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Enhancing quantum effects via periodic modulations in optomechanical systems

Alessandro Farace and Vittorio Giovannetti
NEST-CNR-INFM & Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

(Received 2 April 2012; published 16 July 2012)

Parametrically modulated optomechanical systems have been recently proposed as a simple and efficient
setting for the quantum control of a micromechanical oscillator: relevant possibilities include the generation of
squeezing in the oscillator position (or momentum) and the enhancement of entanglement between mechanical
and radiation modes. In this paper we further investigate this modulation regime, considering an optomechanical
system with one or more parameters being modulated over time. We first apply a sinusoidal modulation of the
mechanical frequency and characterize the optimal regime in which the visibility of purely quantum effects is
maximal. We then introduce a second modulation on the input laser intensity and analyze the interplay between
the two. We find that an interference pattern shows up, so that different choices of the relative phase between the
two modulations can either enhance or cancel the desired quantum effects, opening new possibilities for optimal
quantum control strategies.
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I. INTRODUCTION

Theoretical studies and huge technological progress over
the last decades has made it possible to reach a considerable
level of control over quantum states of matter in a large variety
of physical systems, ranging from photons, electrons, and
atoms to bigger solid state systems such as quantum dots
and superconducting circuits. This opened the possibility for
novel tests of quantum mechanics and allowed us, among other
things, to take important steps forward in investigating the
quantum regime of macroscopic objects. In this perspective,
one of the main goals in today’s quantum science is controlling
nano- and micromechanical oscillators at the quantum level.

Quantum optomechanics [1–4] (i.e., studying and engineer-
ing the radiation pressure interaction of light with mechanical
systems) comes as a powerful and well-developed tool to do
so. First, radiation pressure interaction can be exploited to
cool a (nano)micromechanical oscillator to its motional ground
state [5]; this is a necessary step for quantum manipulation and
could not be accomplished by direct means such as cryogenic
cooling (at the typical mechanical frequencies involved of
100 KHz ∼ 1 GHz this would require cooling the environment
to a temperature of the order of 1 μK ∼ 10 mK). Backaction
cooling has been experimentally demonstrated for a variety of
physical implementations, including micromirrors in Fabry-
Perot cavities [6], microtoroidal cavities [7], or optomechani-
cal crystals [8]. Second, there exists a strong analogy between
quantum optomechanics and nonlinear quantum optics, so
that many (if not all) optomechanical effects can be mapped
onto well-known optical effects. As a result, optomechanics
becomes a natural way for controlling a mechanical resonator
at the quantum level. Experimentally, the strong-coupling
regime needed to observe quantum behaviors has been demon-
strated only very recently [7,9], and we are still awaiting the
detection of quantum effects. Nevertheless, a lot of theoretical
studies on the subject has been carried out in the last decade
and several proposals have been produced [10]. These cover,
among other things, the generation of entanglement between
one oscillator and the radiation in a Fabry-Perot cavity [11], the
generation of entanglement between two oscillators [12], or the
generation of squeezed mechanical states [13,14]. In particular,

Refs. [14–16] introduced an effective way of enhancing the
generation of quantum effects, which relies on applying a
periodic modulation to some of the system parameters (a
similar result has also been found in the analogous context
of nanoresonators and microwave cavities [17]).

In this paper we further investigate the properties of period-
ically modulated optomechanical systems and we address the
following questions: which is the fundamental link between
modulation and enhancement of quantum effects? Is there an
optimal choice of the modulation, for which the visibility of
quantum effects is maximal? Is this optimal regime robust
against parameter fluctuations? What happens when two in-
dependent modulations are applied simultaneously? To tackle
these issues we analyze the paradigmatic case of a mechanical
oscillator whose natural frequency ωM is externally modulated
when it evolves under the action of the noise and of the
radiation pressure exerted by the photons of an externally
driven optical cavity mode. While quantum optomechanics is
nowadays extensively studied within a variety of experimental
setups, the modulation of the mechanical frequency we analyze
here is a very crucial aspect of our system and one that has
not been implemented yet. However, very recent proposals for
doing optomechanics with levitated dielectric spheres [18–20]
can be a good answer. In these proposals the mechanical degree
of freedom is represented by the center-of-mass motion of a
nanodielectric sphere which is trapped and levitated by means
of an optical trap. The sphere is then put inside an optical
cavity, where it interacts with the intracavity radiation via the
usual optomechanical Hamiltonian (2). The frequency of the
center-of-mass motion depends on the shape of the trapping
potential and can thus be modulated by adjusting the intensity
of the trapping laser, as shown in Ref. [18]. Moreover, typical
parameters attainable with such setups are comparable to those
that we have adopted in our simulations (see below), assuring
the feasibility of the system under analysis.

In the above scenario we study the formation of squeezing,
entanglement, and discord [21], showing that, in the steady
state, all these quantum effects are enhanced when the
modulation frequency � is twice the original value of ωM .
As we shall see, such resonance admits a simple interpretation
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in terms of an effective parametric phase locking between the
external driving forces and the natural evolution of the involved
degree of freedom. Similar enhancements were also observed
in Refs. [14,15], where an harmonic modulation of 2ωM was
imposed on the amplitude of the cavity mode laser, and in
Ref. [16], where a harmonic modulation of 2ωM was imposed
on the coupling rate between two generic bosonic modes. Since
several mechanisms can lead independently to the same effect,
an interesting question is how they can be best exploited
to control specific quantum properties in the system. This
goes in the direction of developing optimal quantum control
protocols, a topic which is currently benefiting from many
contributions [22]. In the present case, to study the interplay
of different mechanisms we add a second modulation in our
model and we observe the arising of an interference pattern
in the system response. Specifically, we notice that the ability
in cooling and squeezing the mechanical oscillator strongly
depends on the relative phase of the two modulations, the
relative variation being almost 50%.

