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We report experimental generation of an azimuthally polarized (AP) beam with variable spatial coherence.
The effect of spatial coherence on the propagation properties of an AP beam is studied both numerically and
experimentally, and our experimental results agree well with the theoretical predictions. The dependence of the
intensity distribution of an AP beam focused by a high numerical aperture objective lens on its initial spatial
coherence is illustrated numerically, and it is found that we can shape the beam profile of a tightly focused AP
beam by varying its initial spatial coherence. Furthermore, the radiation forces on Rayleigh particles induced
by a tightly focused AP beam are studied, and we find that the tightly focused AP beam can be used to trap a
Rayleigh particle whose refractive index is larger or smaller than that of the ambient by varying its initial spatial
coherence. Our results will be useful for particle trapping and material thermal processing.
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I. INTRODUCTION

In past years, cylindrical vector beams, such as radially and
azimuthal polarized beams, have been explored extensively
due to their wide applications in microscopy, lithography, free-
space optical communications, electron acceleration, particle
trapping, material processing, optical data storage, high-
resolution metrology, superresolution imaging, plasmonic
focusing, and laser machining. [1–31] Different methods have
been developed to generate various cylindrical vector beams.
[1,16–20] The unique focusing properties of cylindrical vector
beams by a high numerical aperture (NA) objective lens have
been investigated widely. [1,4,8,21–31] When a radially polar-
ized (RP) beam is focused by a high NA objective lens, a strong
longitudinal electric field appears and the tightly focused beam
spot of a RP beam is much smaller than that of a linearly
polarized beam, [1,4] and the focused beam spot can be used
to trap a Rayleigh particle whose refractive index is larger than
that of the ambient. [11,12] When an azimuthally polarized
(AP) beam is focused by a high NA objective lens, a strong
magnetic field on the optical axis is generated while the electric
field is purely transverse and the focused beam spot has a dark
hollow beam profile, [1,4] which can be used to trap a Rayleigh
particle whose refractive index is smaller than that of the ambi-
ent. [13] The polarization rotator setup was proposed by Zhan
and Leger in [24] to generate a generalized cylindrical vector
beam which can be decomposed into a linear superposition of
RP and AP components, and it is found that we can shape the
tightly focused beam profile of a generalized cylindrical vector
beam by adjusting the rotating angle of the polarization rotator,
which can be used to trap a Rayleigh particle whose refractive
index is larger or smaller than that of the ambient. Zhang et al.
studied the focusing properties of a double-ring-shaped RP
beam, and found that the tightly focused beam spot of a
double-ring-shaped RP beam also can be used to trap different
particles by changing the truncation parameter. [14]

More recently, Dong et al. extended the cylindrical vector
beam to the partially coherent case with the help of the unified
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theory of coherence and polarization, [32] and studied its
paraxial propagation properties in free space theoretically. It
was shown that the propagation properties of a cylindrical
vector beam are significantly affected by its initial spatial
coherence. More recently, Wang et al. reported experimental
generation of a partially coherent RP beam. [33] In the present
article, we first report experimental generation of an AP beam
with variable spatial coherence, and verify the effect of spatial
coherence on the propagation properties of an AP beam. The
influence of spatial coherence on the intensity distribution of an
AP beam focused by a high NA objective lens and its radiation
forces on Rayleigh particles is illustrated numerically. We
show that a tightly focused AP beam can be used to trap
different particles by varying its initial spatial coherence.

II. PARTIALLY COHERENT AP BEAM AND ITS
PARAXIAL PROPAGATION FORMULA

In this section, we outline briefly the theoretical model
for a partially coherent AP beam and its paraxial propagation
formula. The vectorial electric field of a coherent AP beam
is expressed as the superposition of orthogonally polarized
Hermite Gaussian HG01 and HG10 modes [1]

�E (x,y) = Ex (x,y) �ex + Ey (x,y) �ey

= E0

[
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(
−x2 + y2

w2
0

)
�ex

+ x

w0
exp

(
−x2 + y2

w2
0

)
�ey

]
, (1)

where w0 denotes the beam waist size of a fundamental
Gaussian mode and E0 is a normalization factor. The power of
the AP beam is calculated by the following formula:

ηpower =
∫ +∞

−∞

∫ +∞

−∞

ε0c

2
[|Ex(x,y)|2 + |Ey(x,y)|2]dx dy,

(2)

where ε0 and c represent the dielectric constant and the light
speed in vacuum, respectively. Applying Eqs. (1) and (2), we
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find that E0 is related to ηpower as follows:

E0 =
√

8ηpower

πε0cw
2
0

. (3)

Based on the unified theory of coherence and polarization,
the second-order correlation properties of a paraxial partially
coherent vector beam at z = 0, in space-frequency domain,
can be characterized by the 2 × 2 cross-spectral density (CSD)
matrix of the electric field, defined by the formula [34,35]

Ŵ (ee) (x1,y1,x2,y2,0)

=
(

W (ee)
xx (x1,y1,x2,y2,0) W (ee)

xy (x1,y1,x2,y2,0)

W (ee)
yx (x1,y1,x2,y2,0) W (ee)

yy (x1,y1,x2,y2,0)

)
, (4)

with elements

W
(ee)
αβ (x1,y1,x2,y2,0)

= 〈Eα(x1,y1,0)E∗
β (x2,y2,0)〉 (α = x,y; β = x,y),

(5)

where (x1,y1) and (x2,y2) denote the coordinates of two
arbitrary points at the source plane, and Ex and Ey de-
note the components of the random electric vector, along
two mutually orthogonal x and y directions perpendic-
ular to the z axis. Here the asterisk denotes the com-
plex conjugate and the angular brackets denote ensemble
average.

