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This article mainly deals with the propagation of step-modulated light pulses in a dense Lorentz medium
at distances such that the medium is opaque in a broad spectral region including the carrier frequency. The
transmitted field is then reduced to the celebrated precursors of Sommerfeld and Brillouin, far apart from each
other. We obtain simple analytical expressions of the first (Sommerfeld) precursor, whose shape only depends
on the order of the initial discontinuity of the incident field and whose amplitude rapidly decreases with this
order (rise-time effects). We show that, in a strictly asymptotic limit, the second (Brillouin) precursor is entirely
determined by the frequency dependence of the medium attenuation and has a Gaussian or Gaussian-derivative
shape. We point out that this result applies to the precursor directly observed in a Debye medium at decimetric
wavelengths. When attenuation and group-delay dispersion both contribute to its formation, we establish a more
general expression of the Brillouin precursor, containing the previous one (dominant-attenuation limit) and that
obtained by Brillouin (dominant-dispersion limit) as particular cases. We finally study the propagation of square
or Gaussian pulses, and we determine the pulse parameters optimizing the Brillouin precursor. Obtained by
standard Laplace-Fourier procedures, our results are explicit and contrast in their simplicity those derived by the
uniform saddle-point methods, from which it is difficult to retrieve our asymptotic forms.
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I. INTRODUCTION

More than one century ago, in a short communication
[1] made at the 79th congress of the German physicists,
Sommerfeld examined the apparent inconsistency between
the theory of special relativity and the possibility of su-
perluminal group velocity predicted by the classical wave
theory. Considering an incident wave switched on at time
t = −T and off at time t = T (square-wave modulation), he
mathematically demonstrated that, regardless of the value of
the group velocity at the frequency of the optical carrier, no
signal can be transmitted by any linear dispersive-attenuative
medium before the instant t = −T + z/c, where z is the
propagation distance and c is the velocity of light in vacuum. In
the discussion following Sommerfeld’s communication, Voigt
proposed a simple physical interpretation of this result. He
remarked that the front of the wave encounters a medium
that, due to its inertia, seems optically empty and thus that
the propagation of the very first beginning of the signal will
proceed undisturbed with the velocity of light in vacuum. In
other words, local causality implies relativistic causality. The
analysis of what happens after the arrival of the wave front
was subsequently conducted by Sommerfeld and Brillouin
in the case of a step-wave modulation (field switched on
at time t = 0), the medium being modeled as an ensemble
of damped harmonic oscillators with the same resonance
frequency ω0 and the same damping rate γ (Lorentz medium)
[2–5]. They found that, in suitable conditions, the transmitted
signal consists of two successive transients (that they named
“forerunners”) preceding the establishment of the steady-state
field at the frequency ωc of the optical carrier (the “main field”).
The first and second forerunners, now called the Sommerfeld
and Brillouin precursors, were associated with frequencies
that are high and low, respectively, compared to the resonance
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frequency ω0 of the medium. These results were obtained by
means of a spectral approach involving the newly developed
saddle-point method [3] and also classical complex analysis
[2] and the stationary-phase method [4]. Following these
pioneering works, precursors became a canonical problem
in electromagnetism and optics [6,7]. Results completing,
improving, and even correcting those of Sommerfeld and
Brillouin were obtained by means of uniform asymptotic
methods [8–11]. The problem was also studied by a purely
temporal approach [12]. At the present time, the theoretical
study of precursors continues to raise considerable interest.
An abundant bibliography can be found in the recent work
by Oughstun [13]. Complementary studies on the effects of a
finite turn-on time of the incident field on the precursors are
reported in [14–17].

From an experimental point of view, the observation of
Sommerfeld and Brillouin precursors in the optical range
raises serious difficulties. Indeed the excitation of the Sommer-
feld and Brillouin precursors requires that the corresponding
frequencies (respectively high and low compared to ω0) be
present at a significant level in the spectrum of the incident
pulse. An experiment intended to observe the Brillouin pre-
cursor in water is reported in [18]. Using pulses at a wavelength
of 700 nm with a bandwidth of 60 nm, the authors observed
pulse breakup in a linear regime as well as a subexponential
attenuation with the distance of the new peak. They attributed
these features to the formation of a Brillouin precursor. This
interpretation has been soundly disputed, in particular because
the pulse bandwidth was, in fact, not broad enough to perform
the excitation of precursors [19]. Alternative explanations of
the observations have been proposed [19,20], and more recent
studies [21–23] have confirmed that a subexponential decay
of the transmitted energy does not prove the formation of
precursors.

While well-distinguishable Sommerfeld and Brillouin pre-
cursors are expected when the medium is opaque in a
broad spectral region, coherent transients of another kind are
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obtained in the opposite case where the width of the opacity
region is very small compared to the resonance frequency ω0.
They have been naturally named resonant precursors [24] and
also Sommerfeld-Brillouin precursors [25]. Indeed they may
be seen as resulting from the coalescence of the Sommerfeld
and Brillouin precursors, originating a well-marked beat when
the optical thickness of the medium is large enough [26]. The
conditions required to achieve experimental evidence of these
precursors are relatively easy to meet. They have been actually
observed in various systems, in particular in a molecular
gas [26], in a solid-state sample with a narrow exciton line [25],
and in clouds of cold atoms [27,28].

In the present paper we come back to the study of
Sommerfeld and Brillouin precursors in a dense Lorentz
medium, considering the limit where the medium is opaque
in a spectral region with a large width compared to the
resonance frequency. We remark that these conditions are met
for the parameters considered by Brillouin [29] which are
often referred to in the literature. We then succeed in obtaining
simple and explicit analytical expressions of both precursors.
When it is necessary, we determine the range of validity
of these analytical solutions by comparing them to exact
numerical solutions obtained by fast Fourier transform (FFT).
The arrangement of our paper is as follows. In Sec. II, we
outline the problem under consideration and give some general
results that are useful in the following sections. Section III
is devoted to the study of the Sommerfeld precursor. We
establish the corresponding expression of the impulse response
of the medium and apply it to obtain a general expression
of the precursors obtained with causal incident fields. We
examine in detail the particular cases where the incident field
is discontinuous at the initial time or has the canonical form
considered by Brillouin with eventually a finite rise time.
We show in Sec. IV that, in a strictly asymptotic limit, the
impulse response associated with the Brillouin precursor is
Gaussian and that the Brillouin precursor has itself a Gaussian
or Gaussian-derivative shape. The precursor obtained in a
Debye medium is incidentally examined. A more general
expression of the Brillouin precursor in the Lorentz medium is
established in Sec. V, containing the previous one and that
obtained by Brillouin as particular cases. The propagation
in both media of pulses with a square or Gaussian envelope
is finally examined in Sec. VI, and we determine the pulse
parameters optimizing the Brillouin precursor. We conclude
in Sec. VII by summarizing and discussing our main results.

II. GENERAL ANALYSIS

We consider a one-dimensional optical wave propagating
in a Lorentz medium in the z direction, with an electric
field linearly polarized in the x direction (x,y,z are Cartesian
coordinates). We denote e(0,t) as the algebraic amplitude of
the field at time t for z = 0 (inside the medium) and e(z,t) as its
value after a propagation distance z through the medium. The
incident field e(0,t) being given, the problem is to determine
the transmitted field e(z,t). We take for e(0,t) the general form

e(0,t) = u(t) cos(ωct − ϕ), (1)

including as particular cases the different forms considered
in the literature. ωc is the frequency of the optical carrier, ϕ

is the phase (eventually time dependent), and u(t) � 0 is the
amplitude modulation or field envelope. On the other hand,
the medium is fully characterized in the frequency domain
by its transfer function H (z,ω) relating the Fourier transform
E(z,ω) of e(z,t) to that E(0,ω) of e(0,t) [30].

E(z,ω) = H (z,ω)E(0,ω). (2)

In the following, we take for t a retarded time equal to the real
time minus the luminal propagation time z/c (retarded-time
picture). H (z,ω) then reads

H (z,ω) = exp
{
−i

ωz

c
[̃n(ω) − 1]

}
. (3)

Here ñ(ω) is the complex refractive index of the medium at
frequency ω, which is for the Lorentz medium

ñ(ω) =
(

1 − ω2
p

ω2 − ω2
0 − 2iγ ω

)1/2

, (4)

where ω0 is the resonance frequency, γ is the damping or
relaxation rate, and ωp is the so-called plasma frequency whose
square is proportional to the number density of absorbers.
Re[̃n(ω)] is the usual (real) refractive index n(ω), and the
absorption coefficient α(ω) for the amplitude is given by the
relation α(ω) = −(ω/c)Im[̃n(ω)].

