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Self-guided beams in low-birefringence nematic liquid crystals
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We investigate the nonlinear propagation of coherent light beams in planar samples of low-birefringence
nematic liquid crystals, changing the input polarization and the incidence angle in order to enhance reorientational
self-focusing and generate optical spatial solitons under a variety of previously unexplored launch conditions.
We find that reorientational spatial solitons require larger excitation powers in low-birefringence than in high-
birefringence nematic liquid crystals but remain stable. We compare the experimental results with full-vectorial
numerical simulations.
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I. INTRODUCTION

Beam self-confinement is one of the most striking phenom-
ena in nonlinear optics: the spreading of an optical wave packet
upon diffraction is counteracted by nonlinear self-focusing
in transverse space. The mutual compensation of these two
effects in Kerr media can support optical spatial solitons at
a critical excitation, but can give rise to self-trapped beams
or solitary waves in a larger class of dielectrics where the
nonlinear polarization exhibits a nontrivial dependence on
the input power (e.g., saturation, nonlocality, multiphoton
absorption, etc.). In optics the terms spatial solitary waves
and solitons are often used interchangeably [1–3]. Solitons
are a core topic in nonlinear physics due to their ubiquitous
character: they were first reported in fluids [4] and later
observed in solid state physics, chemistry, Bose-Einstein
condensates, plasmas, etc. [5–9].

Optical spatial solitons (we will omit optical and spatial
hereafter) are most often studied in dielectrics where the
refractive index increases depending on the intensity of light
[1–3,10]. In such media, they self-confine by generating a
graded index profile which is a waveguide, the latter supporting
the soliton as a mode and, depending on wavelength and
polarization, capable of trapping other (weaker) signals of
different wavelengths; solitons have therefore been considered
as basic elements in all-optical circuits for signal processing,
switching, and re-addressing in future generations of light-
controlled information handling [11]. Solitons have been
demonstrated and investigated in photorefractive crystals
[12,13], atomic vapors [14], soft matter [15], glasses [16,17],
semiconductors [18], Bose-Einstein condensates [19], and
nematic liquid crystals (NLCs) [20,21], among others. Solitons
in NLCs, also known as nematicons [21,22], have attracted a
great deal of attention in the last few years for several reasons:
the large nonlinearity stemming from molecular reorientation
[23], the highly nonlocal response able to stabilize them in two
transverse dimensions [24], and the significant electro-optic
effect allowing to control their trajectory [25–28]. To date,
nematicons have been studied in several geometries [22],
including planar [20,29–32], homeotropic [33], and twisted
and chiral NLCs [34–37].

When the average orientation (i.e., the director n̂) of the
elongated NLC molecules is with the long axis (i.e., the optic
axis of the corresponding uniaxial) perpendicular to the

electric field, reorientation occurs at optical intensities above
a threshold; the so-called Fréedericksz transition [23,38]. The
latter can be avoided by either applying external voltage(s) to
tilt the director [20,21] or by rubbing the cell interfaces to align
the director at an arbitrary initial angle in the principal plane
of the propagating electric field of the beam [25,27,28]. In all
cases, the mutual orientation of molecular director and electric
field vector affects the medium anisotropy and nonlinearity
[39–42], hence the excitation level and polarization required
for nematicon generation. Since self-focusing in uniaxial
reorientational NLCs stems from the increase in extraordinary
refractive index due to the reorientation of the optic axis (i.e.,
molecular director n̂), the birefringence �n = ne − no (i.e.,
the index dynamics available upon rotation of n̂ in the principal
plane of propagation) is expected to play an important role on
the formation of nematicons.

In this work we study nematicon propagation in planarly
oriented samples of low-birefringence NLCs, varying the
input beam polarization and the direction of its wave vec-
tor k. By comparing the experimental results with numerical
simulations using a vectorial beam propagator, we identify
the best parameters for light self-trapping and gain insight
in the reorientational response of NLCs for arbitrary launch
conditions.