We assume that a partially coherent AP beam is radiated from a Schell-model source, [35,36] then the element of its CSD matrix
can be expressed as follows: [32]
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W (ee)
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where Bxy = |Bxy | exp(iφ) is the correlation coefficient between the Ex and Ey field components, φ is the phase difference
between the x and y components of the field and is removable in most cases, and σxx , σyy , and σxy are the widths of autocorrelation
functions of the x component of the field, of the y component of the field, and of the mutual correlation function of x and y field
components, respectively.
After passing through a paraxial ABCD optical system, the elements of the CSD matrix of a partially coherent AP beam are
written as [32]
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W (ee)
yx (u1,v1,u2,v2,z) = W (ee)∗
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013840-2



EFFECT OF SPATIAL COHERENCE ON PROPAGATION, . . . PHYSICAL REVIEW A 86, 013840 (2012)
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M1xx = 1/w2
0 + 1/

(
2σ 2

xx

) − ikA/ (2B) , M2xx = 1/w2
0 + 1/

(
2σ 2

xx

) + ikA∗/
(
2B∗) − 1/

(
4M1xxσ

4
xx

)
,

M1xy = 1/w2
0 + 1/

(
2σ 2

xy

) − ikA/ (2B) , M2xy = 1/w2
0 + 1/

(
2σ 2

xy

) + ikA∗/
(
2B∗) − 1/

(
4M1xyσ

4
xy

)
, (14)

M1yy = 1/w2
0 + 1/

(
2σ 2

yy

) − ikA/ (2B) , M2yy = 1/w2
0 + 1/

(
2σ 2

yy

) + ikA∗/
(
2B∗) − 1/

(
4M1yyσ

4
yy

)
.

Here A, B, C, and D are the transfer matrix elements of the optical system, (u1,v1) and (u2,v2) denote the coordinates of two
arbitrary points at the output plane, and k = 2π/λ is the wave number with λ being the wavelength.
The intensity of the partially coherent AP beam at the output plane is expressed as

I (u,v,z) = Tr[Ŵ (ee)(u,v,u,v,z)] = W (ee)
xx (u,v,u,v,z) + W (ee)

yy (u,v,u,v,z) . (15)

Applying Eqs. (11)–(15), we can study the propagation properties of a partially coherent AP beam through a paraxial ABCD
optical system in free space conveniently.

III. EXPERIMENTAL GENERATION OF A PARTIALLY
COHERENT AP BEAM

In this section, we report experimental generation of an AP
beam with variable spatial coherence, and verify the effect
of spatial coherence on the propagation properties of an AP
beam.

Part 1 of Fig. 1 shows our experimental setup for generating
an AP beam with variable spatial coherence. A linearly
polarized beam generated by a He-Ne laser is focused by
a thin lens L1, then it illuminates a rotating ground-glass
disk (RGGD), producing a partially coherent beam with
Gaussian statistics. After passing through a collimation lens

FIG. 1. (Color online) Experimental setup for generating a
partially coherent AP beam and measuring its intensity distribution
after passing through a thin lens. L1, L2, and L3, thin lenses; RGGD,
rotating ground-glass disk; GAF, Gaussian amplitude filter; LCPC,
liquid crystal polarization converter; CCD, charge-coupled device;
PC, personal computer.

L2 and a Gaussian amplitude filter (GAF), the generated
partially coherent beam becomes a linearly polarized Gaussian
Schell-model (GSM) beam, whose intensity distribution and
spectral degree of coherence satisfy Gaussian distribution.
After passing through a liquid crystal polarization converter
(Acroptix, Switzerland), the generated GSM beam becomes a
partially coherent AP beam.

The second-order correlation properties of a linearly polar-
ized GSM beam at z = 0 is characterized by the CSD given
by [36,37]

W
(ee)
GSM (x1,y1,x2,y2,0)

=exp

[
−x2

1+y2
1+x2

2+y2
2

w2
0

− (x1−x2)2+(y1−y2)2

2σ 2
0

]
,

(16)

where w0 and σ0 represent the beam waist size and the
transverse coherence width, respectively. The transmission
function of the GAF determines the value of w0, and w0 is

FIG. 2. (Color online) Experimental results of the intensity
distribution of the generated GSM beam just behind the GAF and
the corresponding cross line (dotted curve). The solid curve is a
result of the Gaussian fit.
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FIG. 3. (Color online) Experimental setup for measuring the
transverse coherence width σ0 of the generated GSM beam. BS,
50:50 beam splitter; D1 and D2, single photon detectors; PC, personal
computer.

equal to 1.5 mm in our experiment (see Fig. 2). The transverse
coherence width σ0 is determined by the focused beam spot
size on the RGGD and the roughness of the RGGD together.
In our experiment, the roughness of the RGGD is fixed and we
mainly modulate the value of σ0 by varying the focused beam
spot on the RGGD (i.e., the distance between L1 and RGGD).

We adopt the method proposed in [37] to measure the
transverse coherence width σ0 of the generated GSM beam.
Figure 3 shows our experimental setup for measuring σ0.
After passing through a thin lens L3, the generated GSM
beam is split into two beams by a beam splitter. The reflected
and transmitted beams arrive at D1 and D2, which scan the
transverse planes of u1 and u2, respectively. Both the distances
from the GAF to L3 and from L3 to D1 and D2 are 2f (i.e.,
2f -imaging system). The electronic coincidence circuit is used
to measure the fourth-order correlation function (i.e., intensity
correlation function) between two detectors. The normalized
fourth-order correlation between two detectors is expressed as

g(2)(u1 − u2,τ ) = 〈I (u1,t)I (u2,t + τ )〉
〈I (u1,t)〉 〈I (u2,t + τ )〉 , (17)

where 〈I (u1,t)〉 and 〈I (u2,t + τ )〉 are the average intensities
at two detectors, respectively, and τ denotes the delay time of
the photon flux of two optical paths. Applying the Gaussian
moment theorem, [36] g(2)(u1 − u2,τ ) of the generated GSM
beam with τ = 0 is simplified as

g(2)(u1 − u2,τ = 0) = 1 + exp
[−(u1 − u2)2/2σ 2

0

]
. (18)

To measure σ0, D2 is fixed at u2 = 0 and D1 scans
along the plane u1. Then we can obtain the distribution of
the normalized fourth-order correlation function with τ = 0
between two detectors from the electronic coincidence circuit.