In the time domain, the medium will be characterized by its
impulse response h(z,t), which is the inverse Fourier transform
of H (z,ω), and the transmitted signal e(z,t) is given by the
convolution product [30]

e(z,t) = h(z,t) ⊗ e(0,t). (5)

Some general properties of h(z,t) and e(z,t) can be deduced
from Eqs. (3)–(5). First, h(z,t) fulfills the condition of
relativistic causality, namely, h(z,t) = 0 for t < 0 [31]. Its area
reads as

∫ +∞
−∞ h(z,t)dt = H (z,0) = 1. It remains thus constant

and normalized to unity regardless of the propagation distance
z. Consequently, E(z,0) = E(0,0); that is,∫ +∞

−∞
e(z,t)dt =

∫ +∞

−∞
e(0,t)dt. (6)

The area of the optical field (to distinguish from that of its
envelope) is conserved during the propagation. Finally, the
fact that H (z,∞) = 1 entails that h(z,t) will start with a Dirac
delta function δ(t). This implies that the propagation of the very
beginning of any incident signal e(0,t) will always proceed
undisturbed at the velocity c, in agreement with Voigt’s remark
on Sommerfeld’s communication [1]. The previous results are
valid whatever the values of the parameters may be.

We examine now under what conditions the medium is
opaque in a broad spectral region. To be definite, we will
consider that the medium is opaque at the frequency ω

when its optical thickness α(ω)z exceeds 20, the ampli-
tude transmission |H (z,ω)| = exp[−α(ω)z] being then about
2 × 10−9. Following Sommerfeld [2], we characterize the
propagation distance by the parameter ξ = ω2

pz/2c, which is
homogeneous to a frequency. For large propagation distances
γ ξ/(10ω2

0) � 1, and it is easily derived from Eq. (4) that
the medium will then be opaque in the broad spectral region

ω− � ω � ω+, with ω+/ω0 ≈
√

γ ξ/(10ω2
0) and ω−/ω0 ≈
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FIG. 1. Amplitude transmission |H (z,ω| of the medium as a
function of the frequency modulus |ω| (logarithmic scale). Parameters
(units of ω0) : ωp = 1.11, γ = 0.0707 and ξ = 8.31 × 105 for the
curve (a) corresponding to the Brillouin choice (z = 10−2 m). The
curves (b), (c),(d) and (e) are obtained for propagation distances (and
thus ξ ) respectively 10, 100, 1 000 and 10 000 times smaller.

(1 + ω2
p/ω2

0)1/4
√

10ω2
0/(γ ξ ). The inequality γ ξ/(10ω2

0) � 1
is oversatisfied for the parameter values considered by Bril-
louin [29], namely, ω0 = 4 × 1016 s−1, ω2

p = 1.24 ω2
0, γ 2 =

ω2
0/200, and z = 10−2 m. We then get ξ = 3.0324 × 1021 s−1

and γ ξ/(10ω2
0) ≈ 5.87 × 103. To avoid reducing our study to a

particular system or region of the spectrum, all the frequencies
(the times) will be referred in the following to their natural
unit ω0 (1/ω0). Figure 1 shows the profiles of the amplitude
transmission |H (z,ω)| = exp[−α(ω)z] as a function of the
reduced frequency ω/ω0 in the Brillouin conditions [curve
(a)] and for propagation distances of 10, 100, 1000, and 10 000
times shorter [curves (b) to (e)].

With the medium being opaque for ω− < ω < ω+, the
transfer function may be written as

H (z,ω) = HS(z,ω) + HB(z,ω), (7)

with HS(z,ω) ≈ 0 for ω < ω+ and HB(z,ω) ≈ 0 for ω > ω−.
HS and HB are respectively associated with the Sommerfeld
and the Brillouin precursors. For ω = 0, HS(z,0) ≈ 0 and
HB(z,0) ≈ H (z,0) = 1. As long as ωc lies in the opacity
region, this implies that the Sommerfeld precursor will have
a zero area, while the area of the Brillouin precursor will be
equal to that of the incident field.

The formation of the optical precursors is generally gov-
erned by combined effects of attenuation (considered above)
and dispersion. The dispersion effects can be soundly charac-
terized by the group delay τg(z,ω) = −d	/dω = z/vg(ω) −
z/c, where 	(z,ω) is the argument of H (z,ω) and vg(ω)
is the group velocity [31]. We remark that the regions of
anomalous dispersion (dn/dω < 0) or of superluminal group
velocity (τg < 0) have a width smaller than ω0 and are entirely
comprised inside the opacity region. The corresponding
frequencies will thus not directly contribute to the formation of
precursors. For the high and low frequencies associated with
the Sommerfeld and Brillouin precursors, respectively, we get
the asymptotic forms τg ≈ ξ/ω2 [31] and τg ≈ tB + ω2/(ηb3),

where

tB = [n(0) − 1]z

c
= 2ξ

ω2
p

⎡⎣(
1 + ω2

p

ω2
0

)1/2

− 1

⎤⎦ , (8)

b = ω0

(
3

ξ

ω0

)−1/3
(

1 + ω2
p

ω2
0

)1/6

, (9)

1

η
= 1 − 4γ 2

ω2
0

(
1 + 3ω2

p

4ω2
0

)/ (
1 + ω2

p

ω2
0

)
. (10)

tB = τg(z,0) − τg(z,∞) is obviously indicative of the time
delay of the Brillouin precursor (low frequency) with respect
to the Sommerfeld precursor (high frequency). The two
precursors will be fully separated when tB is much larger than
the damping time 1/γ . Since γ tB = O(γ ξ/ω2

0), this condition
is automatically fulfilled when the condition of a broad opacity
region [γ ξ/(10ω2

0) � 1] holds. Another important point is that
τg is minimum (stationary) for ω → ∞ and ω → 0. As pointed
out by Brillouin [4], this ensures that the precursors will not
be washed out by the group velocity dispersion.

III. SOMMERFELD PRECURSOR

A. Transfer function HS(z,ω) and impulse response

In the limit considered here ω2 � ω2
+ � ω2

0, and HS(z,ω)
takes the following asymptotic form, accounting for both
dispersion (main contribution) and attenuation:

HS(z,ω) ≈ exp

[
− ξ

iω + 2γ

]
. (11)

The corresponding impulse response hS(z,t) is easily deter-
mined by using standard results of Laplace transforms [32].
We get

hS(z,t) = δ(t) −
√

ξ

t
J1(2

√
ξ t)e−2γ tuH (t), (12)

where Jn(s) and uH (t) respectively designate the Bessel
function of the first kind of index n and the Heaviside unit-step
function. Except for their very first oscillation, the Bessel
functions Jn(s) are perfectly approximated by their asymptotic
form,

Jn(s) ≈
√

2

πs
cos

(
s − n

π

2
− π

4

)
, (13)

and the impulse response hS(z,t) can be characterized by an
instantaneous frequency ω ≈ d(2

√
ξ t)/dt = √

ξ/t . The range
of validity of Eq. (12) may be estimated by determining the
change δHS(z,ω) of HS(z,ω) due to the first term neglected
in the asymptotic expansion of ln[HS(z,ω)] used to obtain
Eq. (11). We find δHS(z,ω)/HS(z,ω) = O(ξω2

0/ω
3), which

is negligible when ω3 � ξω2
0, i.e., when ξ 1/2 � ω2

0t
3/2. In

fact, Eq. (12) fits very well the exact impulse response as
soon as ξ 1/2 exceeds ω2

0t
3/2 by a factor

√
10 (half an order of

magnitude). This is achieved as long as t � tS , with

ω0tS = 3

√
ξ

10ω0
. (14)
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In a strict asymptotic limit (z → ∞), tS → ∞ and
exp(−2γ tS) → 0. As expected, the entirety of the impulse
response is then reproduced by Eq. (12).

