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Duplex symmetry and its relation to the conservation of optical helicity
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Helicity is a familiar concept in particle physics and also appears in the physics of fluids and plasmas. In
this paper, we present the optical helicity in a form readily applicable to both quantum and classical problems.
We examine the relationship between the optical helicity and the more familiar optical spin and show that the
conservation of helicity is an expression of the electric-magnetic symmetry for light. We show that helicity is
distinct from Lipkin’s 00-zilch; a simple relationship exists between the two only for monochromatic fields. It is
only the optical helicity that has the correct dimensions of an angular momentum, thereby accurately describing
the helicity of light. To illustrate the physical significance of the optical helicity, we consider a circularly polarized
plane wave and the field emitted by a rotating electric dipole.
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I. INTRODUCTION

It is well-established in optics that a beam of light can carry
both spin and orbital angular momenta in a direction parallel to
the beam axis [1,2]. The spin angular momentum is associated
with circular polarization and the orbital angular momentum
with the presence of helical phase fronts. This natural sepa-
ration, however, runs into difficulties when confronted with
more fundamental ideas from Maxwellian electromagnetism
and from particle physics. In particular, it is known how to
separate the total optical angular momentum into spin and
orbital parts [3], but these parts are themselves not true angular
momenta [4,5]. Particle physics, moreover, would suggest that
because photons are massless, the spin angular momentum is
not well-defined and that the physically relevant quantity is
instead the helicity: the component of spin in the direction
of propagation [6,7]. In this paper, we determine the form of
the optical helicity and express it in terms of the electric and
magnetic fields and of associated potentials so that it may be
applied readily to both classical and quantum problems.

Pleasingly, the optical helicity is found to be closely
analogous to the forms recognized in fluid mechanics [8,9]
and plasma physics [10]. It is subtly different, however, to the
forms previously described in electromagnetic theory [7]. In
particular, the optical helicity is distinct from Lipkin’s 00-zilch
[11], referred to recently as the “optical chirality” [12–16].
For a strictly monochromatic field, the cycle-averaged optical
helicity and 00-zilch are found to be proportional to one
another. In general, however, no such proportionality holds,
and it is the optical helicity that is the physically meaningful
quantity.

Helicity is a scalar (strictly, a pseudoscalar) property of a
vector field which is related to the vorticity or twist or angular
momentum of the field. In fluid mechanics, helicity is the
volume integral of the scalar product of the fluid velocity with
its curl [8,9]:

Hfluid =
∫

d3r v · (∇ × v). (1)
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It is used as a measure of the degree of knottedness of vortex
lines. The fluid helicity is unchanged if the fluid velocity is
modified by the addition of the gradient of an arbitrary scalar
field, provided the integral extends over all space. In plasma
physics, the magnetic helicity is the volume integral of the
scalar product of the vector potential with the magnetic flux
density [10,17]:

Hmag =
∫

d3rA · B =
∫

d3rA · (∇ × A). (2)

It has been used to understand relaxation processes in plasmas
[18]. Despite the explicit appearance of the vector potential,
the magnetic helicity is gauge invariant, provided the integral
extends over all space. The formal similarity between the
fluid helicity and the magnetic helicity is apparent. In particle
physics, the single-particle helicity is the expectation value of
the helicity operator, which is the scalar product of the spin
with the normalized momentum [6]:

Hpart = � · p
|p| . (3)

It seems natural, at first sight, to determine the helicity of a
photon using this expression, but we then run into difficulties
with the form of the photon wave function [19]. It is certainly
possible to use the electric and magnetic fields to form the
basis of our wave function via the Riemann-Silberstein vector,
but the resulting helicity does not have the dimensions of
an angular momentum [7]. This feature is not specific to the
helicity but arises, rather, from the fact that the squares of the
electric and magnetic fields do not have the dimensions of a
probability density [19].

