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Generation of atomic and field squeezing by adiabatic passage and symmetry breaking

Shi-Biao Zheng
Department of Physics, Fuzhou University, Fuzhou 350002, People’s Republic of China

(Received 5 June 2012; published 20 July 2012)

We propose an efficient scheme for realizing squeezing for both an atomic ensemble and a cavity field via
adiabatic evolution of the dark state of the atom-cavity system. Controlled symmetry breaking of the Hamiltonian
ensures a unique dark state for the total system, in which the atomic system or cavity mode is squeezed depending
upon the choice of the detunings. Since the generation of the atomic squeezed state requires neither the cavity
mode nor the atomic system to be excited, the decoherence effects are effectively suppressed. The scheme is
insensitive to the uncertainty in the atomic number and imperfect timing, and the time needed for the generation
of the desired squeezed state decreases as the size of the system grows. The required experimental techniques
are within the scope of what can be obtained in the present cavity QED setups.
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I. INTRODUCTION

In recent years, there has been growing interest in quantum
states from both fundamental and practical points of view.
Besides providing possibilities for testing fundamental quan-
tum theory, nonclassical states have potential applications. Of
special interest are the squeezed states of an electromagnetic
field, whose quantum fluctuation in one quadrature is reduced
below the vacuum level at the expense of amplifying the noise
in the other quadrature [1]. Such states may be used to improve
the signal-to-noise ratio in optical communications [2] and
detect gravitational waves [3]. In correlated many-particle
systems, spin squeezing can be defined as the reduction
of fluctuation in one collective spin component below the
standard quantum limit of the coherent spin state at the
expense of amplifying another component. Such states are
useful for atomic interferometers [4,5] and high-precision
spectroscopy [6,7]. Recently, it has been found that spin
squeezing is closely related to entanglement, which is the key
resource for quantum communication [8–10] and quantum
computation [11]. Ulam-Orgikh and Kitagawa have shown
that spin squeezing implies pairwise entanglement [12], and
Wang and Sanders have given a quantitative relation between
the squeezing and concurrence for symmetric multispin states
[13]. As the pairwise entanglement is manifested only in the
collective properties of the multiqubit system, it is robust
against the loss of coherence for a single qubit, which is
important for quantum information processing. Schemes have
been proposed for spin squeezing with an optical lattice [14]
and Bose-Einstein condensates [15], and weak spin squeezing
has been experimentally realized [16,17].

Cavity QED is a qualified candidate for quantum-state
engineering and quantum information processing. The strong
atom-cavity coupling achievable in a high-finesse cavity
allows the generation of various nonclassical states before
decoherence sets in. The high degree of control over single
atoms [18–20] and atomic ensembles [21,22] in a resonator
opens possibilities ranging from quantum-state engineering
and quantum networking to quantum phase transitions. So far,
schemes for preparing squeezed states in cavity QED have
been based on either parametric down conversion [23–25] or
quantum reservoir engineering [26–28]. To our knowledge,

none of these schemes has been experimentally realized.
In this paper, we propose an adiabatic passage scheme for
generation of squeezed states for both the atomic system
and cavity mode. Unlike previous schemes, our scheme is
based on the symmetry breaking of the Hamiltonian for the
combined atom-cavity system, which ensures a unique dark
state of the interaction Hamiltonian, given by the product of
the squeezed state of the atomic system with the vacuum state
of the cavity mode or vice versa. The squeezing parameter
is controllable via the intensities and phases of the classical
driving fields. Compared with the previous schemes, this
scheme has the following important features: (i) For the
generation of the atomic squeezed state, neither the cavity
mode nor the atomic system is excited, so that the model is
robust against decoherence mechanisms and a high-fidelity
squeezed state can be generated beyond the strong coupling
regime, (ii) the method is immune to the uncertainty in the
atomic number, (iii) the interaction time does not need to
be accurately adjusted as long as the adiabatic condition is
fulfilled, and (iv) the time needed to produce the state with
a desired squeezing parameter decreases when the number
of atoms increases. This scheme is feasible with current
experimental technology.