B. Precursor originated by a causal incident field

The Sommerfeld precursor eS(z,t) is obtained by convolut-
ing hS(z,t) with the incident field e(0,t) = u(t) cos(ωct − ϕ)
introduced in the general analysis [Eq. (1)]. We are mainly
interested here in the physical case where the incident field
is causal [e(0,t) = 0 for t < 0], with u(t) being either a unit
step uH (t) or a function monotonously rising from 0 to 1 with
a rate r � ωc for t > 0 (step or steplike modulation). The
convolution product of Eq. (5) takes the form

eS(z,t) =
∫ t

−∞
hS(z,θ )e(0,t − θ )dθ, (15)

which can be transformed by repeated integrations per parts to
yield

eS(z,t) =
∞∑

n=0

dnh
(n+1)
S (z,t). (16)

Here dn is the discontinuity of the nth derivative of
e(0,t) at the initial time [33] and f (n)(t) is a short-hand
notation for

∫ t

−∞
∫ t1
−∞ · · · ∫ tn−1

−∞ f (tn)dtn · · · dt2dt1. In a fre-
quency description, the previous result can be retrieved
by expanding the Fourier transform E(0,ω) of e(0,t) in
powers of 1/iω and exploiting the equivalence between
multiplication by 1/iω in the frequency domain and in-
tegration in the time domain [30]. Writing the impulse
response under the form hS(z,t) = kS(z,t) exp(−2γ t), we
easily show by means of standard Laplace procedures [32]
that k

(n+1)
S (z,t) = (t/ξ )n/2Jn(2

√
ξ t)uH (t). Insofar as kS(z,t) is

very rapidly varying compared to exp(−2γ t), h
(n+1)
S (z,t) ≈

k
(n+1)
S (z,t) exp(−2γ t), and we finally get

eS(z,t) ≈
∞∑

n=0

dn

(
t

ξ

)n/2

Jn(2
√

ξ t) exp(−2γ t)uH (t). (17)

The nth term of the series has a maximal amplitude a0 = |d0|
at t = t0 = 0 for n = 0 and

an = 1√
π

|dn|
(

2n − 1

8e

)(2n−1)/4 (
γ

ξ

)1/4

(γ ξ )−n/2, (18)

at t ≈ tn = (2n − 1)/8γ for n > 0. Since ξ ∝ z, Eq. (18)
shows that, for large propagation distance, an rapidly decreases
with n, so that a good approximation of the exact result is
obtained by keeping only the first term n = p of the series
for which dp 	= 0. In the frequency description, this amounts
to restricting the asymptotic expansion of E(0,ω) to its first
nonvanishing term [7]. We then get

eS(z,t) ≈ dp

(
t

ξ

)p/2

Jp(2
√

ξ t) exp(−2γ t)uH (t). (19)

Denoting q as the next integer following p for which dq 	= 0,
Eq. (19) is exact when ε = aq/ap ≈ 0, and exp(−2γ tS) ≈ 0.
These conditions are met in the strict asymptotic limit and are
closely approached for the propagation distance considered
by Brillouin. At distances that may be 1000 times smaller

(simple asymptotic limit), we shall see that Eq. (19) enables
us to correctly reproduce the essential features of the precursor
originated by representative incident fields.

C. Precursor originated by a discontinuous incident field

We consider first the instructive case where e(0,t) =
uH (t) cos(ωct) for which p = 0 with d0 = 1 [33] and q = 2
with d2 = −ω2

c . Equation (19) then reads as

eS(z,t) ≈ J0(2
√

ξ t) exp(−2γ t)uH (t), (20)

with ε ≈ 0.13ω2
cγ

−3/4ξ−5/4 [see Eq. (18)]. The precursor does
not depend on ωc, and the initial discontinuity of the incident
field is integrally transmitted, in agreement with the general
analysis. For ωc < ω+ = √

γ ξ/10 (opacity condition), ε is
always smaller than 0.013(γ /ξ )1/4, which is about 2.2 × 10−4

in the Brillouin conditions and 1.2 × 10−3 for a propagation
distance 1000 times smaller (simple asymptotic limit). In the
first case, ω0tS = 44 and exp(−2γ tS) ≈ 2 × 10−3. As previ-
ously indicated, we are then close to the strict asymptotic limit,
and the precursor is perfectly reproduced by its asymptotic
form at any time where it has a significant amplitude. This
remark also holds for the cases considered in the following
sections. In the simple asymptotic limit ω0tS = 4.4, and as
expected, Eq. (20) perfectly fits the exact solution for ω0t �
4.4. For larger times, the fit remains very good except for a
slight drift of the instantaneous frequency of the oscillations
whose envelope is very well reproduced at any time (Fig. 2).

D. Precursor originated by the canonical incident field
of Sommerfeld and Brillouin

Following Sommerfeld and Brillouin, most authors have
considered an incident field of the canonical form e(0,t) =
uH (t) sin(ωct) for which p = 1 with d1 = ωc and q = 3 with
d3 = −ω3

c . We then get

eS(z,t) ≈ ωc

√
t

ξ
J1(2

√
ξ t) exp(−2γ t)uH (t), (21)

1

0

20151050
Retarded Time (units of 1/ω0)

-0.05

0.00

0.05

15105

FIG. 2. (Color online) Sommerfeld precursor originated by the
incident field cos(ωct)uH (t). The solid (dashed) line is the exact
numerical solution (the approximate analytic solution). Parameters
(units of ω0) are ωc = 1, ωp = 1.11, γ = 0.0707, and ξ = 831. The
inset is an enlargement of the tail of the precursor.
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20100
Retarded Time (units of 1/ω0)

2×10
-3

-2

0

FIG. 3. (Color online) Sommerfeld precursor originated by the
canonical incident field sin(ωct)uH (t). The solid (dashed) line is
the exact numerical solution (the approximate analytic solution).
Parameters are as in Fig. 2.

with ε ≈ 0.34(ω2
c/γ ξ ). The result given in Eq. (21) differs

from that originally obtained by Sommerfeld [2] by the pres-
ence of the damping term exp(−2γ t). Though the formation of
the Sommerfeld precursor is mainly governed by the medium
dispersion, the presence of this term (associated with the
absorption) is obviously necessary to avoid having eS(z,t)
diverge with time. The precursor attains its maximum at
t ≈ t1 = 1/(8γ ) (ω0t1 = 1.77), and its amplitude aS = a1 ≈
0.26 ωcγ

−1/4ξ−3/4 is proportional to ωc. For ωc = ω0, aS ≈
1.8 × 10−5 with ε ≈ 5.8 × 10−6 in the Brillouin conditions,
whereas aS ≈ 3.25 × 10−3 with ε ≈ 5.8 × 10−3 in the simple
asymptotic limit. In the latter case, Fig. 3 shows that Eq. (21)
actually fits very well the exact result for t � tS , again with a
slight drift of the instantaneous frequency of the oscillations
for t > tS . In order to check the proportionality of the precursor
to ωc, we have compared the exact forms of (ω0/ωc) eS(z,t)
obtained when ωc lies at the boundaries ω− or ω+ of the
opacity region to that obtained when ωc = ω0. As expected, we
have found that the three results are nearly indistinguishable,
except for an amplitude 1.3% larger for ωc = ω+ (below the
corresponding value of ε, namely, ε = 0.034). For this value
of ωc, the amplitude of the precursor is aS ≈ 0.082(γ /ξ )1/4,
which is 1.40 × 10−3 in the Brillouin conditions and 7.9 ×
10−3 in the simple asymptotic limit.