The material is organized as follows: In Sec. II we present
the system and solve its dynamical evolution under the
action of a periodic modulation of the mechanical frequency.
In Sec. III we then characterize the asymptotic stationary
state in terms of entanglement, squeezing, etc. In Sec. IV
we compare our findings to other recent proposals [14,15]
and we study what happens when a second independent
modulation is applied to the system (specifically, in our case
we introduce a modulation on the amplitude of the input laser).
Conclusions and general remarks follow in Sec. V. Some
technical derivations are finally reported in Appendix.

II. THE SYSTEM

Our choice falls on the simplest optomechanical system of
all; namely, a Fabry-Perot cavity of length l0 with a movable
mirror at one end (see Fig. 1), which nevertheless captures
all interesting physics. We can reasonably assume [10] that a
single optical mode is interacting with a single mechanical
mode; namely, the center-of-mass oscillation. The mirror
can thus be modeled as a mass m attached to a spring of
characteristic frequency ωM and friction coefficient γM ; it is
described by dimensionless position and momentum operators
q̂ and p̂ which obey the canonical commutation relation
[q̂,p̂] = i. The optical mode has frequency ωC and decay
rate k; it is described by annihilation and creation operators â

and â†, respectively, which obey the canonical commutation
relation [â,â†] = 1.

m

M M

C

k

L

P

FIG. 1. (Color online) Schematic description of system. A Fabry-
Perot cavity is driven by an external laser and the radiation interacts
with the movable mirror on the right, exchanging momentum.

In our analysis the cavity is assumed to be driven by
an external laser which, to begin with, we take to have
constant power Plaser and quasiresonant frequency ωL ∼ ωC .
In this context a periodic modulation is inserted at the level
of the spring constant, which we express as the following
time-dependent parametric rescaling of the mirror frequency:

ω2(t) = ω2
M [1 + ε cos(�t)], (1)

with ε < 1. Accordingly, the Hamiltonian of the system is
written as [23]

Ĥ = h̄ωCâ†â + h̄ωM

2
p̂2 + h̄ωM

2
[1 + ε cos(�t)]q̂2

− h̄G0â
†âq̂ + ih̄E(e−iωLt â† − eiωLt â), (2)

where G0 = (ωC/l0)
√

h̄/(mωM ) is the optomechanical cou-
pling rate and |E| = √

2kPlaser/(h̄ωL) is the driving rate.
Including dissipation and decoherence effects, the system
dynamics can then be described with the following set of
quantum Langevin equations [10]:

∂t q̂ = ωMp̂,

∂t p̂ = −ωM [1 + ε cos(�t)]q̂ − γMp̂ + G0â
†â + ξ̂ ,

∂t â = −(k + i�0)â + iG0âq̂ + E + √
2kâin,

(3)

which we have written in a frame rotating at ωL. Here, �0 =
ωC − ωL is the unperturbed cavity laser detuning while âin(t) is
the radiation vacuum input noise with autocorrelation function
[24]

〈âin(t)â†
in(t ′)〉 = δ(t − t ′). (4)

Similarly, ξ̂ (t) is the Brownian noise operator describing the
dissipative friction forces acting on the mirror. Its autocorre-
lation function satisfies the relation [25]

〈{ξ̂ (t),ξ̂ (t ′)}〉 = 2
γM

ωM

∫
dω

2π
ω coth

(
h̄ω

2kBT

)
e−iω(t−t ′), (5)

which for the specific case of a harmonic oscillator with a good
quality factor ωM � γM , acquires the same Markov character
of Eq. (4); namely,

〈{ξ̂ (t),ξ̂ (t ′)}〉 ≈ 2γM coth

(
h̄ωM

2kBT

)
δ(t − t ′) (6)

(this is a consequence of the fact that, for ωM � γM , only
resonant noise components at frequency ω ∼ ωM sensibly
affect the motion of the system). In the above expressions T

is the system temperature while {· · · , · · ·} is the anticommu-
tator [26].

A. Solving the dynamics

The evolution of the system is ruled by a set (3) of nonlinear
stochastic differential equations with periodic coefficients,
whose solution is in general very difficult. In the following we
will then introduce some useful approximations to simplify
the calculations. First, we expand each operator as the sum of
a c number mean value and a fluctuation operator; that is,

â(t) = 〈â(t)〉 + [â(t) − 〈â(t)〉] ≡ A(t) + δâ(t),

q̂(t) ≡ Q(t) + δq̂(t), (7)

p̂(t) ≡ P (t) + δp̂(t).
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We recall that the cavity is usually driven by a very strong
laser in order to attain satisfactory levels of optomechanical
interaction, so that the mean value will be much bigger than the
fluctuations, which are due to the presence of random noise.

This allows us to write (3) as two different sets of equations,
one for the mean values (8), one for the fluctuations (9) and
linearize the latter neglecting all terms which are second order
small, obtaining

∂tQ = ωMP,

∂tP = −ωM [1 + ε cos(�t)]Q − γMP + G0|A|2,
∂tA = −(k + i�0)A + iG0AQ + E,

(8)

∂t

⎛
⎜⎜⎝

δq̂

δp̂

δX̂

δŶ

⎞
⎟⎟⎠ =

⎛
⎜⎝

0 ωM 0 0
−ωM [1 + ε cos (�t)] −γM G0Re[A] G0Im[A]

−G0Im[A] 0 −k �0 − G0Q

G0Re[A] 0 −�0 + G0Q −k

⎞
⎟⎠ ·

⎛
⎜⎜⎝

δq̂

δp̂

δX̂

δŶ

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
ξ̂

X̂in

Ŷin

⎞
⎟⎟⎠ , (9)

where we have introduced the phase and amplitude quadratures
for the cavity and the input noise fields; namely,

X̂ = (â† + â)/
√

2, Ŷ = i(â† − â)/
√

2,

X̂in = (â†
in + âin)/

√
2, Ŷin = i(â†

in − âin)/
√

2.