II. SAMPLE

The sample is sketched in Figs. 1(a) and 1(b). The planar
cell consists of two parallel glass plates glued together with
a separation d = 60 μm, filled with the low birefringence
nematic liquid crystal 1110, with no = n⊥ = 1.45 and ne =
n‖ = 1.49 at room temperature and at 1.064 μm [43]. The
director is aligned along y by properly treating the inner
interface of each glass plate. A Nd:YAG laser beam (λ =
1064 nm), linearly polarized with electric field at angle ϕ with
respect to y in the xy plane, is focused at the cell entrance
with an input waist w0 = 3.8 μm by a 20 × microscope
objective and launched with wave vector k at angles 0 <

α < π/4 with respect to the z axis. In the uniaxial NLC,
ordinary and extraordinary wave vectors form angles αo and
αe with z, respectively, owing to the different refractive indices
[Fig. 1(c)]. The extraordinary Poynting vector points at αe +
δ, with δ being the walk off [Fig. 1(d)]. The propagating beam
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FIG. 1. (Color online) (a) Geometry of NLC sample. The input
beam is linearly polarized with electric field at angle ϕ and propagates
with wave vector k at an angle αo with respect to z; (b) Top view
(yz plane); direction of ordinary and extraordinary wave vectors and
corresponding reference frames yozo and yeze, respectively. (c) αo

(solid blue line) and αe (red dashed line) versus incidence angle α,
as determined by the Snell law; the blue dotted line represents the
extraordinary ray with walk off. (d) Walk off between ordinary and
extraordinary Poynting vectors (blue solid line) and double refraction
αe-αo (red dashed line) versus incidence angle α. (e) Polar angles
describing the director n̂.

is imaged with a high-resolution silicon CCD collecting the
photons scattered out of the yz plane.

III. MODEL

Nonlinear light propagation in NLCs is governed by
Maxwell equations coupled with the Euler-Lagrange equations
determining the director distribution and stemming from
the minimization of the NLC energy, with both elastic and
optical contributions [38]. The relative dielectric permittivity
of uniaxial NLC can be cast in the form εjk = ε⊥δjk +
εanjnk(j,k = x,y,z), with εa = (n2

‖ − n2
⊥) being the optical

anisotropy, δjk being the Kronecker delta, and nj being the
Cartesian components of the director n̂ [38].

Depending on the excitation beam (see Fig. 1), reorientation
can lead to the director rotation in three dimensions (3D), as
described by the two polar angles ξ and ζ [see Fig. 1(e)];
that is, n̂ = (sin ξ, cos ξ sin ς, cos ξ cos ς) in the xyz refer-
ence frame. An intense beam can give rise to a spatially
inhomogeneous Coulombian torque, with a corresponding
director distribution continuously varying across the cell. Such
distribution of both ξ and ζ can result in coupling between
ordinary and extraordinary components of the wave, even
in the paraxial regime [44]. The director rotation reduces
to a simpler planar rotation for either ϕ = 0 or α = 0. The
first case, ϕ = 0, corresponds to an input electric field lying

in the plane yz: for any α the director can rotate in yz,
maintaining ξ = 0. In this limit the only excited wave is
extraordinary, with magnetic field He = Ae exp(ik0n

(b)
e ze)x̂,

with Ae being the slowly varying envelope, k0 being the wave
vector in vacuum, and n(b)

e being the carrier refractive index:
this configuration has been extensively studied in the literature
and light propagation in the paraxial limit is ruled by [39]

2ik0n
(b)
e

(
∂Ae

∂ze
+ tan δ(b) ∂Ae

∂ye

)
+ Dy

∂2Ae

∂y2
e

+ ∂2Ae

∂x2
e

+ k2
0�n2

eAe = 0, (1)

∇2ς + γ

(
Z0

n
(b)
e cos δ(b)