E. Rise-time effects

A gradual turning on of the incident field is expected
to reduce the amplitude of the Sommerfeld precursor. To
study this so-called rise-time effect, Ciarkowski [14,17] has
considered the incident field e(0,t) = tanh(rt) sin(ωct)uH (t)
whose envelope has a 10 − 90% rise time Tr ≈ 1.37/r . In this
case p = 2 with d2 = 2rωc, q = 4 with d4 = −4ωcr(2r2 +
ω2

c ), and the asymptotic form of the precursor reads

eS(z,t) ≈ 2ωcr

(
t

ξ

)
J2(2

√
ξ t) exp(−2γ t)uH (t), (22)

with ε ≈ 1.21(2r2 + ω2
c )/γ ξ . The precursor attains its max-

imum at t ≈ t2 = 3/(8γ ) (ω0t2 ≈ 5.3) with an amplitude
aS = a2 ≈ 0.26 rωcγ

−3/4ξ−5/4. Compared to the precursor
obtained with the canonical incident field [Eq. (21)], the

20100
Retarded Time ( units of 1/ω0)

4×10
-4

-4

2

-2

0

FIG. 4. (Color online) Sommerfeld precursor originated by the
incident field e(0,t) = tanh(rt) sin(ωct) uH (t). The solid (dashed)
line is the exact numerical solution (the approximate analytic solution)
obtained for r = ω0. Other parameters are as in Fig. 2.

maximum is shifted to larger time (t2 = 3t1), and its amplitude
is reduced by a factor ρ ≈ √

γ ξ/r . Figure 4, obtained in
the simple asymptotic limit, shows that Eq. (22) fits quite
satisfactorily the exact precursor, although its maximum now
lies at a time slightly larger than tS . To check that the
precursor is mainly determined by the lowest-order initial
discontinuity of the incident field regardless of its subsequent
evolution, we have compared the precursor obtained when the
envelope tanh(rt)uH (t) is replaced by (1 − e−rt )uH (t), having
the same initial discontinuity. Though q = 3 (instead of 4)
and Tr ≈ 2.20/r (instead of 1.37/r), we have found that the
precursor is actually very close to the previous one.

Other things being equal, the reduction of the amplitude of
the precursor is more and more important when the incident
field is applied more and more smoothly, that is, when the order
p of its initial discontinuity increases. It is easily deduced from
Eq. (18) that for p � 2, ρ = O[(

√
γ ξ/r)p−1] ∝ (Tr

√
z)p−1.

In light of this result, dramatic rise-time effects are expected
when the incident field is ideally smooth, i.e., analytic with
continuous derivatives at every point. Such fields have been
considered [13,16,34], though they are not causal and, strictly
speaking, not physically realizable (in the sense of the linear-
system theory). We have made numerical simulations for
e(0,t) = sin(ωct)[1 + erf(rt)]/2, where erf(s) designates the
error function. For z and r = ω0 as in Fig. 4, we get ρ ≈ 1.4 ×
103 instead of ρ ≈ 7.7 for e(0,t) = tanh(rt) sin(ωct) uH (t).

IV. BRILLOUIN PRECURSOR IN THE STRICT
ASYMPTOTIC LIMIT

A. Transfer function HB(z,ω) and impulse response

In the limit considered now ω2 � ω2
− 
 ω2

0, and HB(z,ω)
is conveniently developed under the form

HB(z,ω) = exp

( ∞∑
n=1

(−iω)n

n!
kn(z)

)
. (23)

Here kn(z) are the so-called cumulants, generally introduced
in probability theory [32], but also quite useful to study
deterministic signals [35,36]. The cumulants k1(z), k2(z), and
k3(z) have remarkable properties. k1(z) and k

1/2
2 (z) are the
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center-of-mass and the root-mean-square durations, respec-
tively, of the impulse response hB(z,t), which is the inverse
Fourier transform of HB(z,ω), whereas κ(z) = k3(z)/k

3/2
2 (z) is

its normalized asymmetry or skewness [32]. From Eqs. (3) and
(4), we easily get k1 = tB (as expected), k2 = 4γ /(3b3), k3 =
−2/(ηb3), and κ = −(1/4η)(3b/γ )3/2, where tB , b, and η are
defined by Eqs. (8)–(10). When z → ∞ (strict asymptotic
limit), κ ∝ b3/2 ∝ z−1/2 → 0, and the expansion of Eq. (23)
may be limited to the term n = 2. Taking a new origin of time
at t = tB , the transfer function then reads as

HB(z,ω) ≈ exp

(
− ω2

4β2

)
, (24)

where β =
√

3b3/8γ ∝ 1/
√

z is very small compared to ω0.
This Gaussian form is that of the normal distribution derived by
means of the central limit theorem in probability theory. This
theorem can also be used to obtain an approximate evaluation
of the convolution of n deterministic functions [30]. It can be
applied to our case by splitting the medium into n cascaded
sections, with hB(z,t) being the convolution of the impulses
responses of each section. By calculating the inverse Fourier
transform of HB(z,ω), we get

hB(z,t) = β√
π

exp(−β2t ′2), (25)

where t ′ = t − tB . The impulse response has a duration
(amplitude) proportional (inversely proportional) to

√
z, with

an area constantly equal to 1 (in agreement with the general
analysis). We remark that the approximation leading to Eqs.
(24) and (25), valid in the strict asymptotic limit, amounts
to neglecting the effects of the group-delay dispersion, the
formation of the Brillouin precursor being then governed
by the frequency dependence of the medium attenuation
(dominant-attenuation limit).

The Gaussian forms of Eqs. (24) and (25) are not specific to
the Lorentz medium but have some generality [37]. They hold
for the Debye medium [38], for some random media [39],
and, more generally, whenever the transfer function of the
medium can be expanded in cumulants and the propagation
distance is such that |κ| 
 1. Stoudt et al. [38] showed in
particular that the results of their experiments on water (De-
bye medium) at decimetric wavelengths can be numerically
reproduced by neglecting the group-delay dispersion, that is
the approximation made to obtain the analytical result of the
Eq. (24). See also [40–43]. Using a purely temporal approach,
Karlsson and Rikte [12] remarked early on that the impulse
response of the Debye medium is very close to a normalized
Gaussian. This property is obviously a consequence of the
previous analysis. The complex refractive index now reads as
ñ(ω) = [1 + (n2

0 − 1)/(1 + iωτ )]1/2, where n0 is the refractive
index for ω → 0 and τ is the relaxation time for the orientation
of the polar molecules [41]. Including ñ(ω) in Eq. (3) and
following the procedure used for the Lorentz medium, we
easily get β = [2(n2

0 − 1)τz/cn0]−1/2, and taking into account
that n2

0 � 1, κ ≈ 2.25
√

cτ/n0z. Note that β and κ depend
on z as 1/

√
z (as in the Lorentz medium). The normalized

Gaussian of Eq. (25) will thus also be obtained for sufficient
propagation distances. Using the parameters of water [41],
namely, n0 = √

79 and τ = 8.5 × 10−12 s, we find that the

skewness of 5.2%, obtained in a Lorentz medium for a
propagation distance more than four orders of magnitude
larger than the optical wavelengths considered, is now attained
for a propagation distance z ≈ 0.55 m, comparable to the
wavelengths involved in the experiments reported in [38].
Despite strongly different scales, Brillouin precursors in the
Lorentz medium in the strict asymptotic limit and in the
Debye medium pertain to the same physics, namely, that of
the dominant-attenuation limit, and will be described by the
same laws. On the other hand, the Debye medium is fully
opaque at high frequency, and Sommerfeld precursors cannot
be generated in this medium.

B. Precursor generated by an incident field of nonzero area

The Brillouin precursor generated by an arbitrary incident
field e(0,t) is obtained by convoluting the latter with hB(z,t)
or by multiplying its Fourier transform E(0,ω) by HB(z,ω)
and determining the inverse Fourier transform of the product.
We consider first the case where e(0,t) is rapidly varying
compared to hB(z,t). This requires in particular that ωc � β.
Compared to E(0,ω), HB(z,ω) then appears as a narrow peak
centered on ω = 0, and provided that E(0,0) 	= 0, EB(z,ω) ≈
E(0,0) HB(z,ω). Remembering that E(0,0) is the algebraic
area A of the incident field (see Sec. II), we finally get

eB(z,t) ≈ AhB(z,t) = Aβ√
π

exp(−β2t ′2). (26)

For the canonical incident field sin(ωct)uH (t), E(0,0) = 1/ωc,
and the precursor has an amplitude aB = β/(ωc

√
π )inversely

proportional to ωc (no matter its value provided that ωc �
β) and to

√
z. Note that the law aB ∝ 1/

√
z, sometimes

considered as general, is only valid in the strict asymptotic limit
considered here (for which |κ| 
 1). Figure 5 shows that the
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FIG. 5. Brillouin precursor obtained under the Brillouin con-
ditions, namely, for ωc = 0.1, ωp = 1.11, γ = 0.0707, and ξ =
8.31 × 105 (units of ω0). For these parameters, ω0tB ≈ 6.654 × 105

and β ≈ 1.78 × 10−3ω0 = 1.78 × 10−2ωc. Solid lines (dots) are the
exact numerical solutions (the analytic solutions). Curve (a) is the
precursor obtained with the canonical incident field sin(ωct)uH (t).
The precursor of curve (b) is originated by the incident field
e(0,t) = sin(ωct)[1 + erf(rt)]/2 for r = ωc/2