Equation (9) can be also expressed in a more compact form:

∂t û = Sû + ζ̂ , (10)

with S being a 4 × 4 time-dependent matrix, and with û and
ζ̂ being the column vectors of elements (δq̂, δp̂, δX̂, δŶ ) and
(0, ξ̂ , X̂in, Ŷin), respectively. We stress that Eqs. (8) and (9)
must be solved in the correct order, because the mean values
Q(t), P (t), and A(t) play the role of coefficients in the
equations for the fluctuations.

Equation (8) is nonlinear but can be solved numerically.
Assuming that we are far from optomechanical instabilities
and that we keep the modulation strength ε small enough to
avoid additional instabilities due to parametric amplification,
one finds that the mean values evolve toward an asymptotic
periodic orbit with the same periodicity 2π/� of the applied
modulation. In this regime, an approximate analytic solution
can also be derived, which we detail in Appendix. Indeed since
the modulation strength ε is not too strong, one can guess a
perturbative expansion of the form

Q(t) =
∞∑

j=0

Q(j )(t), (11)

where Q(0)(t) does not depend on ε, Q(1)(t) is linear in ε,
Q(2)(t) is quadratic in ε, and so on. It turns out that each order
is exactly solvable, as long as previous orders are known.
This originates a chained set of equations and, by keeping
a finite number of orders j � jMAX, we can finally obtain
the asymptotic solution up to the desired precision (e.g., see
Fig. 2).

Equation (9) is stochastic and needs some more manip-
ulation. Nonetheless since we have linearized the dynamics
and the noises are zero-mean Gaussian noises, fluctuations in
the stable regime will also evolve to an asymptotic zero-mean
Gaussian state. The state of the system is then completely

described by the correlation matrix C of elements

Cij (t) = Cji(t) = 1
2 〈ûi(t)ûj (t) + ûj (t)ûi(t)〉, (12)

whose evolution can be derived directly from equations (10)
and (12):

∂tC = SC + CS� + N, (13)

where S� is transpose of S, and where N is the
diagonal noise correlation matrix with diagonal entries
(0, γM coth[h̄ωM/(2kBT )], k, k), defined by

1
2 〈ζ̂i(t)ζ̂j (t ′) + ζ̂j (t ′)ζ̂i(t)〉 ≡ Nij δ(t − t ′). (14)

Equation (13) is now an ordinary linear differential equation.
We know that its solution evolves toward a unique asymptotic
configuration (independently of the initial state), proven that
the eigenvalues of the matrix S have a negative real part for all

Q 3.3 × 10−16m

P 3.1 × 10−19 kg m

s
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FIG. 2. (Color online) Evolution of mirror position Q(t) and
momentum P (t) mean values obtained by numerically integrating
Eq. (8) from t = 0 to t = 50τ , with τ = 2π/� being the period of
the modulation (thin blue line). The plot was obtained by setting
the system parameters as detailed in Sec. III. In particular, here the
modulation frequency � is twice the natural frequency ωM of the
mechanical oscillator which, in turn, is resonant with the detuning �0

that governs the free evolution of the optical field A(t). The analytic
solution for the asymptotic orbit (see Appendix 3) is also shown for
comparison (thick red line).
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times t , which can be verified by applying the Routh-Hurwitz
criterion [27]. Again, we can either solve Eq. (13) numerically
or obtain an approximate analytic solution with a perturbative
expansion in ε (see Appendix for the latter).

B. Quantum properties of system

As already mentioned, thanks to Gaussianity of the asymp-
totic solution, all relevant information about the system can be
extracted directly from the correlation matrix C. In particular,
we will focus on the following quantities: the number of
phonons in the mirror, the squeezing in the mirror and in the
radiation quadratures, and the nonclassical correlation between
the mirror and the radiation degrees of freedom.

The number of phonons n can be expressed using the
approximate relation

h̄ωM

(
n + 1

2

) ≈ (h̄ωM/2)〈δq2 + δp2〉
= (h̄ωM/2)(C11 + C22), (15)

which holds if the modulation of the mechanical frequency
is not too strong. This tells how far the system is from the
ground state. Since both C11 and C22 are periodic in time, we
will identify the number of phonons with the maximum over
one period τ = 2π/� of the modulation; namely,

nMAX = max
τ

{n(t)} (16)

(here and in the following, maxτ represents an optimization
with respect to a time interval [T ,T + τ ] with T being
sufficiently larger than 1/k to guarantee that the system has
reached the asymptotic steady state).

Squeezing of the generalized mirror quadratures qθ =
q cos θ + p sin θ is also easily found:〈

δq2
θ

〉 = C11 cos2 θ + C22 sin2 θ + (C12 + C21) cos θ sin θ.

(17)

Again we construct a time-independent quantity to deal with.
First, for each time t we select the parameter θ for which 〈δq2

θ 〉
is minimum. In terms of the covariance matrix, this is just the
smaller eigenvalue of the block matrix(

C11 C12

C21 C22

)
.

We then minimize this quantity with respect to time over a
period τ . This tells how much squeezing can be produced at
most:

�2qMIN = min
τ

{
min

θ

〈
δq2

θ

〉}
. (18)

Analogous formulas for the radiation quadratures lead to

�2XMIN = min
τ

{
min

θ

〈
δX2

θ

〉}
. (19)

Nonclassical correlations in the system can be described using
quantum discord D(ρ) [21], which includes entanglement as
well as more general quantum correlations that are shown also
by separable states [28]. For a Gaussian state, D(ρ) is easily
constructed from the correlation matrix, as demonstrated in
Ref. [29]. Time dependance is then eliminated by considering

DMAX = max
τ

{D(ρ(t))}. (20)

Entanglement alone will be specifically described using loga-
rithmic negativity EN (ρ) [30], which is also easily constructed
from the correlation matrix as demonstrated in Ref. [31].
Again, time dependance is eliminated by considering

ENMAX = max
τ

{EN (ρ(t))}. (21)

III. RESULTS

We now present the results obtained by solving the
dynamics of the system as detailed in the previous section. The
parameters used in our analysis are m = 150 ng, ωM/(2π ) =
1 MHz, γM/(2π ) = 1 Hz, T = 0.1 K, �0 = ωM , l0 = 25
mm, k = 1.34 MHz, λ = 1064 nm, and Plaser = 10 mW:
this choice is compatible with values attained in state-of-
the-art experiments and is also consistent with the stability
requirement of Sec. II A (furthermore, under the condition
�0 = ωM the optical and the mechanical variables are brought
at resonance). The strength ε and the frequency � of the
modulation are left as variable parameters instead, since we
want to characterize the optimal modulation regime (e.g.,
which ε and � maximize the visibility of quantum effects).

