordinates are
transformed by

r → r exp(iθ ), (5)

where θ is real and positive, and the transformed Hamiltonian
(1) becomes

H → T exp(−2iθ ) + V exp(−iθ ), (6)

where T and V are the kinetic and the potential energies.
Under such a transformation, one needs to calculate the
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FIG. 1. (Color online) The rotational paths for an S-wave shape
resonance of Ps− in the energy plane for four different values of the
scaling factor ω.

matrix element for the kinetic energy term in Eq. (1) and
the potential energy term in Eq. (1) separately, and then scale
them according to Eq. (6). Resonances can be examined once
the complex eigenvalue problem is diagonalized with the wave
functions in Eqs. (2) and (3). Resonance poles can be identified
by observing the stabilized complex eigenvalues E(θ , α) [in
the case of Eq. (2)] or E(θ , ω) [in the case of Eq. (3)]. The
complex resonance energy is given by

Eres = Er − i	/2, (7)

where Er is the resonance energy, and 	 is the width. The
resonance parameters are determined by locating stabilized
roots with respect to variation of the nonlinear parameters in
the wave functions and of the rotational angle.

Using the complex-coordinate rotation method, we have
located an S-wave shape resonance lying above the Ps
(N = 2) threshold. Figure 1 shows rotational paths for
this shape resonance obtained using 700-term exponential
correlated wave functions [Eq. (3)]. For the exponential
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FIG. 2. Resonance energies of the three-body systems vs the
inverse of the mass of the positively charged particle along with
the N = 2 threshold energies of the two-body subsystems. Unit of M

is the electron mass.

wave functions, we have examined the convergence of our
calculations using 500, 600, and 700 terms. Similar stabilized
behavior for varying rotational angles using a Hylleraas-type
basis [see Eq. (2)] has also been observed. Employing the wave
functions in Eqs. (2) and (3), we have obtained the resonance
parameters (Er , 	/2) in atomic units as (− 0.049 8788,
0.013 9470) and (− 0.049 881, 0.013 948), respectively. From
the minimal change of the resonance complex eigenvalue
with respect to the changing θ , we estimate the uncertainty
of this resonance is about 5 × 10−6 for each of the real
and imaginary parts. This stabilized complex eigenvalue
has never been reported in the literature, to the best of
our knowledge. Furthermore, by changing the mass of the
positively charged particle from one unit of the electron mass
to infinitely heavy, we have traced this resonance pole from
the positronium negative ion to the hydrogen negative ion.
For H−, the counterpart of this shape resonance is found
to have resonance parameters Er = −0.103 035 69 a.u. and
	/2 = 0.015 627 29 a.u. using the wave functions (2), and

TABLE I. Resonance parameters (Er , 	/2) in terms of the mass of the positively charged particle along with the N = 2 threshold energies
of the two-body subsystems. The uncertainties are estimated as 5 × 10−6 for each of the real and imaginary parts of the complex eigenvalues.

Exponential correlated wave
Hylleraas-type wave functions [Eq. (2)] functions [Eq. (3)] N = 2 threshold energy of

M Er (a.u.) 	/2 (a.u.) Er (a.u.) 	/2 (a.u.) the two-body subsystem

∞ − 0.103 035 69 0.015 627 29 − 0.103 0357 0.015 6273 − 0.125
10 − 0.092 406 31 0.016 344 05 − 0.092 4064 0.016 3440 − 0.113 636 3636
5 − 0.083 909 59 0.016 598 93 − 0.083 9098 0.016 5990 − 0.104 166 6667
3.33 − 0.076 947 92 0.016 570 03 − 0.076 9480 0.016 5703 − 0.096 131 6397
2.5 − 0.071 185 99 0.016 368 03 − 0.071 1860 0.016 3687 − 0.089 285 7143
2 − 0.066 293 52 0.016 058 68 − 0.066 2940 0.016 0587 − 0.083 333 3333
1.67 − 0.062 141 27 0.015 688 66 − 0.062 1412 0.015 6892 − 0.078 183 5206
1.43 − 0.058 470 86 0.015 273 29 − 0.058 4731 0.015 2760 − 0.073 559 6708
1.25 − 0.055 245 57 0.014 835 58 − 0.055 2470 0.014 8341 − 0.069 444 4444
1.11 − 0.052 386 03 0.014 387 72 − 0.052 3872 0.014 3892 − 0.065 758 2938
1 − 0.049 878 73 0.013 947 05 − 0.049 881 0.013 948 − 0.0625
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FIG. 3. Resonance widths vs the inverse of the mass (in atomic
units) of the positively charged particle. Unit of M is the electron
mass.

Er = −0.103 0357 a.u. and 	/2 = 0.015 6273 a.u. using the
exponential correlated wave functions (3). Our finding for the
H− ion is consistent with the result (Er = − 0.103 035 676
a.u. and 	/2 = 0.015 627 312 a.u.) reported in Ref. [28] using
the same CRM but with a Sturmian-type basis in perimetric

coordinates. We present our calculated results in Table I, and
Figs. 2 and 3, along with the N = 2 threshold energies of
the two-body subsystems consisting of the positively charged
particles with mass M , and one of the two electrons. It
appears that our calculations using the two different wave
functions in Eqs. (2) and (3) yield similar results, and they
agree quite well with those in Ref. [28]. It was conjectured
[28] that the new shape resonance is due to a nonadiabatic
coupling between different binding and antibinding adiabatic
potentials which correspond to a mixing of different (K ,
T ) approximate quantum numbers as defined by the group
theoretical method [29,30], and by using the hyperspherical
coordinate approach [31]. As for the Ps− shape resonance
reported in the present work, there appear to be no other
calculations reported in the literature. It is hoped that our
present finding will stimulate further investigations on this type
of newfound shape resonance. For example, resonances may be
analyzed by calculating the time-delay or lifetime matrix [32].
A peak structure in the eigenvalues of the time-delay matrix
would reveal the existence of a resonance pole in the S matrix.
Such an independent investigation on the shape resonance
reported here is encouraged.
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