II. OPTICAL HELICITY

If we adopt a system of units in which μ0 = ε0 = c = 1,
then the magnetic helicity (2) does have the dimensions of an
angular momentum, and it is then natural to ask whether it
might be acceptable as a quantity that describes the helicity
of freely propagating electromagnetic waves. That it is not
becomes clear when we consider the duplex symmetry [20]
due to Heaviside and Larmor [5,21,22]. This symmetry is
the invariance of the free-field Maxwell equations under the
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duplex transformation:

E → E′ = cos θE + sin θB, B → B′ = cos θB − sin θE.

(4)

Physically important properties of the free electromagnetic
field must be invariant under this “rotation” in the space of
the electric and magnetic fields [23], a principle referred to
recently as electric-magnetic democracy [24]. An important
consequence of this is that we cannot tell whether distant
galaxies are made from what we call charges or monopoles
with suitably chosen properties [25]. We find it necessary
to introduce a second (pseudo)vector potential C such that
E = −∇ × C [26]. This allows us to invoke the duplex
transformation (4) by taking

A → A′ = cos θA + sin θC, C → C′ = cos θC − sin θA,

(5)

with corresponding transformations for the scalar potential
and its counterpart for C. It is clear that the magnetic helicity
(2) does not retain its form under a duplex transformation (5)
and is, therefore, not an acceptable candidate for an optical
helicity. The natural way to proceed is to combine half of
the magnetic helicity with half of the corresponding “electric
helicity,” obtaining

Hopt = 1

2

∫
d3r(A · B − C · E). (6)

This is, in fact, the optical helicity we seek. It does retain
its form under a duplex transformation (5) and is a Lorentz
pseudoscalar with the dimensions of an angular momentum.
We note that the optical helicity is equivalent to the screw
action introduced by Candlin [27] and has appeared explicitly
in the form above [28,29]. These authors recognized the
optical helicity as being a quantity related to the twist of
the electromagnetic field and that it can be expressed in
terms of the difference of photon numbers for opposite
circular polarizations [30]. Zwanziger [31] and Drummond
[32] went further and also made the association between
helicity conservation and the duplex or Heaviside-Larmor
symmetry, which we outline below.

The optical helicity (6) has some unexpected but rather
satisfactory properties. First, we note the surprising presence
of the vector potentials, which raises the question of gauge
dependence. Like the magnetic helicity, the optical helicity is,
in fact, gauge invariant as the integral over all space of the
scalar product of a longitudinal vector field with a transverse
vector field is zero [3]. That is, only the gauge-invariant
transverse pieces, A⊥ and C⊥, of the vector potentials actually
contribute. In addition, the optical helicity is a conserved
quantity for all free electromagnetic fields:

d

dt
Hopt = 0. (7)

Such global conservation laws are the natural consequences
of symmetries [33], and it is natural to ask which symmetry
of the free electromagnetic field is associated with the
conservation of optical helicity. To answer this, we need only
employ the optical helicity as the generator of an infinitesimal
transformation of the electric and magnetic fields. We find that,

for small θ , the quantity θHopt generates the transformation

E → E + θB, B → B − θE, (8)

which is the infinitesimal form of the duplex transformation
(4). It is clear, therefore, that the conservation of optical helicity
is associated with the duplex or Heaviside-Larmor symmetry,
a fact that has also been recognized elsewhere [30–32,34]. This
connection seems reasonable in light of our observation that
the duplex transformation rotates the field vectors of a plane
wave about its direction of propagation. We consider this and
related ideas in detail elsewhere [35].

We can make contact between the optical helicity (6) and
the concept of helicity from particle physics by writing the
vector potentials as superpositions of quantized plane waves:

Â⊥(r,t) =
∑
k,λ

√
h̄

2V ω
εk,λâk,λe

i(k·r−ωt) + H.c.,

(9)

Ĉ⊥(r,t) =
∑
k,λ

√
h̄

2V ω3
k × εk,λâk,λe

i(k·r−ωt) + H.c.,

where the symbols have their usual meanings. If we choose
the basis of circular polarization, the operator representing the
optical helicity takes the simple, exact form

Ĥopt =
∑

k

h̄(n̂k,L − n̂k,R), (10)

where n̂k,L and n̂k,R are the number operators for the left-
and right-handed circular polarizations associated with the
wave vector k. As the helicity of a photon is ±h̄ for these
polarisations, we see that Eq. (10) simply represents a sum over
all modes of the number of photons in each mode multiplied
by their helicities. This matches naturally with the concept of
helicity from particle physics.