In Fig. 2, we temporarily fix � = 2ωM , ε = 0.2 (this
particular choice will be justified in the following) and we
report the solution of Eq. (8) for the mean values Q(t) and
P (t) of the mirror position and momentum. We see that the
evolution tends indeed to an asymptotic periodic orbit, which
is very well approximated by the analytic solution.

We then focus on the solution of equation (13) and we
plot the quantities described in Sec. II B for multiple values
of � ∈ [ωM,3ωM ], ε ∈ [0,0.5]. In particular, Fig. 3 shows the
maximum number nMAX of phonons in the mirror, computed
via Eq. (16); the maximum ENMAX of the logarithmic negativity,
computed via Eq. (21); the maximum DMAX of the quantum
discord, computed via Eq. (20); and the minimum variance
�2qMIN of all the mirror generalized quadratures, computed
via Eq. (18).

As evident from the plots, the level of squeezing and
entanglement is maximum when the modulation frequency
is � ∼ 2ωM and increases monotonically with respect to
the strength ε, until the system eventually reaches an in-
stability point for excessively strong modulations (in the
above figures, this instability is represented by a blank region
around the point ε = 0.5, � ∼ 2ωM ). It is also clear that the
optimal modulation—the one that most enhances quantum
effects—is also responsible for heating the system far from
its ground state. We can understand this behavior if we
interpret Eq. (13) as describing the dynamics of a set of
(classical) parametric oscillators with canonical coordinates
defined by the correlations functions Cij (12), which evolve
under the action of damping and constant external driving
forces. Indeed, by a close inspection of the matrix S one notices
that such oscillators possess natural frequencies which are
periodically modulated through functions [i.e., A(t), Q(t), and
the direct term ε cos(�t)] that, to first approximation, evolve
sinusoidally with the same frequency � [see Eq. (A17) in
Appendix for details]. Moreover, in the stability region we are
sure that parametric modulation pumps energy into the system
at a lower rate with respect to losses, since the system evolves
toward a stationary orbit: we call this regime “below threshold”
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FIG. 3. (Color online) Asymptotic quantum features as a function of �/ωM (x axis) and ε (y axis). (a) Maximum number of phonons in
the mirror [Eq. (16)]. (b) Maximum of logarithmic negativity (21). (c) Maximum of quantum discord (20). (d) Minimum of the generalized
quadratures of the mirror (18). In all the plots the system parameters are fixed as in Sec. III.

to distinguish it from the exponential amplification usually
associated with parametric oscillators. For this model, phase
locking is expected to occur when � matches the zero-order
eigenfrequencies defined by the constant part of S (and not
twice these frequencies as in the case of parametric instability),
resulting in an enhancement of the oscillations of the effective
coordinates Cij (12) and hence of the associated quantum
effects defined in Sec. II B [32] (more details are found in
Appendix). It turns out that, at least for the figures of merit we
are concerned with here (i.e., �2qMIN, �2XMIN, DMAX, etc.),
the relevant frequency is indeed ∼2ωM .

To see this, we can proceed by steps. First of all, notice that,
from the numerical solution, we can guarantee that the system
is not unstable (see Fig. 3); that is, that it is indeed in the
below-threshold regime. Next, consider the case of no cou-

pling (G0 = 0) and no modulation (ε = 0)—we stress three
relevant aspects: First, the mechanical part and the radiation
part are independent, so there is no entanglement. Second,
each subsystem evolves with the Hamiltonian of a quantum
harmonic oscillator, so the quadrature mean value 〈qθ 〉 evolves
with a phase eiωMt and the variance 〈δq2

θ 〉 with a phase ei2ωMt

(we remind the reader that we fixed �0 = ωM ). This tells
us that, at least in this regime, the frequencies which govern
the quantities of interest are degenerate at the value 2ωM .
Third, each subsystem is also coupled to its own environment
and will eventually relax to a thermal state characterized by
〈δq2

θ 〉 = Ntherm + 1/2, so there is no squeezing. Now turn on
the coupling G0: this has three main effects. First, it introduces
entanglement in the system [11] (EN = E0). Second, the
eigenfrequencies are brought out of degeneracy and shifted
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by a term ∝2G0|A| [33], which is quite small with respect to
2ωM for our choice of values (confirming that indeed the latter
is the resonant value at which the modulation should provide
an enhancement). Third, backaction cooling [5] is now active
and the oscillator approaches the ground state (〈δq2

θ 〉 ∼ 1/2).
Squeezing is still absent at this level. Finally, turn on the
modulation (1). Thanks to the phase-locking mechanism we
have anticipated previously and detailed in Appendix, this will
yield an enhancement of the correlations when � matches the
natural frequency ∼2ωM . For instance, for the negative entropy
EN and for mirror variance 〈δq2

θ 〉, we get

EN ∼ E0 + εK1(�) cos(�t + ϕ1),
(22)〈

δq2
θ

〉
0 ∼ 1/2 + εK2(�) cos(�t + ϕ2),

where K1(�) and K2(�) are associated response functions
analogous to the Lorentzian response of a simple harmonic
oscillator (although an exact expression is rather cumbersome
in our specific case) and are peaked around � ∼ 2ωM . We see
that the quadrature δq2

θ gets periodically squeezed over time
and entanglement is periodically increased to higher values
with respect to the unmodulated case. In addition, these effects
increase monotonically with ε up to the instability threshold.
A similar enhancement of the entanglement is also described
in Ref. [16], where two harmonic oscillators are coupled via
linear interaction Hint = c(t)X1X2 and the coupling constant is
a periodic function of time. This time dependance produces an
effective modulation on the normal frequencies of the system:
as a result, entanglement is shown to increase and become
much more robust against temperature. This agrees very well
with what we found here.