II. EFFECTIVE HAMILTONIAN

We consider that N atoms are trapped in a single-mode
cavity. The atomic level configuration is shown in Fig. 1.
Each atom has two excited states, |r〉 and |s〉, and two ground
states, |e〉 and |g〉. The cavity mode couples to the transitions
|g〉 ←→ |r〉 and |e〉 ←→ |s〉 with coupling strengths g1 and
g2, respectively. Meanwhile, one laser couples to the transition
|e〉 ←→ |r〉 with Rabi frequency �1 and phase φ1 and another
laser couples to |g〉 ←→ |s〉 with Rabi frequency �2 and
phase φ2. As will be shown, these fields are used to drive
two distinct Raman transitions between two atomic ground
states, which leads to the competition between the annihilation
and creation operators of the collective atomic mode or of
the cavity mode, making the atomic or field squeezed state
be the unique dark state of the effective two-mode coupling
Hamiltonian depending upon the choice of the field detunings.
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FIG. 1. (Color online) The atomic level configuration and excita-
tion scheme. Each atom has two ground states, |e〉 and |g〉, and two ex-
cited states, |r〉 and |s〉. The transitions |g〉 ←→ |r〉 and |e〉 ←→ |s〉
are coupled to the cavity mode with the coupling strengths g1

and g2, respectively. Furthermore, the transitions |e〉 ←→ |r〉 and
|g〉 ←→ |s〉 are driven by two classical fields with Rabi frequencies
�1 and �2, respectively. The cavity mode, together with the laser
fields, induces two Raman transitions between the two atomic ground
states.

The Hamiltonian for the system is (h̄ = 1)

H = ωaa
†a +

N∑
j=1

(g1a|rj 〉〈gj | + �1e
iφ1e−iω1t |rj 〉〈ej |

+ g2a|sj 〉〈ej | + �2e
iφ2e−iω2t |sj 〉〈gj | + H.c.

+ωs |sj 〉〈sj | + ωr |rj 〉〈rj | + ωe|ej 〉〈ej |), (1)

where ωs , ωr , and ωe are the energies of levels |s〉, |r〉, and
|e〉, respectively, ωa is the frequency of the cavity mode, and
ω1 and ω2 are the frequencies of the two classical fields. Here
the energy of level |g〉 is set to zero. We now switch to the
interaction picture with respect to

H0 = ωa†a +
N∑

j=1

(ω2|sj 〉〈sj | + ω|rj 〉〈rj | + ω′
e|ej 〉〈ej |), (2)

where ω = (ω1 + ω2)/2 and ω′
e = (ω2 − ω1)/2 are close to

ωc and ωe, respectively. Then the Hamiltonian describing the
atom-field interaction is

Hi = Hi,0 + Hi,1 + Hi,2, (3)

where

Hi,0 = (ωa − ω)a†a + (ωe − ω′
e)

N∑
j=1

|ej 〉〈ej |,

Hi,1 = Ai,1 + A
†
i,1 + �1

N∑
j=1

|rj 〉〈rj |,

Hi,2 = Ai,2 + A
†
i,2 + �2

N∑
j=1

|sj 〉〈sj |, (4)

Ai,1 =
N∑

j=1

(g1a|rj 〉〈gj | + �1e
iφ1 |rj 〉〈ej |),

Ai,2 =
N∑

j=1

(g2a|sj 〉〈ej | + �2e
iφ2 |sj 〉〈gj |),

and �1 = ωr − ω and �2 = ωs − ω2 are the detunings be-
tween the fields and the respective atomic transitions.

Under the large detuning condition, i.e., �1, �2 � g1, g2,
�1, �2, ωa − ω, ωe − ω′

e, Hi,1 and Hi,2 can be respectively
replaced by the effective Hamiltonians [29]

Heff,1 = �1

N∑
j=1

|rj 〉〈rj | + [Ai,1, A
†
i,1]

�1

= (�1 + ηe + ξga
†a)

N∑
j=1

|rj 〉〈rj |

+
N∑

j,k=1

ξg|rj 〉〈gj | ⊗ |gk〉〈rk| − ηe(Sz + N/2)

− ξga
†a(N/2 − Sz) − (λ1e

−iφ1aS+ + H.c.) (5)

and

Heff,2 = �2

N∑
j=1

|sj 〉〈sj | + [Ai,2, A
†
i,2]

�2

= (�2 + ηg + ξea
†a)

N∑
j=1

|sj 〉〈sj |

+
N∑

j,k=1

ξe|sj 〉〈ej | ⊗ |ek〉〈sk| − ξea
†a(Sz + N/2)

− ηg(N/2 − Sz) − (λ2e
iφ2a†S+ + H.c.), (6)

where S+ = ∑N
j=1 |ej 〉〈gj |, Sz = 1

2

∑N
j=1(|ej 〉〈ej | − |gj 〉

〈gj |), ηe = �2
1

�1
, ηg = �2

2
�2

, ξe = g2
2

�2
, ξg = g2

1
�1

, λ1 = �1g1

�1
, and

λ2 = �2g2

�2
. The atomic excitation number is not changed

during the interaction since the atomic excitation number
operator

∑N
j=1(|sj 〉〈sj | + |rj 〉〈rj |) commutes with the total

effective Hamiltonian Hi,0 + Heff,1 + Heff,2. When all the
atoms are initially in the ground states, they will remain in
the ground states, i.e., the excited states |r〉 and |s〉 can be
adiabatically eliminated. Since none of the operators |rj 〉〈rj |,
|sj 〉〈sj |, |gk〉〈rk|, and |ek〉〈sk| has any effect on the atomic
ground states, the terms containing each of these operators can
be discarded, and the effective Hamiltonians Heff,1 and Heff,2

reduce to

Heff,1 = −ηe(Sz + N/2) − ξga
†a(N/2 − Sz)