It is natural to enquire as to the relationship between the
optical helicity and the optical spin. The spinlike part of
the total optical angular momentum is the volume integral
of the spin density 1

2 (E × A⊥ + B × C⊥) [5]. Similarly, we
may think of the quantity 1

2 (A⊥ · B − C⊥ · E) as a helicity
density. The gauge invariance of these quantities is a conse-
quence of the gauge invariance of A⊥ and C⊥. Our helicity
and spin densities obey the continuity equation

∂

∂t

1

2
(A⊥ · B − C⊥ · E) + ∇ · 1

2
(E × A⊥ + B × C⊥) = 0.

(11)

Thus, the spin density plays the role of a helicity flux density. In
this sense, it is analogous to Poynting’s vector, which plays the
roles of both the linear-momentum density and the energy-flux
density [20].

We emphasize that the optical helicity (6) is distinct from
optical spin although the associated densities are related by the
continuity equation (11). Optical helicity is a pseudoscalar
quantity whereas optical spin is a pseudovector. This is
illustrated in Fig. 1 in which we consider a left-handed
circularly polarized wave incident upon a mirror. The helicity
and spin per photon are indicated. Upon reflection, the helicity
and wave vector of the wave change sign. The spin, however,
does not. The underlying reason for this is that optical helicity
is related to the sense of rotation of the field vectors relative to
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FIG. 1. (Color online) Optical helicity and optical spin are
pseudoscalar and pseudovector quantities, respectively. Consider a
left-handed circularly polarized wave incident upon a mirror as
shown. Following reflection, both the handedness (and therefore
helicity) and the direction of propagation of the wave are inverted.
This leaves the spin of the wave unchanged.

the direction of propagation whereas optical spin is related to
the sense of rotation of the field vectors relative to space.

Optical helicity (6) is distinct from the 00-zilch:

Z00 = 1

2

∫
d3r(E · ∇ × E + B · ∇ × B). (12)

This conserved quantity was introduced by Lipkin [11] and has
been referred to recently as the optical chirality [12–16]. The
00-zilch is a higher-order extension of the optical helicity in the
sense that the form of the 00-zilch (12) is obtainable from that
of the optical helicity (6) by replacing the electric and magnetic
fields (and corresponding vector potentials) with their curls.
For a strictly monochromatic field, the optical helicity and
00-zilch are proportional to one another in a given frame of
reference, the proportionality factor being the square of the
angular frequency ω. However, in general, the optical helicity
and the 00-zilch are distinct quantities, and no proportionality
holds between them. Moreover, it is the optical helicity, and
not the 00-zilch, that has the correct dimensions of an angular
momentum and is the generator of the rotation (4). We suggest,
therefore, that it is the optical helicity, rather than the 00-zilch,
that faithfully describes the helicity of light.

III. HELICITY OF OPTICAL FIELDS

Optical helicity provides an interesting twist on the familiar
paradox of how a circularly polarized plane wave can carry
angular momentum [36]. The problem, it will be recalled,
is that the component of the angular-momentum density
r × (E × B) [20] in the direction of propagation vanishes as
E and B lie in the transverse plane. This suggests, strangely,
that a circularly polarized plane wave possesses no angular
momentum in the direction of propagation. We can resolve
this difficulty by noting that a real beam necessarily has a
finite transverse extent. The intensity gradients at the edges
of the beam give rise to nonzero field components in the
direction of propagation, localizing the angular momentum
in these regions. An absorbing particle in the center of the
beam is able to pick up angular momentum by modifying the
beam’s transverse profile, generating components of the fields
in the direction of propagation [36–38]. In this way, the flux of
angular momentum is changed by the absorption [39]. We can

approach this problem from a different, and perhaps simpler,
perspective by turning to optical helicity. Consider a circularly
polarized plane wave propagating in the z direction. The vector
potentials assume the forms

A⊥ ± iC⊥ = A(x̂ ∓ iŷ)eiω(z−t), (13)

where the two signs correspond to the two circular po-
larizations. It is straightforward to calculate the densi-
ties, and flux densities, of helicity and energy for our
wave:

1
2 (A⊥ · B − C⊥ · E) = ±|A|2ω,

1
2 (E2 + B2) = |A|2ω2,

(14)
1
2 (E × A⊥ + B × C⊥) = ±|A|2ωẑ,

E × B = |A|2ω2ẑ.