IV. INTERPLAY BETWEEN TWO DIFFERENT
MODULATIONS

Results analogous to those presented in the previous section
have been found very recently by Mari and Eisert [14,15] for an
optomechanical system driven with an amplitude-modulated
input laser. For clarity, we rewrite their Hamiltonian:

Ĥ = h̄ωCâ†â + h̄ωM

2
(p̂2 + q̂2) − h̄G0â

†âq̂

+ ih̄[E + E1 cos(�t)](e−iωLt â† − eiωLt â). (23)

At first sight, the situation appears to be somewhat different
from our initial problem. In Eq. (23), internal parameters of the
system are left unchanged; it is instead the external driving that
undergoes an oscillatory behavior. Nevertheless the effects are
strikingly similar: high levels of squeezing can be attained
when the frequency of modulation is � ∼ 2ωM [14], and
the same regime is also optimal to enhance entanglement
between mechanical and radiation modes [15]. The authors
themselves comment that “this dynamics reminds of the effect
of parametric amplification, as if the spring constant of the
mechanical motion was varied in time with just twice the
frequency of the mechanical motion, leading to the squeezing
of the mechanical mode...” [14].

In fact, there is a strong analogy between the two cases.
Independently of which Hamiltonian [(2) or (23)] one chooses,
far from instability regions the mean values Q(t), P (t), A(t)
will be characterized by an asymptotic periodic orbit with

the same periodicity of the applied modulation τ = 2π/�.
This assures that, in both cases, Eq. (13) for the covariance
matrix has the same linear form, with S being a periodic
function of time (in the limit t � 1/k) and N being a constant
driving. The conclusions we derived in Sec. III must therefore
hold, at least qualitatively, also for the system studied in
Refs. [14,15].

An interesting question now rises. What if the two
modulations are applied together? Can they interfere, either
constructively or destructively, and sensibly alter the one-
modulation picture?

To get an answer, we consider a new composite system,
described by the Hamiltonian

Ĥ = h̄ωCâ†â + h̄ωM

2
p̂2 + h̄ωM

2
[1 + ε cos(�1t)]q̂

2

−h̄G0â
†âq̂ + ih̄E[1 + η cos(�2t + φ)]

× (e−iωLt â† − eiωLt â). (24)

Note that we explicitly introduced a relative phase φ between
the two applied modulations: if we expect any interference,
the properties of the system should indeed depend on this new
variable.

The analysis presented in the previous sections is straight-
forwardly generalized to the present case, so we will skip
directly to the results [details can be found, however, in the
Appendix]. Taking the same parameters as in Sec. III, we
choose the optimal modulation frequencies �1 = �2 = 2ωM

and fix ε = 0.3, η = 0.9 (this is the same value used in
[14]). These modulation strengths give comparable squeezing
performances when considered singularly and also assure that
we are reasonably far from the instability region. To present the
results, we plot the quantities introduced in Sec. II B against
the relative phase φ in Fig. 4. An interference pattern is indeed
evident and each of the above quantities oscillates between
a minimum and a maximum as φ varies in the range [0,2π ].
However, entanglement and quantum discord are affected very
weakly and do not differ much from our initial one-modulation
case. Besides, we see that, in order to generate quantum
correlations, a modulation of the mechanical frequency is
more suitable than a modulation of the driving laser ampli-
tude. Adding the second modulation to the first is of little
effect.

Squeezing generation instead presents very interesting
features. First, as we said, we choose two modulations that give
comparable levels of squeezing when applied individually.
Moreover, when applied together, they can strongly interfere.
For example, we see in Fig. 4(d) that, for a phase φ/π ∼ 1.4,
�2qMIN rises toward the threshold value 0.5 and squeezing
becomes weaker. Each modulation taken alone would generate
more squeezing than the two combined: this is an unambiguous
sign of a disadvantageous interplay. For a phase φ/π ∼ 0.4
we find instead a great advantage in applying two modula-
tions: �2qMIN is lowered to a value ∼0.18, a considerable
performance if compared to our initial one-modulation case
where instabilities prevent us from reaching �2qMIN < 0.17.
In fact, not only do we attain the same high levels of
squeezing, but we are also well inside the stability region,
so that we could increase both ε and η to perform even
better.
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FIG. 4. (Color online) Response of system in the presence of two different modulations as a function of their relative phase φ: maximum
number of phonons in the mirror (a), maximum of the logarithmic negativity (b), maximum of the quantum discord (c), and minimum of
the generalized quadratures of the mirror (d). In all plots the two straight lines show the variation of the function in the case when only the
mechanical frequency (blue horizontal line) or the laser amplitude (red dashed horizontal line) is modulated. Parameters are as detailed in the
text.

We also note that the optimal (worst) phase choice for
squeezing generation also corresponds to maximum heating
(cooling) of the mirror, as can be seen in Fig. 4(a). This is
another confirmation that parametric oscillation is indeed the
main underlying mechanism: in fact not only does a stronger
modulation enhance the generation of quantum effects, as
inferred from equations (22), it also pumps more energy into
the system.

We then see how the interplay between two independent
modulations can be carefully exploited to increase levels of
squeezing in an optomechanical system.