Figure 4 shows our experimental results (dotted curves) of the
normalized fourth-order correlation function for three different
focused beam spot sizes on the RGGD. From the Gaussian
fits (solid curves) of the experimental results, we obtain σ0 =
1.5 mm, σ0 = 0.7 mm, and σ0 = 0.3 mm for Figs. 4(a)–4(c),
respectively. If there is no RGGD in Fig. 3, σ0 is approximated
as σ0 = ∞. In our experiment, the liquid crystal polarization
located just behind the GAF is used to convert the generated
GSM beam into a partially coherent AP beam; it just modulates
the state of polarization of the GSM beam, while it does not
alter its spatial coherence, thus the correlation coefficients of
the generated partially coherent AP beam are approximated as
σxx = σyy = σxy = σ0.

Part II of Fig. 1 shows the setup for measuring the intensity
of a partially coherent AP beam at the focal plane after
passing through a thin lens L3 with focal length f = 40 cm.
The distance from the liquid crystal polarization converter to
L3 and the distance from L3 to CCD are both equal to f .
The transfer matrix between the liquid crystal polarization
converter and CCD reads as(

A B

C D

)
=

(
1 f

0 1

) (
1 0

−1/f 1

) (
1 f

0 1

)
=

(
0 f

−1/f 0

)
.

(19)

With the measured beam parameters, Eq. (19) and the obtained
propagation formulas in Sec. II, we can simulate the focusing
properties of a partially coherent AP beam, and carry out
comparison with experimental results.

Figure 5 shows our experimental results of the intensity
distribution of the focused AP beam with variable initial spatial
coherence and the corresponding cross line at the focal plane.
For the convenience of comparison, the corresponding results
calculated by the theoretical formulas are also shown in Fig. 5.
As shown in Fig. 5, the focused beam spot of a coherent AP
beam with σ0 = ∞ still has a dark hollow beam profile as
expected. With the decrease of σ0 (i.e., decrease of spatial
coherence), the focused beams spot gradually transforms from
a dark hollow beam profile into a Gaussian beam profile
[see Figs. 5(a)–5(d)]. For a suitable value of σ0, a focused
beam spot with a flat-topped beam profile can be formed
[see Fig. 5(b)]. Our experimental results agree reasonably
well with the theoretical predictions. Thus, decreasing the
spatial coherence of an AP beam provides a convenient way
for shaping its beam profile on propagation.

FIG. 4. Experimental results of the normalized fourth-order correlation function (dotted curve) and the corresponding Gaussian fit (solid
curve) for three different focused beam spot sizes on the RGGD.
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FIG. 5. (Color online) Experimental results of the intensity distribution of the focused AP beam and the corresponding cross line (dotted
curve) at the focal plane for different values of σ0. The solid curves are calculated by the theoretical formulas.

To learn about the effect of spatial coherence on the
propagation properties of the orthogonally polarized Hermite
Gaussian HG01 and HG10 modes which consist of the AP beam,
we now carry out experimental study of the focusing properties
of a partially coherent AP beam after passing through a linear
polarizer. A linear polarizer whose transmission axis forms
an angle ϕ with the x axis is located just behind the liquid
crystal polarization converter. The intensity distribution of
the partially coherent AP beam in the focal plane can be
written as

Iϕ(x,y,z) = W (ee)
xx (x,y,x,y,z) cos2 ϕ + W (ee)

yy (x,y,x,y,z)

× sin2 ϕ + W (ee)
xy (x,y,x,y,z) sin 2ϕ. (20)

Figure 6 shows our experimental results of the focused
beam profile of an AP beam with variable spatial coherence af-
ter passing through a linear polarizer for different transmission
angle ϕ. One finds from Fig. 6 that the orthogonally polarized
Hermite Gaussian HG01 (ϕ = 0) and HG10 (ϕ = 90o) modes

are strongly influenced by the initial spatial coherence. With
the decrease of initial spatial coherence, both the focused beam
spots of HG01 and HG10 gradually degenerate into circular
Gaussian beam profiles.

IV. INTENSITY DISTRIBUTION OF A PARTIALLY
COHERENT AP BEAM FOCUSED BY A HIGH NA

OBJECTIVE LENS

In many practical applications, the cylindrical vector beam
usually is focused by a high NA objective lens and the focused
beam spot size is comparable to the wavelength of the beam. In
this case, the paraxial propagation theory is no longer valid to
study the focusing properties of the cylindrical vector beam. In
this section, we adopt the Richards-Wolf vectorial diffraction
integral to study the effect of spatial coherence on the intensity
distribution of an AP beam focused by a high NA objective lens
numerically. Figure 7 shows the scheme of a tightly focusing
system.