)2

|Ae|2 sin[2(θ − δ(b))] = 0, (2)

with θ = ς − αe, δ(b) being the local walk off, Z0 being
the vacuum impedance, Dy being the diffraction coefficient
along y, and �n2

e being the nonlinear index well due to
reorientation. In the reorientational equation (2) we introduced
the interaction strength γ = ε0εa/(4K), with K being a
single-valued (scalar) Frank elastic constant. By combining
Eqs. (1) and (2) we can define an effective nonlocal Kerr
coefficient n2:

n2 = 2γ n2
e(θ0) tan δ0 sin[2(θ0 − δ0)], (3)

where δ0 is the walk off corresponding to θ0 = π/2 − αe.
The scalar coefficient n2 depends only on the initial angle θ0

between beam wave vector and molecular director and on the
optical properties (that is, ε‖ and ε⊥) of the dielectric [39]. In
the limit of small anisotropy (i.e., ε‖ ≈ ε⊥), Eq. (3) yields [45]

n2 = (
ε0ε

2
a/4K

)
sin[2(θ0 − δ0)] sin(2θ0). (4)

In the second case, α = 0, the beam impinges orthogonally
to the sample: ordinary (ko) and extraordinary (ke) wave
vectors are both parallel to z and the director can rotate in the xy

plane, with ζ = π/2 and ξ free to vary. When the input power
is high enough to induce a nonlinear rotation, ordinary and
extraordinary waves get coupled through the inhomogeneous
distribution of the optic axis [46]. A similar configuration was
previously analyzed experimentally in the (1 + 1)D case [47].
Light propagation can be modeled in terms of its transverse
electric field as(

1 − εyy

εzz

)
∂2Ey
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− εxy

εzz

∂2Ey

∂x2
− εxx

εzz

∂2Ex
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= k2
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(
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∂2Ex
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− εxy
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= k2

0(εyyEy + εxyEx), (6)

∇2ξ+γ [(|Ex |2−|Ey |2) sin(2ξ )+2Re(ExE
∗
y ) cos(2ξ )] = 0,

(7)

with Ex and Ey being the components of the electric field
along x and y, respectively.

From Eqs. (5) and (6) it is apparent that the electric field
components along x and y are entangled: in fact, ordinary and
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extraordinary waves can only be defined locally, due to the
transverse distribution of the optic axis. It is noteworthy that
the walk off is zero and there are no first-order derivatives with
respect to the propagation coordinate z. From Equation (7), at
the input z = 0 the torque is proportional to γ sin(2ϕ): hence, it
is maximum for ϕ = π/4; for ϕ = π/2 (i.e., input field parallel
to x) reorientation can only occur above a threshold [48].

In low-birefringence NLCs (i.e., for the mixture 1110 used
in our experiments, with �n = n‖ − n⊥ = 0.04), the power
required for self-trapping is higher than in other NLCs [39],
[45], including cholesterics [36,37]. In fact, according to
Eq. (3), the index well is approximately proportional to the
square of the birefringence �n, as the induced dipoles are
proportional to �n and so is the nonlinear index for a given
reorientation [45]. Moreover, the Frank elastic constants of
the mixture 1110 are 2 to 3 times larger than in the commonly
employed nematic 5CB and E7; therefore, n1110

2 is expected to
be about 8 ÷ 12 times smaller than nE7

2
∼= n5CB

2 , leading to a
power requirement for nematicons in 1110 about one order of
magnitude higher than in E7, depending on input polarization
(ϕ) and incidence angle (α). Low birefringence also leads to
small walk off, with a maximum δ = 1.6◦ in 1110 compared to
δ = 7◦ in E7 at λ = 1064 nm. Finally, reduced scattering and
random index fluctuations in low-birefringence 1110 allow us
to obtain stable nematicons in spite of the higher required
excitations as compared to high-birefringence NLCs.