V. CONCLUSIONS

We have studied in great detail the effect of periodic modu-
lations on optomechanical systems and we have characterized
several ways in which such modulations can be exploited
to enhance relevant quantum properties including squeezing,
entanglement, and quantum discord. While the idea that mod-
ulations can help to access the quantum regime was already
known from previous works [14–16], we have proposed an
interpretation of this enhancement mechanism in terms of a
resonance between the modulation frequency and the natural
frequencies of the system. This simple model allowed us to
prove the existence of an optimal modulation regime and to
understand the arising of instability thresholds. Finally, we
have analyzed the interplay of different modulations and have
found that constructive (destructive) interference effects may
arise when they are applied simultaneously, causing a further
enhancement (suppression) of quantum effects. We believe that
these results could lead further on toward the development of
optimal control strategies.
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APPENDIX: ASYMPTOTIC BEHAVIORS

This section deals with some technical aspects related
with the asymptotic solutions of Eqs. (8) and (13), which
define the quantum properties of the system. Here, we
discuss the resonant mechanisms which is responsible for the
enhancement of quantum effects at � ∼ 2ωM , as well as the
role of the relative phase in the interplay between different
modulations. We start in Appendix 1 by presenting a simple
paradigmatic case which captures the main aspects of the
resonance. Then, in Appendix 2, we introduce the analytic
framework which will be used to describe the dynamics of the
system. Finally, Appendix 3 and 4 are devoted to analyze in
details the asymptotic behavior of the system in the one- and
two-modulation scenario, respectively.

1. Single-oscillator model

As anticipated in the main text, the evolution of the corre-
lations matrix describes the dynamics of a multidimensional
(classical) oscillator which evolves in the presence of damping
and external constant driving (defined by the matrix N ) and
which possesses characteristic frequencies [determined by
S(t)] that are externally modulated at frequency � (these
statements are explicitly verified in Appendix 2–4). To
enlighten the role of the modulation in the evolution of the
correlation functions it is hence worth focusing on the simplest
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example of this sort. This is provided by a single parametric
oscillator whose position x evolves according to the equation

ẍ(t) = −ω2
0[1 + α cos(νt)]x(t) − γ ẋ(t) + F, (A1)

with ω0 and ν being the characteristic and modulation fre-
quency, respectively, α being the amplitude of the modulation,
γ being the damping rate, and F being the strength of a
constant driving. For this simple scenario, two cases are pos-
sible: If α � 2γ /ω0 (above-threshold condition), parametric
modulation pumps energy into the system at a faster rate
with respect to dissipation; the system increases its energy
exponentially and is therefore unstable. If α � 2γ /ω0 (below-
threshold condition), the system reaches a stationary regime,
given by the balance of pumping and dissipation. We can then
look for a stable solution of Eq. (A1) by assuming that α

is small and treating the solution perturbatively [i.e., x(t) =
x(0)(t) + αx(1)(t) + O(α2)]. To order zero in α the system is
just a damped driven harmonic oscillator, which relaxes toward
its equilibrium position x̄(0) = limt→∞ x(0)(t) = F/ω2

0. To first
order in α, the long-time solution is then given by

ẍ(1)(t) = −ω2
0x

(1)(t) − ω2
0 cos(νt)x̄(0) − γ ẋ(1)(t). (A2)

Therefore, we see that the parametric modulation for the
below-threshold regime can be mapped onto an effective
external driving F cos(νt), so the solution is easily found to be

x(t) � F

ω2
0

+ αf (ν)F cos(νt + φ), (A3)

with f (ν) = [(ω2
0 − ν2)2 + (γ ν)2]−1/2 being the Lorentzian

response function of a classical harmonic oscillator. Clearly,
the superimposed oscillation, which we remind the reader is
an effect of the parametric modulation, will be much greater
near resonance with the natural frequency ν ∼ ω0 and for α

just below the instability threshold. Going to second order in
α yields small deviation from this picture, and we can stop our
qualitative analysis here. In summary, parametric modulation
can controllably enhance oscillations of the system coordinates
if two main conditions are satisfied: the modulation must not
be too strong, otherwise the system becomes unstable, and
an external (constant) driving must also be applied, otherwise
the system relaxes to x(t → ∞) = 0 [as from Eq. (A3) with
F = 0]. We also stress that, in the below-threshold regime, the
resonance condition is given by ν ∼ ω0 (i.e., the modulation
frequency should be the same as the natural frequency of the
system) and not by ν ∼ 2ω0, as is the usual case of exponential
parametric amplification.

2. General treatment of modulated optomechanical system

Turning back to Eq. (13), we will see that all conditions are
indeed satisfied: the coefficient S(t) is periodically modulated
over time, stability can be verified with a numeric solution
and external driving is provided by the noise correlation
function N . The above result implies that, in the case of our
multidimensional parametric oscillator, maximum enhance-
ment of the oscillations is expected when � matches the
characteristic frequencies that govern the dynamics of the
correlation functions in absence of the modulation. The latter
are defined by the matrix S(t) of Eq. (13) when ε = 0 (and
η = 0 in the two-modulation scenario). As mentioned in the

text, at least for the figures of merit we are concerned about
in the paper (i.e., �2qMIN, �2XMIN, DMAX, etc.), the relevant
frequency is indeed ∼2ωM .

We can thus generalize the simple model of Appendix 1
to the present case and reproduce the numerical results we
found in the main text with a semianalytic solution of Eqs. (8)
and (13), which we briefly sketch here. In doing so, we will
also identify and comment on the relevant points which are
responsible for the behavior observed in Figs. 3 and 4.

a. Classical solution

Let us start with Eq. (8) for the mean values which, for
the sake of completeness, we report here for the general
scenario defined by the Hamiltonian (25) where both the
frequency modulation (2) and the amplitude modulation (23)
are activated; namely,

∂tQ = ωMP,

∂tP = −ωM [1 + ε cos(�t)]Q − γMP + G0|A|2,
∂tA = −(k+i�0)A + iG0AQ + E[1+η cos(�t+φ)],

(A4)

having only assumed their frequencies to be identical (i.e.,
�1 = �2 = �). As anticipated in the text [see Eq. (11)] we
look for a perturbative solution in the modulations strengths ε

and η; that is,

Q = Q(0) + Q(1) + Q(2) + · · · ,
P = P (0) + P (1) + P (2) + · · · ,
A = A(0) + A(1) + A(2) + · · · ,

(A5)

where, for instance, Q(1) is linear in ε and η, Q(2) is quadratic
in ε and η and so on (note that we can revert to the single-
modulation scenario simply by imposing η = 0). At order zero
we get

∂tQ
(0) = ωMP (0),

∂tP
(0) = −ωMQ(0) − γMP (0) + G0|A(0)|2,

∂tA
(0) = −(k + i�0)A(0) + iG0A

(0)Q(0) + E.