√
2. The inset shows

the Sommerfeld precursor magnified by a factor 106 obtained with
the conditions of curve (a). It fully vanishes under the conditions of
curve (b).
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precursor obtained in all the Brillouin conditions [curve (a)]
is perfectly fitted by the Gaussian form of Eq. (26). We
incidentally note that, for the carrier frequency retained by
Brillouin (ωc = ω0/10), the medium is fully opaque at this
frequency [α(ωc)z ≈ 800], in contradiction to his artist’s view
showing a main field (at ωc) larger than the precursors. On the
other hand, the condition ωc � β is well satisfied. The inset
in Fig. 5 shows the Sommerfeld precursor obtained under the
same conditions. As already mentioned, it is perfectly fitted
by the analytical expression of Eq. (21). Note, however, that
its amplitude is about four orders of magnitude smaller than
that of the Brillouin precursor. Equation (26) also holds when
the envelope of the incident field rises in a finite time provided
that both the rate r and the frequency ωc are large compared to
β. Curve (b) of Fig. 5 shows the Brillouin precursor generated
by the incident field e(0,t) = sin(ωct)[1 + erf(rt)]/2. We
have then E(0,0) = (1/ωc) exp(−ω2

c/4r2), and the area of
the incident pulse, equal to 1/ωc for r → ∞, falls to 1/2ωc

for r = ωc/2
√

ln(2) (r ≈ 0.60ωc). As expected, the Brillouin
precursor is identical to the previous one with the amplitude
reduced by half, and the corresponding Sommerfeld precursor
completely vanishes.

C. Precursor originated by an incident field of zero area

Even if ωc,r � β, Eq. (26) obviously fails when A =
E(0,0) = 0. This occurs in particular in the extreme case
where the incident field is instantaneously turned on, with
e(0,t) = cos(ωct)uH (t). It is then necessary to consider the
next term in the expansion of E(0,ω) in powers of iω. We get
in this case E(0,ω) ≈ iω/ω2

c and EB(z,ω) ≈ iωHB(z,ω)/ω2
c .

Using the correspondence iω ↔ d/dt between frequency
and time descriptions [30] and denoting by a dot the time
derivative, we finally get

eB(z,t) ≈ 1

ω2
c

.

hB(z,t) = − 2β2

ω2
c

√
π

βt ′ exp(−β2t ′2). (27)

As shown Fig. 6 [curve (a)], the analytical expression of
Eq. (27) perfectly fits the exact numerical results obtained

667000666000665000664000
Retarded Time (units of 1/ω0)
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 (b)

 (c)
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FIG. 6. Brillouin precursor obtained with the incident fields (1 −
e−rt ) cos(ωct)uH (t) for (a) r → ∞, (b) r = 65ωc, and (c) r = 20ωc

(solid lines). Other parameters are as in Fig. 5. The dots correspond
to the analytical solutions given by Eq. (27) or by the combination of
this equation with Eq. (26).

by FFT. The precursor is a Gaussian derivative with a
peak amplitude aB = [2/(πe)]1/2(β/ωc)2, which is smaller
than that attained with the canonical incident field by a
factor ωc

√
e/(β

√
2) (≈65 in all the Brillouin conditions) and

decreases much more rapidly with the propagation distance
(as 1/z instead of as 1/

√
z). We, however, remark that the

precursor so obtained is not robust. Indeed it suffices that the
incident field suffers a short rise time to retrieve a precursor
mainly governed by the area law of Eq. (26). To illustrate
this point, we have again considered an incident field of
the form (1 − e−rt ) cos(ωct)uH (t) that tends to cos(ωct)uH (t)
for r → ∞. For r � ωc (very short rise time), E(0,ω) ≈
−1/r + iω/ω2

c . The incident field has gained a (negative)
area A = −1/r . The precursor is then the sum of two
contributions given by Eq. (26) with A = −1/r and by
Eq. (27). Curve (b) of Fig. 6 shows the result obtained when
the two contributions have the same amplitude, that is, when
r/ωc = ωc

√
e/(β

√
2) ≈ 65. When r decreases by remaining

large compared to ωc, the Gaussian part of the precursor rapidly
prevails on the Gaussian-derivative part, and as shown [curve
(c)], the precursor becomes nearly Gaussian (downwards) for
r as large as 20ωc.

D. Case where the carrier frequency lies below
the opacity region

The previous results are valid for the Lorentz medium in
the strict asymptotic limit (also as in the Debye medium) when
ωc � β, that is, when ωc lies in the opacity region. Fortunately
enough, the simplicity of the Gaussian impulse response
enables us to obtain exact expressions of the transmitted field
for arbitrary values of the ratio ωc/β. This occurs in the Lorentz
medium when ωc resides below the opacity region, and direct
observations of the field transmitted under such conditions
have been performed by Stoudt et al. in a Debye medium [38].
The transmitted field e(z,t) is calculated directly in the time
domain by convoluting hB (z,t) given Eq. (25) with the incident
field. For the canonical incident field, the convolution product
can be written as

e(z,t) = β√
π

∫ t ′

−∞
e−β2θ2

sin[ωc(t ′ − θ )]dθ. (28)

After some simple transformations, we finally get

e(z,t)= 1

2
e−ω2

c /4β2
Im

{[
1+erf

(
βt ′+ iω

2β

)]
eiωct

′
}

, (29)

where e−ω2
c /4β2 ≈ e−α(ωc)z and, as previously, t ′ = t − tB . For

t ′ → ∞, e(z,t) tends to e−ω2
c /4β2

sin(ωct
′), which is nothing

more than the steady state or main field, which is not
negligible when ωc and β are comparable. If we take tB
(1/β) as the time origin (time unit), the transmitted field only
depends on the ratio ωc/β, regardless of the particular system
considered. When ωc � β, it tends to β exp(−β2t ′2)/(ωc

√
π ),

in agreement with Eq. (26), with the main field then being
negligible. When ωc � 4β, Eq. (29) is well approximated by
the expression

e(z,t) ≈ 1 + erf(βt ′)
2

sin(ωct
′) e−α(ωc)z + β ′

ωc

√
π

e−β ′2t ′2 ,

(30)
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FIG. 7. Brillouin precursor and main field obtained for ωc ≈
3.84β as a function of β(t − tB ). The solid line, the dots, and
the dashed line are, respectively, the exact numerical solution, the
analytical solution given by Eq. (29), and its approximate form given
by Eq. (30). The inset shows the Brillouin precursor obtained for
ωc ≈ 7.67β. The two analytical solutions are indistinguishable in
this case, and the amplitude of the main field is negligible.

where β ′ = β(1 + 2β2/ω2
c ) → β for ωc � β. The first (sec-

ond) term of Eq. (30) obviously corresponds to the main
field (the Brillouin precursor). Figure 7 shows the transmitted
field as a function of βt ′ = β(t − tB) for ωc ≈ 3.84β and
ωc ≈ 7.67β (inset). In the study on water (Debye medium)
at decimetric wavelengths [38], these values are obtained with
ωc = 2π × 109 s−1 for z = 0.75 m and z = 3 m, respectively.
As expected, Eq. (29) perfectly fits the exact numerical result
in both cases. Equation (30) provides a good approximation for
ωc ≈ 3.84β and an excellent approximation for ωc ≈ 7.67β.
In the latter case, the Brillouin precursor prevails over the main
field, whose relative amplitude is negligible. The signals shown
Fig. 7 are in good agreement with those directly observed in
the experiments reported in [38].

V. EXTENDED EXPRESSION OF THE
BRILLOUIN PRECURSOR

We come back in this section to the Brillouin precursor
in the Lorentz medium. Numerical simulations show that
the solutions obtained in the strict asymptotic or dominant-
attenuation limit continue to provide good (not too bad)
approximations of the exact solutions when the propagation
distance is 10 times (100 times) shorter than that considered
by Brillouin [29], though the skewness κ then rises up to 16%
(52%). For shorter distances, it is obviously necessary to take
into account the effects of the group-delay dispersion neglected
in the strict asymptotic approximation.