According to the Richards-Wolf diffraction integral, in the cylindrical coordinate system, the vectorial electric field of a tightly
focused cylindrical vector beam at the focal plane is expressed as [1,4,8,21–31]

�E (r,ϕ,z) = − if
√

n1

λ

∫ θmax

0

∫ 2π

0

√
cos θ sin θ exp {ik1 [z cos θ + r sin θ cos(φ − ϕ)]}

×
⎡
⎣ lx(θ,φ)[cos θ + sin2 φ(1 − cos θ )] + ly(θ,φ) cos φ sin φ(cos θ − 1)

lx(θ,φ) cos φ sin φ(cos θ − 1) + ly(θ,φ)[cos θ + cos2 φ(1 − cos θ )]
−lx(θ,φ) cos φ sin θ − ly(θ,φ) sin φ sin θ

⎤
⎦ dθ dφ, (21)

where r , ϕ, and z are the cylindrical coordinates of an observation point, ϕ is the azimuthal angle of the incident beam, f is the
focal length of the lens, k1 = kn1 = 2πn1/λ is the wave number in the surrounding medium with n1 being the refractive index
of the surrounding medium, θ is the NA angle, and θmax is the maximal NA angle which is related to the NA by the formula
θmax = arcsin NA/n1, lx(θ,φ), and ly(θ,φ) are the pupil apodization functions at the aperture surface and are derived by setting
r = f sin θ in Ex(x,y) and Ey(x,y), respectively.
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FIG. 6. (Color online) Experimental results of the focused beam profile of an AP beam with variable spatial coherence after passing through
a linear polarizer for different transmission angle ϕ.

Applying Eq. (21), the 3 × 3 CSD matrix of the electric field in the focal region is expressed as

Ŵ (ee) (r1,ϕ1,z1,r2,ϕ2,z2) =

⎛
⎜⎝

W (ee)
xx (r1,ϕ1,z1,r2,ϕ2,z2) W (ee)

xy (r1,ϕ1,z1,r2,ϕ2,z2) W (ee)
xz (r1,ϕ1,z1,r2,ϕ2,z2)

W (ee)
yx (r1,ϕ1,z1,r2,ϕ2,z2) W (ee)

yy (r1,ϕ1,z1,r2,ϕ2,z2) W (ee)
yz (r1,ϕ1,z1,r2,ϕ2,z2)

W (ee)
zx (r1,ϕ1,z1,r2,ϕ2,z2) W (ee)

zy (r1,ϕ1,z1,r2,ϕ2,z2) W (ee)
zz (r1,ϕ1,z1,r2,ϕ2,z2)

⎞
⎟⎠ , (22)

where W
(ee)
ij (r1,ϕ1,z1,r2,ϕ2,z2) = 〈Ei(r1,ϕ1,z1)E∗

j (r2,ϕ2,z2)〉, (i,j = x,y,z), and

W (ee)
xx (r1,ϕ1,z1,r2,ϕ2,z2) = f 2n1

λ2

{∫ θmax

0

∫ θmax

0

∫ 2π

0

∫ 2π

0

√
cos θ1 cos θ2 sin θ1 sin θ2

× exp{−ik1[z2 cos θ2 + r2 sin θ2 cos(φ2 − ϕ2)]} exp{ik1[z1 cos θ1 + r1 sin θ1 cos(φ1 − ϕ1)]}
×{Wxx(θ1,φ1,θ2,φ2)[cos θ1 + sin2 φ1(1 − cos θ1)][cos θ2 + sin2 φ2(1 − cos θ2)]

+Wxy(θ1,φ1,θ2,φ2)[cos θ1 + sin2 φ1(1 − cos θ1)] cos φ2 sin φ2(cos θ2 − 1)

+Wyx(θ1,φ1,θ2,φ2) cos φ1 sin φ1(cos θ1 − 1)[cos θ2 + sin2 φ2(1 − cos θ2)]

+Wyy(θ1,φ1,θ2,φ2) cos φ1 sin φ1(cos θ1 − 1) cos φ2 sin φ2(cos θ2 − 1)}dθ1 dθ2 dφ1 dφ2

}
,

(23)

W (ee)
xy (r1,ϕ1,z1,r2,ϕ2,z2) = f 2n1

λ2
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0

∫ θmax

0

∫ 2π

0

∫ 2π

0
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cos θ1 cos θ2 sin θ1 sin θ2

× exp{−ik1[z2 cos θ2 + r2 sin θ2 cos(φ2 − ϕ2)]} exp{ik1[z1 cos θ1 + r1 sin θ1 cos(φ1 − ϕ1)]}
×{Wxx(θ1,φ1,θ2,φ2)[cos θ1 + sin2 φ1(1 − cos θ1)] cos φ2 sin φ2(cos θ2 − 1)

+Wxy(θ1,φ1,θ2,φ2)[cos θ1 + sin2 φ1(1 − cos θ1)][cos θ2 + cos2 φ2(1 − cos θ2)]

+Wyx(θ1,φ1,θ2,φ2) cos φ1 sin φ1(cos θ1 − 1) cos φ2 sin φ2(cos θ2 − 1)

+Wyy(θ1,φ1,θ2,φ2) cos φ1 sin φ1(cos θ1 − 1)[cos θ2 + cos2 φ2(1 − cos θ2)]}dθ1 dθ2 dφ1 dφ2

)
,

(24)

W (ee)
xz (r1,ϕ1,z1,r2,ϕ2,z2) = −f 2n1

λ2

(∫ θmax

0

∫ θmax

0

∫ 2π

0

∫ 2π

0

√
cos θ1 cos θ2 sin θ1 sin θ2

× exp{−ik1[z2 cos θ2 + r2 sin θ2 cos(φ2 − ϕ2)]} exp{ik1[z1 cos θ1 + r1 sin θ1 cos(φ1 − ϕ1)]}
×{Wxx(θ1,φ1,θ2,φ2)[cos θ1 + sin2 φ1(1 − cos θ1)] cos φ2 sin θ2

+Wxy(θ1,φ1,θ2,φ2)[cos θ1 + sin2 φ1(1 − cos θ1)] sin φ2 sin θ2

+Wyx(θ1,φ1,θ2,φ2) cos φ1 sin φ1(cos θ1 − 1) cos φ2 sin θ2

+Wyy(θ1,φ1,θ2,φ2) cos φ1 sin φ1(cos θ1 − 1) sin φ2 sin θ2}dθ1 dθ2 dφ1 dφ2

)
, (25)
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FIG. 7. Scheme of tight focusing system.