(A6)

From the numeric simulation we know that this nonlinear
equation evolves toward a stable point (Q̄(0), P̄ (0), Ā(0)) and
by setting the derivatives to zero, we can find these asymptotic
values. Next, at first order we get

∂tQ
(1) = ωMP (1),

∂tP
(1) = −ωMQ(1) − ωMε cos(�t)Q̄(0) − γMP (1)

+G0(Ā(0))∗A(1) + G0(A(1))∗Ā(0), (A7)

∂tA
(1) = −(k + i�0)A(1) + iG0Ā

(0)Q(1) + iG0A
(1)Q̄(0)

+Eη cos(�t + φ).

These are the equations of three coupled and forced har-
monic oscillators, with forcing terms −ωMε cos(�t)Q̄(0)

and Eη cos(�t + φ) that are purely oscillating. In addition,
damping makes sure that the system is stable. The solutions
are easily obtained in the form

Q(1)(t) = q1e
i�t + q∗

1 e−i�t ,

P (1)(t) = p1e
i�t + p∗

1e
−i�t ,

A(1)(t) = a1e
i�t + a2e

−i�t ,

(A8)

with q1, p1, a1, and a2 being complex parameters which
can be computed by replacing (A8) into Eq. (A7). Hence,
to first order in ε and η, the effect of the modulation on

013820-8



ENHANCING QUANTUM EFFECTS VIA PERIODIC . . . PHYSICAL REVIEW A 86, 013820 (2012)

classical values is to add an oscillating term with frequency
� and mean value 0. The amplitude of this oscillation clearly
depends on the forcing term; that is, on the amplitudes ε, η,
on their relative phase φ, and on the frequency � (via the
oscillator response function). Finally, the equations for second
order are

∂tQ
(2) = ωMP (2),

∂tP
(2) = −ωMQ(2) − ωMε cos(�t)Q(1) − γMP (2)

+G0A
∗(0)A(2) + G0A

∗(1)A(1) + G0A
∗(2)A(0), (A9)

∂tA
(2) = −(k + i�0)A(2) + iG0A

(2)Q(0) + iG0A
(1)Q(1)

+ iG0A
(0)Q(2).

These are again the equations of three coupled and
forced harmonic oscillators, but this time the forcing terms
−ωMε cos(�t)Q(1), G0A

∗(1)A(1), and iG0A
(1)Q(1) also have a

constant part. As for the first-order corrections the solutions
are easily obtained in the form

Q(2)(t) = Q̄(2) + q3e
i2�t + q∗

3 e−i2�t ,

P (2)(t) = P̄ (2) + p3e
i2�t + p∗

3e
−i2�t , (A10)

A(2)(t) = Ā(2) + a3e
i2�t + a4e

−i2�t .

To second order in ε and η, the effect of the modulation on
classical values is thus to add a constant shift and an additional
oscillating term with frequency 2� and mean value 0. Higher
orders can be processed in the same way but for the parameter
region we have selected in the main text, one can limit the
analysis to second order since, already at this point, we get the
correct result to within a good degree of accuracy (see Fig. 5).
Full convergence of the approximation when higher orders are
included can be seen from Fig. 2 in the main text, where we
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FIG. 5. (Color online) First-order (red dashed curve) and second-
order (blue solid curve) approximation to the classical position-
momentum (Q-P ) orbit of the mirror. The asymptotic numerical
orbit (black dotted curve) is also plotted from t = 49τ to t = 50τ ,
with τ = 2π/� being the period of the modulation. It is clear
that a first-order approximation is not enough and fails to describe
the dynamics of the system. On the other hand, the second-order
approximation catches all relevant aspects and reproduces the correct
behavior, at least on a qualitative level. Quantitative convergence to
the numeric solution is found including higher-order terms. Units as
in Fig. 2.

plot the numeric evolution of classical values Q and P and the
analytic counterpart, computed up to order six.

b. Linearized quantum solution

We now turn to Eq. (9) for the quantum fluctuation, which
we rewrite below:

∂tC = SC + CS� + N.

Recall that the matrix S(t) depends on ε and η via the classical
values and an additional explicit term −ωMε cos(�t). If we
make use of the approximate solution found before, we can
thus identify a matrix S(0) independent of the perturbation, a
matrix S(1) linear in ε and η and a matrix S(2) quadratic in ε

and η. Again, we look for a perturbative solution for the matrix
C; namely,

C = C(0) + C(1) + C(2) + · · · . (A11)

where C(1) is linear in ε and η, C(2) is quadratic in ε and η and
so on. The calculations simply follow what we have done for
the classical part. At order zero we get

∂tC
(0) = S(0) · C(0) + C(0) · S(0)� + N. (A12)

This equation is linear and evolves toward a stable point C̄(0),
which we can find by setting the derivatives to zero. Next, at
first order we get

∂tC
(1) = S(0) · C(1) + C(1) · S(0)� + S(1) · C̄(0) + C̄(0) · S(1)�.