A. Transfer function HB(z,ω) and impulse response

Taking into account the term in ω3 in Eq. (23), the transfer
function then reads

HB(z,ω) ≈ exp

[
−iωtB − i

3ηb3
(ω3 − 2iηγω2)

]
, (31)

where tB , b, and η are defined by Eqs. (8)–(10), with
2γ /(3b3) = 1/4β2. Remarking that (ω3 − 2iηγω2) is the

beginning of (ω − 2iηγ /3)3 and taking a new origin of time
at tB + 4ηγ 2/9b3, we get

HB(z,ω) ≈ exp

[
− i

3ηb3

(
ω − 2

3
iηγ

)3

− η2

3

(
2γ

3b

)3
]

.

(32)

By means of an inverse Fourier transform, we finally find

hB(z,t) ≈ B Ai(−η1/3bt ′′) exp(−2ηγ t ′′/3). (33)

Here B = η1/3b exp[−(η2/3)(2γ /3b)3], t ′′ = t − tB − 4ηγ 2/

9b3, and Ai(s) designates the Airy function. The range of
validity of Eq. (33) can be roughly estimated by means of
a strategy similar to that used for the Sommerfeld precursor.
By taking into account the cumulants k4 (correction of the
attenuation) and k5 (correction of the dispersion), the transfer
function associated with the Brillouin precursor approximately
reads HB(z,ω)(1 − a4ω

4 − ia5ω
5), where a4 = −k4/24 > 0

and a5 = k5/120 > 0. HB(z,ω) will be a good approximation
if a4ω

4 and a5ω
5 are small compared to 1 (say �1/

√
10).

For the sake of simplicity, we take for the ratios ωp/ω0 and
γ /ω0 the values retained by Brillouin, representative of a dense
Lorentz medium with moderate damping. We get then η ≈
1.018 ≈ 1. In addition, in a cavalier manner, we assimilate ω to
the instantaneous frequency derived from the asymptotic form
Ai(−s) ≈ π−1/2s−1/4 sin(2s3/2/3 + π/4), which provides a
good approximation of Ai(−s) when s > 1. We get thus
ω ≈

√
b3t ′′. With all these hypotheses, we finally find that the

corrections due to cumulants k4 and k5 will be small if ω0t
′′ �

2(ω0/b)3/2 and ω0t
′′ � (ω0/b)9/5, respectively. Despite the

roughness of the procedure leading to these conditions, it will
be shown below that they are realistic and even too severe.

B. Precursor generated by the canonical incident field

When hB(z,t) is slowly varying compared to e(0,t),
the Brillouin originated by the canonical incident field
sin(ωct)uH (t) takes again the simple form eB(z,t) =
A hB(z,t), that is,

eB(z,t) ≈ B

ωc

Ai(−η1/3bt ′′) exp(−2ηγ t ′′/3). (34)

It is assumed by writing Eq. (34) that the instantaneous
frequency

√
b3t ′′ is small compared to ωc (say

√
b3t ′′ �

ωc/
√

10) and that the conditions of the validity of hB(z,t) are
met. All these restrictions are summarized by the inequality

ω0t
′′ � min[2(ω0/b)3/2, (ω0/b)9/5, ω0ω

2
c/10b3]. (35)

Figure 8 shows the Brillouin precursor obtained in the
simple asymptotic limit considered in the study of the
Sommerfeld precursor (Fig. 3). The inequality of Eq. (35) then
leads to ω0t � min[750, 760, 840]. Insofar as the amplitude
of the precursor is negligible for ω0t = 750, the analytical
expression of Eq. (34) perfectly fits the exact numerical result.

Surprisingly enough, Eq. (34) remains a not too bad
approximation of the exact result even when the opacity region
is not broad in the sense given to this expression in the present
paper. Figure 9 shows the precursor obtained at a distance ten
times smaller than the previous one. Though the width of the
opacity region is then of the order of ω0 [see curve (e) of Fig. 1],
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FIG. 8. Brillouin precursor obtained in the simple asymptotic
limit with the canonical incident field sin(ωct)uH (t). Parameters
(units of ω0) are ωc = 1, ωp = 1.11, γ = 0.0707, and ξ = 831, lead-
ing to ω0tB ≈ 665.4, b ≈ 8.44 × 10−2ω0, and β ≈ 5.64 × 10−2ω0.
The solid line, the dots, and the dashed line are, respectively, the
exact numerical solution, the analytical solution given by Eq. (34),
and the Gaussian that would be obtained in the dominant-attenuation
approximation. The conditions are those of Fig. 3. The corresponding
Sommerfeld precursor magnified by a factor 1000 is given in the inset
for reference.

the entirety of the first oscillation of the Brillouin precursor is
very well fitted by Eq. (34). The corresponding Sommerfeld
precursor (inset) is itself well reproduced by Eq. (21) up to its
maximum.

C. Dominant-dispersion limit

The expression of the Brillouin precursor given by Eq. (34)
obviously includes as a particular case the Gaussian obtained in
the dominant-attenuation limit. In fact, retrieving the Gaussian
precursor directly from Eq. (34) requires long and tedious

0.05

0

2001000
 Retarded Time (units of 1/ω0)

0.02

0

-0.02

50

tB

FIG. 9. Comparison of the Brillouin precursor obtained outside
the asymptotic limit (solid line) with the analytical forms given
by Eqs. (34) (dots) and (36) (dashed line). Parameters (units of
ω0) are ωc = 1, ωp = 1.11, γ = 0.0707, and ξ = 83.1, leading to
ω0tB ≈ 66.54, b ≈ 0.182ω0, and β ≈ 0.178ω0. The inset shows the
corresponding Sommerfeld precursor (solid line) compared to the
analytic form given by Eq. (21) (dashed line).

calculations, and this probably explains why the Gaussian
solution has been generally overlooked. Another particular
form of Eq. (34), also of special importance, is that obtained
when the damping is very small, so that the formation of
the Brillouin precursor is mainly governed by the group-
delay dispersion (dominant-dispersion limit). This requires in
particular that γ 
 b. We then get t ′′ ≈ t − tB , B ≈ b, and

eB(z,t) ≈ b

ωc

Ai[−b(t − tB)] exp

[
−2

3
γ (t − tB)

]
. (36)

Except for the exponential damping term, this result was
established by Brillouin himself by means of the stationary-
phase method [4,44]. When the group-delay dispersion is
fully dominant (when γ /b < 1/100), the precursor has a
well-marked oscillatory behavior with a very weak damp-
ing, and its maximum practically coincides with the first
maximum of Ai[−b(t − tB)], attained for t − tB ≈ 1.02/b.
The corresponding amplitude is aB ≈ 0.536(b/ωc), which
scales as z−1/3 instead of as z−1/2 in the strict or dominant-
attenuation limit. Figure 10 shows an example of the Brillouin
precursor obtained under such conditions (γ /b ≈ 3.9 × 10−3).
It is worth emphasizing that, since b ∝ z−1/3, the condition
γ /b 
 1 requires that the propagation distance is not too
large. On the other hand, it should be large enough for
the inequality of Eq. (35) to be satisfied for a time larger
than or at least comparable to the half-maximum duration of
the precursor. In fact, the most severe restriction originates
from the condition ω0(t − tB) � (ω0/b)9/5 associated with
the dispersion correction. When γ 
 b, we easily deduce
from the asymptotic form of the Airy function that the half
maximum of the precursor will be attained for ω0(t − tB) ≈
20(ω0/b). The precursor will thus be well reproduced by
the expression eB(z,t) ≈ (b/ωc)Ai[−b(t − tB)] beyond its
half-maximum amplitude if γ 
 b and if (ω0/b)4/5 > 20, that
is, if b/ω0 < 0.024. The latter condition is approximately met
in Fig. 10, where b/ω0 = 0.026. As expected, the maximum
amplitude of the precursor is aB ≈ 0.536(b/ωc) ≈ 0.0165,
with exp[−2γ (t − tB)/3] ≈ 0.997 at the corresponding time.
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250002450024000
Retarded Time (units of 1/ω0)

tB

FIG. 10. Brillouin precursor in the dispersion-dominant limit.
The solid line (dots) is the exact numerical solution (the analytical
solution). Parameters (units of ω0) are ωc = 0.836, ωp = 1.11,
γ = 10−4, and ξ = 2.95 × 104, leading to ω0tB ≈ 2.3641 × 104,
b ≈ 0.0257ω0, and β ≈ 0.252ω0. The carrier frequency ωc is at the
lower boundary of the opacity region [α(ωc)z ≈ 20].
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VI. PROPAGATION OF PULSES WITH A SQUARE OR
GAUSSIAN ENVELOPE

Up to now, in the spirit of the pioneering work of Som-
merfeld and Brillouin, we have considered incident fields of
infinite duration. In actual or even numerical experiments, this
duration is naturally finite. As a matter of fact the simulations
made to corroborate our previous analytical calculations were
made by using a square-wave modulation (eventually suitably
filtered) and choosing a square duration long enough to avoid
having the precursors generated by the rise and the fall of the
square overlap. On the contrary, we consider in this section the
case where the duration of the incident field is small compared
to the time delay tB separating the Brillouin precursor from
the Sommerfeld precursor and does not exceed a few periods
of the carrier. We will restrict the analysis to the Brillouin
precursor. Indeed the Sommerfeld precursor, if it exists, is
generally much smaller and will be often filtered out by
rise-time effects, to which the Brillouin precursor is much less
sensitive.