W (ee)
yy (r1,ϕ1,z1,r2,ϕ2,z2) = f 2n1

λ2

(∫ θmax

0

∫ θmax

0

∫ 2π

0

∫ 2π

0

√
cos θ1 cos θ2 sin θ1 sin θ2

× exp{−ik1[z2 cos θ2 + r2 sin θ2 cos(φ2 − ϕ2)]} exp{ik1[z1 cos θ1 + r1 sin θ1 cos(φ1 − ϕ1)]}
×{Wxx(θ1,φ1,θ2,φ2) cos φ1 sin φ1(cos θ1 − 1) cos φ2 sin φ2(cos θ2 − 1)

+Wxy(θ1,φ1,θ2,φ2) cos φ1 sin φ1(cos θ1 − 1)[cos θ2 + cos2 φ2(1 − cos θ2)]

+Wyx(θ1,φ1,θ2,φ2)[cos θ1 + cos2 φ1(1 − cos θ1)] cos φ2 sin φ2(cos θ2 − 1)

+Wyy(θ1,φ1,θ2,φ2)[cos θ1+ cos2 φ1(1− cos θ1)][cos θ2+ cos2 φ2(1− cos θ2)]}dθ1 dθ2 dφ1 dφ2

)
,

(26)

W (ee)
yz (r1,ϕ1,z1,r2,ϕ2,z2) = −f 2n1

λ2

(∫ θmax

0

∫ θmax

0

∫ 2π

0

∫ 2π

0

√
cos θ1 cos θ2 sin θ1 sin θ2

× exp {−ik1 [z2 cos θ2 + r2 sin θ2 cos(φ2 − ϕ2)]} exp {ik1 [z1 cos θ1 + r1 sin θ1 cos(φ1 − ϕ1)]}
× {Wxx (θ1,φ1,θ2,φ2) cos φ1 sin φ1(cos θ1 − 1) cos φ2 sin θ2

+Wxy (θ1,φ1,θ2,φ2) cos φ1 sin φ1(cos θ1 − 1) sin φ2 sin θ2

+Wyx (θ1,φ1,θ2,φ2) [cos θ1 + cos2 φ1(1 − cos θ1)] cos φ2 sin θ2

+Wyy (θ1,φ1,θ2,φ2) [cos θ1 + cos2 φ1(1 − cos θ1)] sin φ2 sin θ2}dθ1 dθ2 dφ1 dφ2

)
, (27)

W (ee)
zz (r1,ϕ1,z1,r2,ϕ2,z2) = f 2n1

λ2

{∫ θmax

0

∫ θmax

0

∫ 2π

0

∫ 2π

0

√
cos θ1 cos θ2 sin θ1 sin θ2

× exp {−ik1 [z2 cos θ2 + r2 sin θ2 cos(φ2 − ϕ2)]} exp {ik1 [z1 cos θ1 + r1 sin θ1 cos(φ1 − ϕ1)]}
× [Wxx (θ1,φ1,θ2,φ2) cos φ1 sin θ1 cos φ2 sin θ2 + Wxy (θ1,φ1,θ2,φ2) cos φ1 sin θ1 sin φ2 sin θ2

+Wyx (θ1,φ1,θ2,φ2) sin φ1 sin θ1 cos φ2 sin θ2

+Wyy (θ1,φ1,θ2,φ2) sin φ1 sin θ1 sin φ2 sin θ2]dθ1 dθ2 dφ1 dφ2

}
, (28)
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W (ee)
yx (r1,ϕ1,z1,r2,ϕ2,z2) = W (ee)∗

xy (r2,ϕ2,z2,r1,ϕ1,z1), (29)

W (ee)
zx (r1,ϕ1,z1,r2,ϕ2,z2) = W (ee)∗

xz (r2,ϕ2,z2,r1,ϕ1,z1), (30)

W (ee)
zy (r1,ϕ1,z1,r2,ϕ2,z2) = W (ee)∗

yz (r2,ϕ2,z2,r1,ϕ1,z1), (31)

For a partially coherent AP beam, applying Eqs. (6)–(9), we can expressW (ee)
xx (θ1,φ1,θ2,φ2),

W (ee)
xy (θ1,φ1,θ2,φ2), W (ee)

yx (θ1,φ1,θ2,φ2), and W (ee)
yy (θ1,φ1,θ2,φ2) as follows:

W (ee)
xx (θ1,φ1,θ2,φ2) = E2

0
f 2 sin θ1 sin θ2

w2
0

× exp

[
−f 2 sin2 θ1 + sin2 θ2

w2
0

− f 2 sin2 θ1 + sin2 θ2 − 2 sin θ1 sin θ2 cos (φ1 − φ2)

2σ 2
xx

]
sin φ1 sin φ2 ,(32)

W (ee)
xy (r1,φ1,r2,φ2) = −BxyE

2
0
f 2 sin θ1 sin θ2

w2
0

× exp

[
−f 2 sin2 θ1 + sin2 θ2

w2
0

− f 2 sin2 θ1 + sin2 θ2 − 2 sin θ1 sin θ2 cos (φ1 − φ2)

2σ 2
xy

]
sin φ1 cos φ2, (33)

W (ee)
yx (θ1,φ1,θ2,φ2) = W (ee)∗

xy (θ2,φ2,θ1,φ1), (34)

W (ee)
yy (θ1,φ1,θ2,φ2) = E2

0
f 2 sin θ1 sin θ2

w2
0

× exp

[
−f 2 sin2 θ1 + sin2 θ2

w2
0

− f 2 sin2 θ1 + sin2 θ2 − 2 sin θ1 sin θ2 cos (φ1 − φ2)