− (λ1e
−iφ1aS+ + H.c.) (7)

and

Heff,2 = −ξea
†a(Sz + N/2) − ηg(N/2 − Sz)

− (λ2e
iφ2a†S+ + H.c.). (8)

Heff,1 and Heff,2 describe two distinct Raman transitions
between the two atomic ground states.

III. GENERATION OF SQUEEZED STATES

In the Holstein-Primakoff representation, the collective spin
operators {Sz,S

±} are associated with the bosonic annihilation
and creation operators b and b† via

S+ = b†
√

N − b†b, S− =
√

N − b†bb, Sz = b†b − N/2.

(9)
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When the average number of atoms in state |e〉 is much smaller
than total atomic number, i.e., 〈b†b〉 	 N , the collective spin
operators are well approximated by S+ 
 √

Nb†, S− 
 √
Nb,

and Sz 
 N/2. In this case the atomic ensemble can be
regarded as a bosonic system, and the transition of one atom
from |g〉 to |e〉 corresponds to the creation of one quantum in
the effective bosonic mode and vice versa. Then the effective
Hamiltonians Heff,1 and Heff,2 approximate to

Heff,1 = −Nξga
†a − (

√
Nλ1e

−iφ1ab† + H.c.) (10)

and

Heff,2 = −Nηg − (
√

Nλ2e
iφ2a†b† + H.c.). (11)

The dynamics of the system is given by the total effective
Hamiltonian,

Heff = Hi,0 + Heff,1 + Heff,2 = δaa
†a + δbb

†b

− [
√

N (λ1ae−iφ1 + λ2a
†eiφ2 )b† + H.c.], (12)

where δa = ωa − ω − Nξg , δb = ωe − ω′
e. We here have

discarded the constant term. Set δb = 0 and δa �= 0. In this
case the effective Hamiltonian reduces to

Heff = δaa
†a − [

√
Na†(λ1e

iφ1b + λ2e
iφ2b†) + H.c.]. (13)

Perform the unitary transformation
∼
H eff= S

†
b(ξ )HeffSb(ξ ) with

the atomic squeezing operator Sb(ξ ) = e(ξ∗b2−ξb†2)/2, where
ξ = reiθ . If we choose the squeezing strength r = tanh−1 λ2

λ1
and squeezing phase θ = −(φ1 + φ2), the transformed Hamil-
tonian is given by

∼
H eff= δaa

†a − μ(e−iφ1ab† + H.c.), (14)

where μ =
√

N (λ2
1 − λ2

2). This Hamiltonian describes the
linear coupling between the field mode and the transformed
collective atomic mode, with the total quantum number being
conserved. The dark state (eigenstate with zero eigenenergy)
of H̃eff is the vacuum state |0〉a|0〉b. This implies that the dark
state of the effective Hamiltonian Heff is Sb(ξ )|0〉a|0〉b, which
is the product of the squeezed atomic state with the vacuum
field state. The squeezing strength and squeezing phase are
controllable by the Rabi frequency �2 and phase φ2 of the
second classical field. Suppose that the atom-cavity system is
initially in the vacuum state |0〉a|0〉b and the Rabi frequency
�2 is initially zero so that the initial state is identical to the dark
state. When the Rabi frequency �2 is slowly increased with
the change rate much smaller than the energy scales, adiabatic
theorem ensures that the system approximately follows the
dark state, leading to the atomic squeezed state Sb(ξ )|0〉b.
During the adiabatic evolution, neither the atomic system nor
the cavity mode is excited, and thus the method is robust
against decoherence. Furthermore, the squeezing parameter
is decided by the ratio between the two Raman coupling
strengths and is independent of the number of atoms. This
implies that the uncertainty in the atomic number does not
affect the produced state.