IV. EXPERIMENTAL RESULTS

A. Normal incidence, α = 0

We first examine the case of normal incidence. Figure 2
displays a few examples of beams launched in 1110 for

α = 0 and ϕ = π/4: at powers P below ∼=70 mW diffraction
prevails over self-focusing [Figs. 2(a) and 2(b)], even though
it progressively reduces as power increases. Nematicons are
obtained for P � 100 mW and propagate for over 50 Rayleigh
lengths (LR ≈ 42 μm), with waist oscillations along z [see
Fig. 2(b)] consistent with the breathing character of nonlocal
solitons [49]. When light is polarized along x (ϕ = π/2), a
threshold effect linked to the optical Fréedericksz transition
[see Fig. 2(c)] leads to nematicon generation only above
120 mW [50]. Conversely, when the beam is polarized along
y (ϕ = 0), the torque is zero and no reorientation takes place,
with beams diffracting for excitations up to 160 mW and no
evidence of self-focusing, confirming the negligible role of
thermal effects [51]. Summarizing, the discussed nonlinear
effects are reorientational and maximum for ϕ ≈ π/4. The
reorientational self-focusing we observed stems from an
effective index well (waveguide) due to the continuous power
exchange between ordinary and extraordinary components,
in analogy to what was previously reported in a (1 + 1)D
geometry [47].

B. Oblique incidence

We now turn to the case α 	= 0. As α increases starting
from normal incidence, self-confinement for ϕ = π/4 occurs
at lower and lower powers [Figs. 3(b)–3(d)] and is optimized
for α = π/4 [Fig. 3(d)]. When α = π/4, axes z and zo form
a relative angle of about 29◦ due to refraction at the air-NLC
interface [see Fig. 1(c)]. Angles α > π/4 could not be tested
in our experiments due to difficulties in injecting light in the
NLC sample.

We compared the experimental results with numerical
simulations using a fully vectorial code based on the beam

FIG. 2. (Color online) (a) Measured beam evolution in the yozo plane for several input powers, α = 0 and ϕ = π/4. (b) Measured beam
waist versus zo corresponding to the cases in (a). Beam propagation for α = 0 and (c) ϕ = π/2, (d) ϕ = 0.
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FIG. 3. (Color online) Experimental results on beam propagation
in the (a) linear and (b)–(d) nonlinear regimes. A linearly polarized
input beam is launched with ϕ = π/4 at various α. Numerical
simulation of a beam propagating for α =π/4 and ϕ =π/4: evolution
in the plane yozo of (e) |Ex |2, (f) |Ey |2, and (g) the corresponding
total intensity |Ex |2 + |Ey |2. (h) Minimum beam power versus α for
nonlinear self-collimation with ϕ = π/4: calculated (black circles)
and measured (red squares) values.

propagation method. For the sake of simplicity, the simulations
were carried out considering the wave vector parallel to zo but
the director (at rest) at angle −αe with zo; such geometry
corresponds to our experimental conditions in the limit of
negligible misalignment between ordinary and extraordinary
wave vectors [as in our case; see Fig. 1(c)] and a negligible
role of the input interface on reorientation. The minimum
nematicon power was calculated for various input angles
α and linear polarization fixed at ϕ = π/4 [Fig. 3(h)]; in
agreement with experimental data, the self-trapping power
is maximum for α = 0 and minimum for α = π/4, with
discrepancies between experimental and numerical values

mainly due to insertion and propagation losses (not included
in the simulations). A detailed numerical study of the beam
evolution for α = π/4 is shown in Figs. 3(e)–3(g): the overall
beam tends to travel at a finite walk off, although its x and
y components exchange energy during propagation, leading
to a diffractive (weaker) background (along zo) associated
with the ordinary wave and to a solitary wave in which both
components tend to remain trapped. Such numerical results
on mixed-polarization self-trapping with a diffractive back-
ground are in agreement with the experimental observations
[Fig. 3(d)].

Figure 4 shows the evolution of a beam launched for
α = π/4 and three input polarizations ϕ (photos in the y0z0

reference system). For light polarized along y (ϕ = 0) a spatial
solitary wave is obtained at P = 30 mW. Reorientation takes
place in the yozo plane according to Eqs. (1) and (2) and
nematicons remain stable for powers up to 120 mW. Slightly
increasing the input power modifies the beam trajectory due
to nonlinear changes in walk off [40,52]: in zo = 1.5 mm the
beam shifts laterally by about 10 μm along yo for excitations
increasing from 30 to 120 mW.