2σ 2
yy

]
cos φ1 cos φ2. (35)

From Eq. (22), the total intensity distribution of the tightly
focused partially coherent AP beam in the focal region is
given by

I (r,ϕ,z) = Ix(r,ϕ,z) + Iy(r,ϕ,z) + Iz(r,ϕ,z)

= W (ee)
xx (r,ϕ,z,r,ϕ,z) + W (ee)

yy (r,ϕ,z,r,ϕ,z)

+W (ee)
zz (r,ϕ,z,r,ϕ,z), (36)

Applying the derived formulas, we calculate in Fig. 8 the
intensity distributions Ix , Iy , Iz, I , and the corresponding cross
line (y = 0) of the total intensity distribution I of a tightly
focused AP beam at the focal plane for different values of
the correlation coefficients σxx,σyy,and σxy with f = 1 cm,
n1 = 1.33(water), w0 = 5 mm, ηpower = 100 mW, and Bxy =
1. As shown in Fig. 8, one sees that the intensity distribution
Iz of a coherent or partially coherent tightly focused AP beam
is equal to zero as expected, while Ix , Iy , and I of a tightly
focused AP beam depend closely on the initial correlation
coefficients (i.e., spatial coherence). For a completely coherent
AP beam (σxx = σxy = σyy = Infinity), Ix and Iy have two
beamlets along the y and x directions, respectively, and I

has a circular dark hollow beam profile. With the decrease
of correlation coefficients, the two beamlet structures of the
intensity distributions Ix and Iy gradually disappear, and the

dark hollow beam profile of I also disappears gradually. For
certain values of correlation coefficients (σxx = σxy = σyy =
0.95w0), Ix and Iy have beam spots with “dumbbell” structure,
and I has a circular flat-topped beam profile. For certain values
of correlation coefficients (σxx = σxy = σyy = 0.6w0), Ix and
Iy have elliptical beam spots, and I has a Gaussian beam spot.
When the correlation coefficients are very small (σxx = σxy =
σyy = 0.2w0), Ix , Iy , and I all have circular Gaussian beam
spots.

Figure 9 shows the intensity distribution I of a tightly
focused AP beam in the xz plane near focus for different
values of the correlation coefficients. One finds from Fig. 9
that a dark channel is formed in the xz plane for a coherent
tightly focused AP beam as expected. With the decrease of the
correlation coefficients, the dark channel disappears gradually,
and a bright beam spot in the xz plane is formed. The bright
beam spot is of rectangular symmetry when the correlation
coefficients are not very small, and the bright beam spot is
of elliptical symmetry when the correlation coefficients are
very small. Thus, decreasing the spatial coherence of an AP
beam also provides a convenient way for shaping its tightly
focused beam spot. Our results will be useful for material
thermal processing, where a tightly focused flat-topped beam
spot is required, [38] and for particle trapping, where a tightly
focused dark hollow beam spot or bright beam spot is required
as shown in Sec. V.

013840-8



EFFECT OF SPATIAL COHERENCE ON PROPAGATION, . . . PHYSICAL REVIEW A 86, 013840 (2012)

FIG. 8. (Color online) Intensity distributions Ix , Iy , Iz, I and the corresponding cross line (y = 0) of the total intensity distribution I of a
tightly focused AP beam at the focal plane for different values of the correlation coefficients σxx,σyy,σxy .

V. RADIATION FORCES OF A TIGHTLY FOCUSED
PARTIALLY COHERENT AP BEAM ON RAYLEIGH

PARTICLES

In this section, we study the radiation forces of a tightly
focused partially coherent AP beam on Rayleigh particles, and
explore the effect of spatial coherence on the radiation forces.

When the radius a of a spherical particle is much smaller
than the wavelength λ of the beam (generally a < λ/20),
the Rayleigh scattering model is adopted to determine the
radiation forces on the particle induced by the focused beam.
[11,14,38–40] We assume a spherical Rayleigh particle with
relative permittivity ε2 and radius a is placed near the focus.
According to the Rayleigh scattering theory, there are two
kinds of radiation forces: gradient force �Fgrad and scattering
force �Fscat, and they are expressed as [39]

�Fgrad(r,ϕ,z) = 1
4 Re(α) �∇|�E (r,ϕ,z)|2, (37)

�Fscat(r,ϕ,z) = σ

c
〈�S(r,ϕ,z)〉 + σc �∇〈 �LS(r,ϕ,z)〉, (38)

where σ = k Im(α)/ε0 is defined as the total cross section of
the particle, and α is the polarizability of the particle given
by [39]

α = α0

1 − iα0k3/ (6πε0)
, (39)

with

α0 = 4πa3ε0ε1(ε2 − ε1)/(ε2 + 2ε1). (40)

Here ε1 is the relative permittivity of the surrounding
medium, 〈�S(r,ϕ,z)〉 is defined as the time-averaged Poynting
vector of the light field, and 〈 �LS(r,ϕ,z)〉 is defined as the
time-averaged spin density of the light field given by

〈 �LS(r,ϕ,z)〉 = ε0

4ωi
[�E (r,ϕ,z) × �E∗ (r,ϕ,z)], (41)

where ω is the frequency of the field. The first term of Eq. (38)
is the traditional scattering force proportional to the Poynting
vector of the light field, and the second term represents the
scattering force proportional to the curl of the time-averaged
spin density of the light field. [39]
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For a tightly focused partially coherent beam, the term |�E(r,ϕ,z)|2 in Eq. (37) is expressed as

|�E (r,ϕ,z)|2 = I (r,ϕ,z) = W (ee)
xx (r,ϕ,z,r,ϕ,z) + W (ee)

yy (r,ϕ,z,r,ϕ,z) + W (ee)
zz (r,ϕ,z,r,ϕ,z). (42)