A. Square pulse

We consider first a square-modulated incident field
[uH (t) − uH (t − T )] sin(ωct). Of particular interest is the case
where the square duration is an integer n of half periods of the
carrier, that is, T = nTc/2 = nπ/ωc. The incident field can
then be rewritten as e(0,t) = uH (t) sin(ωct) − (−1)nuH (t −
T ) sin[ωc(t − T )], and the transmitted field reads as e′(z,t) =
e(z,t) − (−1)ne(z,t − T ), where e(z,t) designates the trans-
mitted field when only the incident field uH (t) sin(ωct) is on.
This equation applies to the whole field and in particular to the
Brillouin precursor to yield

e′
B(z,t) = eB(z,t) − (−1)neB(z,t − T ), (37)

where eB (z,t) is given by Eq. (26) or Eq. (34), depending on the
system and the parameters considered. The two components
of e′

B are of opposite (same) sign when n is even (odd)
and are well separated when it is large enough, so that T

significantly exceeds the duration of the elementary precursor.
On the other hand, with eB(z,t) evolving slowly at the scale of
Tc, the two components overlap and interfere if n is small.
When n = 2 (T = Tc), as considered in [40,45], the two
components interfere nearly destructively to give a precursor
e′
B(z,t) ≈ TcėB(z,t − Tc/2). The case where n is odd and, in

particular, where n = 1 (T = Tc/2) is much more favorable.
Indeed the two precursors then interfere constructively to
yield a precursor e′

B(z,t) ≈ 2eB (z,t − Tc/4) whose amplitude
is twice that obtained with a step modulation. This result is
not really a surprise since the pulse area is itself twice that of
uH (t) sin(ωct). On the contrary the pulse area equals zero when
n is even. The previous results are illustrated Fig. 11, which
shows the Brillouin precursors obtained for n = 1,2 for a
Lorentz medium when attenuation and dispersion comparably
contribute to the formation of the Brillouin precursor (simple
asymptotic limit).

When the detection of the Brillouin precursor is not time
resolved, an important parameter is the integrated “energy”
WB(z) = ∫ +∞

−∞ |e′
B(z,t)|2dt [18,21]. Thanks to the Parseval-
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FIG. 11. Comparison of the Brillouin precursors e′
B (z,t) gener-

ated by an incident square-modulated field of duration (a) T = Tc/2
and (b) T = Tc. The parameters are those of Fig. 8. The solid and
dashed lines are the exact numerical solutions, indiscernible from the
analytical solutions given by Eq. (37). The dots are the approximate
solutions (a) 2eB (z,t − Tc/4) and (b) TcėB (z,t − Tc/2). As expected
the precursor amplitude for T = Tc/2 is twice that attained with a
step-modulated field (see Fig. 8), whereas that attained for T = Tc is
much smaller. The inset shows the corresponding incident fields.

Plancherel theorem [30], it can be written as

WB(z) = 1

2π

∫ +∞

−∞
|HB(z,ω)|2|E(0,ω)|2dω. (38)

In this expression all phases are eliminated, and |HB(z,ω)|2
is reduced to exp(−4γω2/3b3) = exp(−ω2/2β2) in both
strict and simple asymptotic cases. For T = Tc/2,
|HB(z,ω)E(0,ω)|2 ≈ (4/ω2

c ) exp(−ω2/2β2), and we get an
energy WB(z) = 23/2π−1/2β/ω2

c , which slowly decays with
the propagation distance (as 1/

√
z). On the other hand, for

T = Tc, |HB(z,ω)E(0,ω)|2 ≈ (2πω/ω2
c )2 exp(−ω2/2β2) and

WB(z) = (2π )3/2β3/ω4
c . As expected, WB(z) then decays very

rapidly with the propagation distance (as z−3/2). As already
mentioned, the previous expressions of the energy are valid
regardless of the relative contributions of the absorption and
the dispersion to the formation of the precursor. For the Debye
medium and the Lorentz medium in the dominant-attenuation
limit, it is also possible to derive from Eqs. (37) and (26)
explicit expressions of the maximum amplitude a′

B(z) of
the precursor e′

B(z,t). We find that this amplitude, equal to
2β/(ωc

√
π ) ≈ 1.1(β/ωc) ∝ 1/

√
z when T = Tc/2, falls to

2
√

2π/e(β/ωc)2 ≈ 3.0(β/ωc)2 ∝ 1/z when T = Tc.

B. Gaussian pulse

The Gaussian pulses are probably the sole smooth pulses
for which it is possible to obtain exact analytic expressions
of the Brillouin precursor, both in the strict and simple
asymptotic limits. Nonchirped incident fields of the forms
e−t2/T 2

cos(ωct) and e−t2/T 2
sin(ωct) have been respectively

considered by Oughstun and Balictsis [46] and by Ni and
Alfano [47]. When the pulses are linearly chirped, it is
convenient to consider them as the real and imaginary
parts of ẽ(0,t) = exp(iωct − t2/T 2 + iχ2t2), where χ2 is the
chirping parameter. The Fourier transforms of ẽ(0,t) and
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of the corresponding transmitted field ẽB(z,t) simply read
Ẽ(0,ω) = T̃

√
π exp[−(ω − ωc)2T̃ 2/4] and

ẼB(z,ω) = ÃHB(z,ω) exp(−ω2T̃ 2/4 + ωωcT̃
2/2). (39)

In these expressions T̃ = T/
√

1 − iχ2T 2 and Ã =
T̃

√
π exp(−ω2

c T̃
2/4) may be respectively seen as the (com-

plex) duration and area of the pulse ẽ(0,t). In the strict
asymptotic limit [see Eq. (24)], we get

ẼB(z,ω) = Ã exp

[
−ω

4

2
(

1

β2
+ T̃ 2

)
+ ω

ωcT̃
2

2

]
, (40)

and ẽB(z,t), the inverse Fourier transform of ẼB(z,ω), reads

ẽB(z,t)= Ãβ√
π (1+β2T̃ 2)

exp

[
−β2(t ′−iωcT̃

2/2)

1 + β2T̃ 2

]
, (41)

where t ′ = t − tB . In the simple asymptotic limit (see Sec. V),
Eqs. (31) and (39) yield

ẼB(z,ω) = Ã exp

[
−iω

(
tB + iωcT̃

2

2

)]
× exp

[
−ω2

(
2γ

3b3
+ T̃ 2

4

)
− iω3

(
1

3ηb3

)]
.