Note that these expressions are exact and that no cycle
averaging need be applied to obtain them. The similarity of
these results to the 00-zilch density and flux density of a plane
wave (see, e.g., Eqs. (16) and (17) of Ref. [14], respectively)
is a direct consequence of the monochromaticity of the plane
wave. The physical significance of the frequency dependences
in Eq. (14) becomes clear when we take the ratio of the first two
quantities and multiply numerator and denominator trivially
by h̄:

1
2 (A⊥ · B − C⊥ · E)

1
2 (E2 + B2)

= ±h̄

h̄ω
. (15)

As the energy of a photon is h̄ω, we see that our wave possesses
a helicity of ±h̄ per photon as it should. In contrast, the
wave possesses a 00-zilch of ±ω2h̄ per photon—a frequency
dependence noted as unusual by Lipkin [11]. Comparing the
flux densities of helicity and energy, we infer that the rate
at which helicity is transported by the wave is similarly
proportional to the rate at which energy is transported. We can
conclude that the absorption of a photon by a body removes
a helicity of ±h̄ from the beam and that this is converted into
intrinsic angular momentum of the body about the direction of
propagation. We should emphasize that this analysis, based on
optical helicity, in no way invalidates earlier arguments based
on optical angular momentum [36–39] but may be seen as
resolving the plane-wave paradox more directly.

Finally, we consider how helicity is generated in the
emission of light by matter. We examine here the simplest
situation: emission of light by an electric dipole placed at
the coordinate origin, rotating about the z axis with angular
frequency ω. The electric field of a dipole generally has both
transverse and longitudinal parts [40]. However, as helicity is a
property only of the free and fully transverse field, we need to
work in the far field. For r = |r| sufficiently large, the dipole
fields are [20]

B = Re

[
ω2

4πr2
r × peiω(r−t)

]
, E = 1

r
B × r, (16)

where p = p(x̂ ± iŷ)/
√

2. It is then straightforward to cal-
culate A⊥ and C⊥ and to find that the flux of helicity
passing through a large sphere centered upon the dipole is
zero. This is because the angular momentum radiated by the
dipole carries equal and opposite helicity through antipodal
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points on the sphere. If we consider the localized fluxes of
helicity and energy, we find that the helicity carried away
by the field amounts to ±h̄ per photon near the north pole
of the sphere but is very small near the equator. This is
because the emitting dipole appears to be rotating when
viewed from the north pole but appears to be oscillating in
the manner of a linear dipole when viewed from the equator.
The total helicity radiated in the northern hemisphere amounts
to ±3h̄/8 per photon with an exactly opposite amount for the
southern hemisphere. Interestingly, similar behavior is found
when applying the magnetic helicity to the solar atmosphere
where the observed local helicities in the upper and lower
hemispheres are predominantly opposite [17,41].

IV. CONCLUSION

We have expressed the helicity of light in terms of the
electric and magnetic fields and their corresponding vector po-
tentials. This form satisfies the duplex, or Heaviside-Larmor,

symmetry [20–24]. Its global conservation, for freely propa-
gating, fully transverse optical fields, is an expression of this
symmetry. In the presence of charges, the electric-magnetic
symmetry is broken, and helicity is no longer an absolutely
conserved quantity in general. We have demonstrated the
relation of the optical helicity to other quantities: the optical
spin and the 00-zilch. As simple applications of optical helicity,
we have revisited the question of the angular momentum
carried by a plane wave and calculated the rate at which
helicity is radiated by a rotating electric dipole in the far
field.
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