The time-averaged Poynting vector of the tightly focused partially coherent beam is given by [41,42]

〈�S(r,ϕ,z)〉 = 1
2 lim

r1,r2→r
ϕ1,ϕ2→ϕ
z1,z2→z

Re
{[

W (eh)
yz (r1,ϕ1,z1,r2,ϕ2,z2) − W (eh)

zy (r1,ϕ1,z1,r2,ϕ2,z2)
]�ex

+[
W (eh)

zx (r1,ϕ1,z1,r2,ϕ2,z2) − W (eh)
xz (r1,ϕ1,z1,r2,ϕ2,z2)

]�ey

+ [
W (eh)

xy (r1,ϕ1,z1,r2,ϕ2,z2) − W (eh)
yx (r1,ϕ1,z1,r2,ϕ2,z2)

]�ez

}
, (43)

where the terms W
(eh)
ij (r1,ϕ1,z1,r2,ϕ2,z2) = 〈Ei(r1,ϕ1,z1)H ∗

j (r2,ϕ2,z2)〉 (i,j = x,y,z) are the mixed cross-spectral densities
for combining each scalar component of the electric field vector and the magnetic field vector. The term Hj (r,ϕ,z) denotes
the j component of the magnetic field vector of the tightly focused beam. According to Maxwell’s equations, the term
W

(eh)
ij (r1,ϕ1,z1,r2,ϕ2,z2) can be expressed as [36,42]

W (eh)
yz (r1,ϕ1,z1,r2,ϕ2,z2) = i

ωμ0

(
∂W (ee)

yy (r1,ϕ1,z1,r2,ϕ2,z2)

∂x2
− ∂W (ee)

yx (r1,ϕ1,z1,r2,ϕ2,z2)

∂y2

)
, (44)

W (eh)
zy (r1,ϕ1,z1,r2,ϕ2,z2) = i

ωμ0

(
∂W (ee)

zx (r1,ϕ1,z1,r2,ϕ2,z2)

∂z2
− ∂W (ee)

zz (r1,ϕ1,z1,r2,ϕ2,z2)

∂x2

)
, (45)

W (eh)
zx (r1,ϕ1,z1,r2,ϕ2,z2) = i

ωμ0

(
∂W (ee)

zz (r1,ϕ1,z1,r2,ϕ2,z2)

∂y2
− ∂W (ee)

zy (r1,ϕ1,z1,r2,ϕ2,z2)

∂z2

)
, (46)

W (eh)
xz (r1,ϕ1,z1,r2,ϕ2,z2) = i

ωμ0

(
∂W (ee)

xy (r1,ϕ1,z1,r2,ϕ2,z2)

∂x2
− ∂W (ee)

xx (r1,ϕ1,z1,r2,ϕ2,z2)

∂y2

)
, (47)

W (eh)
xy (r1,ϕ1,z1,r2,ϕ2,z2) = i

ωμ0

(
∂W (ee)

xx (r1,ϕ1,z1,r2,ϕ2,z2)

∂z2
− ∂W (ee)

xz (r1,ϕ1,z1,r2,ϕ2,z2)

∂x2

)
, (48)

W (eh)
yx (r1,ϕ1,z1,r2,ϕ2,z2) = i

ωμ0

(
∂W (ee)

yz (r1,ϕ1,z1,r2,ϕ2,z2)

∂y2
− ∂W (ee)

yy (r1,ϕ1,z1,r2,ϕ2,z2)

∂z2

)
. (49)

The term 〈 �LS(r,ϕ,z)〉 of a tightly focused partially coherent beam is expressed as

〈 �LS(r,ϕ,z)〉 = ε0

4ωi
〈�E(r,ϕ,z) × �E∗ (r,ϕ,z)〉 = ε0

4ωi
[�ex(〈EyE

∗
z 〉 − 〈EzE

∗
y 〉) + �ey(〈EzE

∗
x 〉 − 〈ExE

∗
z 〉) + �ez(〈ExE

∗
y 〉 − 〈EyE

∗
x 〉)]

= ε0

4ωi

{�ex

(
W (ee)

yz (r,ϕ,z,r,ϕ,z) − W (ee)
zy (r,ϕ,z,r,ϕ,z)

) + �ey

(
W (ee)

zx (r,ϕ,z,r,ϕ,z) − W (ee)
xz (r,ϕ,z,r,ϕ,z)

)
+�ez

(
W (ee)

xy (r,ϕ,z,r,ϕ,z) − W (ee)
yx (r,ϕ,z,r,ϕ,z)

)}
= ε0

2ω
Im

[
W (ee)

yz (r,ϕ,z,r,ϕ,z)�ex − W (ee)
xz (r,ϕ,z,r,ϕ,z)�ey + W (ee)

xy (r,ϕ,z,r,ϕ,z)�ez

]
, (50)

and the term �∇ × 〈 �LS(r,ϕ,z)〉 can be expressed as

�∇ × 〈 �LS(r,ϕ,z)〉 = ε0

2ω
Im

[(
∂W (ee)

xy (r,ϕ,z,r,ϕ,z)

∂y
+ ∂W (ee)

xz (r,ϕ,z,r,ϕ,z)

∂z

)
�ex

+
(

∂W (ee)
yz (r,ϕ,z,r,ϕ,z)

∂z
−∂W (ee)

xy (r,ϕ,z,r,ϕ,z)

∂x

)
�ey −

(
∂W (ee)

xz (r,ϕ,z,r,ϕ,z)

∂x
+∂W (ee)

yz (r,ϕ,z,r,ϕ,z)

∂y

)
�ez

]
.