(42)

This equation is easily transformed in an equation similar to
Eq. (32). In this way, we find

ẽB(z,t) = Ã B̃ Ai(−η1/3b t̃) exp

(
−2

3
ηγ̃ t̃

)
, (43)

where γ̃ = γ + 3b3T̃ 2/8, B̃ = η1/3b exp[−(η2/3)(2γ̃ /3b)3],
and t̃ = t − tB − 4ηγ̃ 2/9b3 − iωcT̃

2/2. Finally, the precur-
sors generated by the incident fields e−t2/T 2

cos(ωct + χ2t2)
and e−t2/T 2

sin(ωct + χ2t2) respectively read as ecos(z,t) =
Re[̃eB(z,t)] and esin(z,t) = Im[̃eB(z,t)]. Equation (41),
Eq. (43), and the derived expressions of ecos(z,t) and esin(z,t)
hold whatever the duration of the incident pulse may be.
However, as shown below, the amplitude of the Brillouin
precursor will only be significant when this duration does not
exceed a few periods of the carrier. In the Fourier transform
HB(z,ω)Ẽ(0,ω) of the transmitted field, HB(z,ω) is then again
much narrower than Ẽ(0,ω), which may be approximated
by its first order expansion in powers of ω. We get thus
ẼB(z,ω) ≈ Ã(1 + ωωcT̃

2/2)HB(z,ω), and finally,

ẽB(z,t) ≈ Ã[hB(z,t) − (iωcT̃
2/2)ḣB(z,t)]. (44)

When there is no chirping, T̃ and Ã are real, with T̃ = T and
Ã = A = T

√
π exp[−ω2

cT
2/4]. Equation (44) then leads to

ecos(z,t) ≈ A hB(z,t) = T
√

π exp

[
−ω2

cT
2

4

]
hB(z,t), (45)

esin(z,t) ≈ −AωcT
2

2
ḣB(z,t) = −ωcT

2

2
ėcos(z,t). (46)

As illustrated in Fig. 12, obtained in the simple asymp-
totic limit, these approximate analytic solutions perfectly
fit the exact numerical solution. It is easily deduced from
Eq. (45) [Eq. (46)] that the amplitude of the precur-
sor ecos(z,t) [esin(z,t)] is maximum for a pulse dura-
tion T = Tm = √

2/ωc [
√

6/ωc]. The energy of the pre-
cursors can be obtained by the method already used in
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FIG. 12. Brillouin precursors generated by the incident fields
of Gaussian envelope (a) e−(t/T )2

cos(ωct) with T = √
2/ωc and

(b) e−(t/T )2
sin(ωct) with T = √

6/ωc. The parameters are those of
Fig. 8. In both cases, the pulse duration has been chosen in order
to maximize the precursor amplitude (see text). The solid and
dashed lines are the exact numerical solutions, whereas the dots are
the analytical solutions obtained in the short-pulse approximation
[Eqs. (45) and (46)], indiscernible from those obtained without
approximation [Eq. (43)]. The inset shows the corresponding incident
fields. Numerical calculations show that the Sommerfeld precursors
generated by these fields have negligible amplitudes, 5.6 × 10−7 for
(a) and 1.15 × 10−10 for (b).

the case of a square modulation. We get thus WB ≈
(π/2)1/2(βT 2e−ω2

c T
2/2) ∝ 1/

√
z for e(0,t) = e−t2/T 2

cos(ωct)
and WB ≈ (π/32)1/2(β3ω2

cT
6e−ω2

c T
2/2) ∝ z−3/2 for e(0,t) =

e−t2/T 2
sin(ωct). In fact the scaling laws in z−1/2 or z−3/2

are general and hold for every short incident pulse. In all
cases, the transmitted pulse is indeed proportional to hB(z,t)
when E(0,0) = A 	= 0 or to ḣB(z,t) when A = 0, the pro-
portionality coefficient depending only on the characteristics
of the incident pulse and not on the propagation distance.
For Gaussian incident pulses and, more generally, for smooth
pulses, the amplitude and the energy of the Brillouin precursor
rapidly decreases with the pulse duration. For example, the
amplitude of the Brillouin precursor generated by the incident
field e−t2/T 2

cos(ωct) is reduced by a factor exceeding 400
when T is taken as four times larger than its optimum value√

2/ωc [see Eq. (45)]. This reduction of amplitude can,
however, be compensated by using chirped pulses. When
the pulse duration remains small enough, Eq. (44) holds
and the Brillouin precursor generated by the incident field
e−t2/T 2

cos(ωct + χ2T 2) reads

eB(z,t) ≈ hB(z,t) Re(Ã) − ḣB(z,t) Re(iωcÃT̃ 2/2). (47)

Anticipating that the second term of this equation is small
compared to the first one, we easily get the approximate
expression

eB(z,t) ≈ A hB[z,t ′′ − Re(iωcÃT̃ 2/2A)], (48)

where A = Re(Ã) is the area of the incident pulse. This result
differs from that obtained without chirping [see Eq. (45)] by
an extra time delay Re(iωcÃT̃ 2/2A) and moreover by the
pulse area A, which may be considerably larger than that
attained when the pulse is not chirped. Figure 13 shows the
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FIG. 13. Brillouin precursor generated by a chirped incident
pulse e−(t/T )2

cos(ωct + χ 2t2), with T = 4
√

2/ωc and χ = ωc/4.
The other parameters are the same as those of Figs. 8 and 12.
The solid line, the dots, and the dashed line are respectively the
exact numerical solution, the analytic solution derived from Eq. (43),
and the approximate analytic solution of Eq. (48), obtained in the
short-pulse approximation. The inset shows the incident pulse. The
corresponding Sommerfeld precursor has fully negligible amplitude
(9 × 10−11).

result obtained for a pulse duration T = 4
√

2/ωc. In order to
maximize the precursor amplitude, we have chosen for the
chirping the value χ = ωc/4 for which the function A(χ )
reaches its first extremum (negative minimum). For these pa-
rameters, Re(iAT̃ 2/2A) is also negative (time advancement).
We remark that, despite the numerous approximations having
led to Eq. (48), it provides a very good approximation of the
exact result.

VII. CONCLUSION

We have analytically studied the propagation of light
pulses in a dense Lorentz medium at distances z so large
that the medium is opaque in a broad spectral region and
the Sommerfeld and Brillouin precursors are far apart from
each other. Assuming that the carrier frequency ωc lies in
the opacity region (below, inside, or beyond the anomalous
dispersion region), we have shown that the Sommerfeld
precursor has a shape independent of ωc and that it is entirely
determined by the order p and the importance dp of the initial
discontinuity of the incident field, regardless of its subsequent
evolution. When the incident field is discontinuous (p = 0),
its amplitude is independent of z and ωc. For p > 0, this
amplitude is proportional to ωcz

−(2p+1)/4 and rapidly decreases
with the rise time of the incident field. These results, exact in

the strict asymptotic limit where z → ∞, provide excellent
approximations for the propagation distance considered by
Brillouin and remain good approximations even when z is
1000 times shorter.

In the strict asymptotic limit, the formation of the Brillouin
precursor is uniquely determined by the frequency dependence
of the medium attenuation. When ωc lies in the opacity region,
we have shown that the Brillouin precursor is a Gaussian
of amplitude aB ∝ 1/(ωc

√
z) or a Gaussian derivative of

amplitude aB ∝ 1/(ω2
cz), depending on whether or not the area

of the incident field differs from zero. We have also determined
the transmitted field when ωc is outside the opacity region,
evidencing the “pollution” of the Brillouin precursor by the
field that is then transmitted at ωc (Fig. 7).

In a simple asymptotic limit, both attenuation and group-
delay dispersion contribute to the formation of the Brillouin
precursor. We have established in this case an expression
of the Brillouin precursor containing as particular cases the
previous one (dominant-attenuation limit) and that obtained by
Brillouin by means of the stationary-phase method (dominant-
dispersion limit).

We have finally obtained exact analytical expressions of
the Brillouin precursors originated by pulses of a square
or Gaussian envelope. We have in particular determined the
pulse parameters optimizing the precursor amplitude and
demonstrated that the energy of the precursor decreases with
the propagation distance as slowly as z−1/2 when the area of
the incident field differs from zero but as rapidly as z−3/2

in the contrary case. We have also shown that, for a given
duration, the precursor amplitude can be greatly enhanced by
using frequency-chirped pulses.

Our explicit analytic expressions of the precursors contrast,
by their simplicity, those currently derived by the uniform
saddle-point methods. The complexity of the latter [13] is often
such that it is difficult and sometimes impossible to retrieve
from them our asymptotic forms. On the other hand, it should
be kept in mind that our results only hold in the limit where the
medium is opaque in a spectral region whose width is much
larger than the resonance frequency. We, however, remark that
they provide a not too bad reproduction of the Sommerfeld and
Brillouin precursors even when this width is of the order of the
resonance frequency (Fig. 9). We finally mention that the study
of the precursors is greatly simplified when the complex index
of the medium is such that |̃n(ω) − 1| 
 1∀ ω [16]. As in the
study of the quasiresonant precursors [48], the equation giving
the saddle points can then be reduced to a biquadratic form,
and the saddle-point method is expected to provide simple
solutions even when the Sommerfeld and Brillouin precursors
partially overlap. This work is in progress.
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