Now we proceed to show how the squeezed state of the
cavity mode can be generated. Setting δa = 0 and δb �= 0, we
obtain the effective Hamiltonian,

H ′
eff = δbb

†b − [
√

N (λ1ae−iφ1 + λ2a
†eiφ2 )b† + H.c.] (15)

In this case we transform the effective Hamiltonian as H̃ ′
eff =

S
†
a(ζ )H ′

effSa(ζ ) with the field squeezing operator Sa(ζ ) =
e(ζ ∗a2−ζa†2)/2, where ζ = rei(φ1+φ2). We obtain the new engi-
neered effective Hamiltonian,

H̃ ′
eff = δbb

†b − μ(e−iφ1ab† + H.c.). (16)

This Hamiltonian describes the linear coupling between the
transformed field mode and the collective atomic mode. The
squeezed state of the cavity mode can be produced from
the vacuum state by adiabatically increasing the Rabi fre-
quency �2 from zero. It should be noted that if δa = δb = 0,
both states Sa(ζ )|0〉a|0〉b and Sb(ξ )|0〉a|0〉b are the eigenstates
with null eigenenergy of the effective Hamiltonian. To ensure
the required adiabatic change, it is necessary to lift the
degeneracy. A nonzero detuning δa or δb breaks the symmetry
of the effective Hamiltonian and renders Sb(ξ )|0〉a|0〉b or
Sa(ζ )|0〉a|0〉b the unique dark state.

IV. DISCUSSION AND CONCLUSION

We now address the experimental issues. We consider
an ensemble of N ∼ 106 87Rb atoms trapped in a ring
cavity. The cavity mode is linearly polarized along an axis
perpendicular to an applied magnetic field. States |e〉 and
|g〉 can be the Zeeman sublevels |F = 1,MF = ±1〉 of the
ground state |52S1/2〉. Take g1 
 g2 
 2π × 50 kHz, κ =
2π × 25 kHz, and γ = 2π × 6 MHz [30,31], where κ and
γ are the cavity decay rate and the atomic spontaneous
emission rate, respectively. For �1/�1 = 1/200 we have
λ1 = 2π × 0.25 kHz. Slow variation of �2/�2 from 0 to
1/250 leads to the squeezing strength r 
 1.1. During the
adiabatic evolution the effective linear coupling μ between
the two bosonic modes is varied from μmax = 2π × 250 kHz
to μmin = 2π × 150 kHz. For the generation of the atomic
squeezed state the adiabatic approximation requires that
δaT � 1 and δET � 1, where δE = √

μ2 + δ2
a/4 − δa/2 is

the energy gap between the dark state and the nearest states of
the Hamiltonian H̃eff with nonzero eigenenergy. We note that
δE decreases as δa increases. To satisfy the adiabatic condition
the value of δa should be moderate in comparison with that
of μ. Choosing δa =

√
μ̄2 + δ2

a/4−δa/2, where μ̄ = (μmax +
μmin)/2, leads to δa =√

μ̄/2 = 2π × 100 kHz. Then the
energy gap δE is varied from δEmax = 2π × 205 kHz to
δEmin = 2π × 108 kHz. If we set T = 10/g 
 31.8 μs, then
the leakage error to the bright eigenstates is on the order of
Pb ∼ 1/(δEminT )2 + 1/(δaT )2 
 4.64 × 10−3, where δĒ is
the average value of δE. This leads to the effective decoherence
rate κe ∼ Pbκ 
 2π × 0.116 kHz of the cavity mode. The
atoms are virtually excited during the evolution, and the effec-
tive decoherence rate due to the atomic spontaneous emission
is γe ∼ γ�2

2, max/(2�2
2) 
 2π × 4.8 × 10−2 kHz. The error

induced by decoherence is about (κe + γe)T 
 3.28 × 10−2.
Therefore, both the adiabaticity and neglect of decoherence
can be perfectly satisfied. The result shows that the atomic
squeezed state with a high fidelity can be generated even
when the cooperativity parameter g2/2γ κ is as low as 10−2.
It should be noted that the interaction time does not need to
be adjusted very accurately as long as the adiabatic condition
is satisfied. For adiabatic following of the squeezed field state
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the cavity quality needs to be improved. In recent experiments
with a Bose-Einstein condensate strongly coupled to an optical
cavity [32,33], much higher cooperativity parameters have
been achieved, indicating a high-fidelity squeezed state for the
cavity can also be produced. An alternative way to generate
the squeezed field state is to use the matter-light state-transfer
scheme. After the atomic squeezed state has been produced,
the resonant Raman transition induced by the cavity mode and
the laser field �1 can return all of the atoms to state |g〉 and
transfer the state of the collective atomic mode to the cavity
mode.

In conclusion, we have proposed a scheme for deterministi-
cally producing squeezed states for both the collective atomic
mode and the cavity mode via adiabatic following of the dark
state of the atom-cavity system by breaking the symmetry
of the Hamiltonian, which renders the dark state unique.
Compared with the previous methods, the present method
offers potential practical advantages. For the generation of

atomic squeezed states, neither the cavity mode nor the
atomic system is excited, and the model is robust against
decoherence mechanisms. The state evolution is unaffected
by the uncertainty in the atomic number and imperfect timing.
The scheme is within reach of current experiments and expands
the range of possibilities for quantum-state preparation in
continuous variable systems.
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