For light polarized along x (ϕ = π/2) self-focusing is
too weak to induce self-confinement for P = 30 mW and
P = 38 mW [Figs. 4(a) and 4(b); dotted lines in Figs. 4(c)
and 4(d)]. Above 150 mW the electric field is intense enough
to overcome the Fréedericksz threshold and form a temporally
unstable nematicon, as thermo-optic effects cause the material
to undergo convective motion and molecular disorder. A higher
value of the optical Fréedericksz threshold with respect to the
case α = 0 is ascribed to larger insertion losses at the input
interface, as reflection gets larger with α [53].

For light polarized at ϕ = π/4 and power P = 30 mW
the diffractive background is visible in Fig. 4(a), owing to
the power coupled to the ordinary wave; the extraordinary
component is less confined than in the case ϕ = 0 and
P = 30 mW due to the smaller fraction of the excitation

FIG. 4. (Color online) Experimental results on beam propagation for α = π/4 and various input polarizations (legends) and powers: (a)
P = 30 mW; (b) P = 38 mW. Panels (c) and (d) show beam profiles at a distance of zo = 1.5 mm. (e) Profiles calculated for P = 20 mW and
α = π/4 in zo = 0.5 mm.
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FIG. 5. (Color online) (a) Measured beam waist w versus prop-
agation distance zo for ϕ = 0, various excitations (P = 10, 38, and
70 mW, respectively) and angles α . (b) Corresponding waist versus
z for light polarized at ϕ = π/4; lines from top to bottom correspond
to α = 0 (black), π/9 (red), π/6 (blue), π/4 (green).

coupled to the y polarization. For input power >38 mW
a net increase in self-focusing is observed [Fig. 4(d)]. The
measured displacement across yo is about 15 μm [zo =
1.5 mm, dashed lines in Figs. 4(c) and 4(d)]. Accounting for
blurring from scattering [49], the measured nematicon widths
are approximately 10 μm larger than the actual waist and the
experimental results are in good agreement with numerical
calculations for α = π/4 and P = 20 mW [Fig. 4(e)].

The results on self-focusing for different polarizations ϕ

and propagation angles α are summarized in Figs. 5(a) and
5(b). Figure 5(a) shows the measured beam waist versus z

for ϕ = 0, corresponding to the case modelled by Eqs. (1)
and (2): as predicted by Eq. (3) the nonlinear effects are
maximum when θ0 = π/2 − αe between wave vector and
director is close to π/4, in agreement with Ref. [39]. The

latter dependence holds valid for the case ϕ = π/4, as well
[Fig. 5(b)], but with the beam undergoing a weaker self-
trapping than in the case ϕ = 0 (fixed power) owing to the
lower power coupled to the extraordinary wave.

V. CONCLUSIONS

In conclusion, nematicons were observed in low-
birefringence nematic liquid crystals over propagation dis-
tances of 2 mm and powers of a few tens of mW. We observed
(2 + 1)D self-confined optical waves excited by combined
ordinary and extraordinary polarizations. We demonstrated
that maximum self-focusing occurs when the beam wave
vector is at an angle of αe = π/4 with respect to the director
at rest (i.e., in the absence of illumination), independently on
the input polarization ϕ. Moreover, we found that, if the input
polarization is not parallel to the director at rest (corresponding
to the case α = 0 discussed above), self-focusing is maximum
when the input polarization couples all the power to an
extraordinary wave (i.e., for ϕ = 0). Finally, compared
with nematicons in high-birefringence NLCs, nematicons in
low-birefringence NLC require larger excitations but—despite
them—remain temporally stable.
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Mol. Cryst. Liq. Cryst. 320, 157 (1998).
[34] M. A. Karpierz, M. Sierakowski, and T. R. Woliński, Mol. Cryst.

Liq. Cryst. 375, 313 (2002).
[35] K. Jaworowicz, K. A. Brzdąkiewicz, M. A. Karpierz, and
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