(51)
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FIG. 9. (Color online) Intensity distribution I of a tightly focused
AP beam in the xz plane near focus for different values of the
correlation coefficients σxx,σyy,σxy .

Applying Eqs. (22)–(51), we can study the effect of spatial
coherence on the radiation forces of a tightly focused partially
coherent AP beam on Rayleigh particles. In the following
text, we set a = 30 nm, n1 = 1.33(water), λ = 1.047 μm,
f = 1 cm, w0 = 5 mm, ηpower = 100 mW, and Bxy = 1.

To trap a particle stably, the gradient force should
be larger than the sum of scattering forces, i.e., R =
�Fgrad(r,ϕ,z)/ �Fscat(r,ϕ,z) > 1. Furthermore, the particle usu-

ally suffers the Brownian motion due to the thermal fluctuation
from the surrounding medium (water in our case), thus
the gradient force also should be larger than the Brown-
ian force. Following the fluctuation-dissipation theorem of
Einstein, the magnitude of the Brownian force is expressed
as |FB | = (12πκakBT )1/2 [43] with κbeing the viscosity of
the surrounding medium, kB being the Boltzmann constant,
and T being the temperature of the surrounding medium.
In our case, for water, κ = 7.977 × 10−4Pa at T = 300 K,
[44] and the magnitude of the Brownian force is equal to
1.93 × 10−3 pN.

We calculate in Fig. 10 the radiation forces of a tightly
focused AP beam on a Rayleigh particle with ε2 = 1 (air
bubble) for different values of the correlation coefficients
σxx,σxy, and σyy . For the convenience of comparison, the
Brownian force is also shown in Fig. 10. The sign of the
radiation forces determines the direction of the force: for
positive Fscat, x or Fscat, z, the direction of the scattering force
is along the +x or +z direction; for positive Fgrad, xandFgrad, z,
the direction of the gradient force is along the +x or +z

direction. When the correlation coefficients are large (i.e.,
spatial coherence is high), we find from Figs. 10(a1) and
10(b2) that the transverse gradient force is much larger
than the Brownian force and the transverse scattering force,
and there exists one transverse stable equilibrium point at

FIG. 10. (Color online) Radiation forces of a tightly focused AP
beam on a Rayleigh particle with ε2 = 1 (air bubble) for different
values of the correlation coefficients σxx,σxy,σyy .

the focal plane, while the longitudinal gradient force and
the longitudinal scattering force are much smaller than the
Brownian force [see Figs. 10(a2) and 10(b2)]. Thus, a tightly
focused AP beam with high spatial coherence can be used to
trap transversely a Rayleigh particle whose refractive index
is smaller than that of the ambient near the focus. If one
wants to trap the air bubble in a three-dimensional space, three
focused AP beams (orthogonal to each other) with high spatial
coherence are required to form a closed dark region, which can
be used to trap the air bubble stably. With the decrease of the
correlation coefficients, the magnitude of the gradient force
Fgrad,x decreases, while the magnitude of the gradient force
Fgrad,z increases. For intermediate values of the correlation
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FIG. 11. (Color online) Radiation forces of a tightly focused AP
beam on a Rayleigh particle with ε2 = −54 + 5.9i (gold particle) for
different values of the correlation coefficients σxx,σxy,σyy

coefficients, there still exists one transverse stable equilibrium
point at the focal plane [see Fig. 10(c1)] and the gradient
force Fgrad,z near the focus is much larger than the Brownian
force, which means that a tightly focused AP beam with
intermediate spatial coherence can be used to trap the air
bubble transversely, and accelerate the air bubble along the
z direction near the focus. When the correlation coefficients
are small, one finds from Fig. 10(d1) and 10(d2) that there is
no stable equilibrium point at the focal plane, while the air
bubble still can be accelerated along the z direction near the
focus.

We calculate in Fig. 11 the radiation forces of a tightly
focused AP beam on a Rayleigh particle with ε2 = −54 + 5.9i

(gold particle) for different values of the correlation coeffi-
cients σxx,σxy, and σyy . For the case of σxx = σxy = σyy =
0.95w0, we see that the gradient forces Fgrad,x and Fgrad,z are
larger than the Brownian force,Fgrad,z is larger thanFscat,z,

and there exists one stable equilibrium point at the focus
[see Figs. 11(a1) and 11(a2)]. Thus a tightly focused AP
beam with suitable spatial coherence can be used to trap a
Rayleigh particle whose refractive index is larger than that of
the ambient. With the decrease of the correlation coefficients,
the magnitudes of the gradient forces and the scattering force
decreases [see Figs. 11(b1), 11(b2), 11(c1), and 11(c2)]. For
the case of σxx = σxy = σyy = 0.1w0, the gradient forces and
the scattering force all become smaller than the Brownian
force, thus a tightly focused AP beam with extremely low
spatial coherence cannot be used to trap a Rayleigh particle.

VI. CONCLUSION

In summary, we have outlined briefly the theoretical
model for a partially coherent AP beam and its paraxial
propagation formula based on the unified theory of coherence
and polarization. We have carried out experimental generation
of an AP beam with variable spatial coherence and measured its
propagation properties, and our experimental results verified
the theoretical predictions. The effects of spatial coherence on
the intensity distribution of an AP beam focused by a high NA
objective lens have been illustrated numerically, and it was
found that the beam spot of a tightly focused AP beam can
be shaped by varying the spatial coherence, i.e., focused dark
hollow, flat-topped, and Gaussian beam spots can be obtained
by choosing suitable spatial coherence. Through studying the
radiation forces on Rayleigh particles induced by a tightly
focused AP beam, we have found that a tightly focused AP
beam can be used to trap a Rayleigh particle whose refractive
index is larger or smaller than that of the ambient by varying its
initial spatial coherence. Our results will be useful for particle
trapping and material thermal processing.
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