(A13)

These are the equations of sixteen coupled and forced har-
monic oscillators, with forcing terms S(1) · C̄(0) + C̄(0) · S(1)�
that are purely oscillating. Since C is real, the solutions are
easily obtained in the form

C(1)(t) = c1e
i�t + c∗

1e
−i�t . (A14)

Hence, to first order in ε and η, the effect of the modulation
on the correlations is to add an oscillating term with frequency
� and mean value 0. As in the case of an unidimensional
resonator, the amplitude of this oscillation will be greater when
the modulation frequency � is chosen in resonance with the
eigenfrequencies of the normal modes. Finally, the equations
for second order are

∂tC
(2) = S(0) · C(2) + C(2) · S(0)� + S(1) · C(1) + C(1) · S(1)�

+ S(2) · C̄(0) + C̄(0) · S(2)�. (A15)

These are again the equations of sixteen coupled and forced
harmonic oscillators, but this time the forcing terms S(1) ·
C(1) + C(1) · S(1)� and S(2) · C̄(0) + C̄(0) · S(2)� also have a
constant part. The solutions are easily obtained in the form

C(2)(t) = C̄(2) + c3e
i2�t + c∗

3e
−i2�t . (A16)

Hence, as for the linear solutions, to second order in ε and
η, the effect of the modulation on the correlations is to add a
constant shift and an additional oscillating term with frequency
2� and mean value 0.
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3. Asymptotic behavior in single-modulation regime

a. Classical solution

We can come back to the single-modulation scenario by
putting η = 0 in the above analysis. By doing so, we can
get approximate analytic expressions for the asymptotic mean
values A(t), Q(t), and P (t). However, the complete formulas
are too long to be reported here and we must limit ourselves
to a seminumeric expression, where we substitute all values as
in Sec. III except for the interesting parameter ε. For example,
we report the expression of the mirror position Q(t):

Q(t) = 14 684.7 − ε2(2784.43)

+ ε[(4947.11 cos(�t) − 14.79 sin(�t)]

+ ε2[164.97 cos(2�t) − 0.50 sin(2�t)]. (A17)

As anticipated in the main text, to first order in ε the mean
values have an asymptotic oscillatory behavior, which well
describes the exact asymptotic solution. To be precise however,
we cannot neglect the second-order contributions: indeed,
while second harmonic oscillations are one order of magnitude
smaller, the constant shift is comparable to first-order effects
and must be taken in account.

b. Linearized quantum solution

We can also look at the quantum properties of the system in
the asymptotic regime, as a function of the modulation strength
ε. Fixing all other parameters to values in the text, we find, for
example, the following expression for the number of phonons
in the mirror nphon(t) ≈ [C11(t) + C22(t) − 1]/2:

nphon(t) = 0.08 + ε2(4.14) + ε[0.14 cos(�t) − 0.01 sin(�t)]

− ε2[0.02 cos(2�t) − 0.21 sin(2�t)]. (A18)

For completeness we also report the expression for the single
correlation C11:

C11(t) = 0.56 + ε2(4.01) + ε[0.28 cos(�t) − 1.63 sin(�t)]

+ ε2[0.03 cos(2�t) − 0.20 sin(2�t)]. (A19)

We see that C11(t) [and similarly C22(t)] has strong oscillations
in time proportional to ε. Hence we can say, at least
qualitatively, that squeezing will be dominated by first-order
effects in the range of values considered. On the contrary the
number of phonons can be considered time-independent, with
oscillations that are negligible if compared to the constant
term. Moreover, we know that the mirror is cooled close to
its ground state when the system is unmodulated. Therefore,
the number of phonons is strongly dependent on ε2, and the
constant shift due to second-order effects becomes quickly
the dominant effect. These results agree very well with the
numerical simulation summarized in Fig. 3.

We conclude this section with one last comment on why
the number of phonons is constant in time. We know that
the position Q(t) and momentum P (t) of the mirror oscillate
with frequency ∼ωM and a relative phase shift of π/2 (slight
modifications being induced by the interaction with the optical
subsystem). In the same way C11 = 〈δq2〉 and C22 = 〈δp2〉
oscillate with twice this frequency (i.e., ∼2ωm) and with twice
this relative phase shift (i.e., π ). In turn, the two oscillations
cancel each other out when summing C11 and C22, thus giving a

time-independent number of phonons. In addition we see that
the modulation is most effective on the mirror correlations
when � ∼ 2ωm, as stated before.

4. Asymptotic behavior in two-modulation regime

a. Classical solution

We now reintroduce the second modulation and study the
interplay between the two. Again we would like to fix all
parameters except ε, η, and φ to the values found in the main
text. However, already at the classical level, expressions for
A(t), Q(t), and P (t) tend to become rather long and complex
since we have now three free parameters. Therefore, we will
substitute also the numerical values of ε and η (values are
found in Sec. IV). This is not so bad—indeed, recall that
we are particularly interested in the dependence of quantum
properties on the relative phase φ. For example, we report the
expression of the mirror position Q(t):

Q(t) = 17 523.4 − 357.13 cos(φ) + 315.98 sin(φ)

+ 1484.13 cos(�t) − 4.43 sin(�t)

+ 2201.22 cos(�t + φ) − 1870.83 sin(�t + φ)

+ 14.84 cos(2�t) − 0.04 sin(2�t)

+ 22.62 cos(2�t + φ) − 18.78 sin(2�t + φ)

+ 113.53 cos(2�t+2φ)−32.43 sin(2�t+2φ). (A20)

Without losing much time on the cumbersome formula above,
we only point out that, again, first-order effects are dominating
(as we can see by comparing oscillations at � and oscillations
at 2�). However, we also see that, already at the classical
level, the the phase φ has a strong influence on the amplitude
of oscillations. This is a clear sign that the phase plays indeed
an important role in the system dynamics.

b. Linearized quantum solution

We turn now to quantum properties of the system. Again
we fix all parameters at the values used above, except for the
relative phase φ. To second order in the perturbation, we get
expressions for the number of phonons and the correlation
C11(t) that depends on the phase as

nphon(t) = 1
2 [1.167 + 0.087 cos(φ) + 0.753 sin(φ)

+ 0.086 cos(�t) − 0.005 sin(�t) − 0.004 cos(2�t)

+ 0.037 sin(2�t) + 0.008 cos(�t + φ)

−0.006 sin(�t + φ) − 0.024 cos(2�t + φ)

+ 0.005 sin(2�t + φ) + O(10−5)], (A21)

C11(t) = 1.09 + 0.02 cos(φ) + 0.39 sin(φ) + 0.08 cos(�t)

− 0.48 sin(�t) + 0.002 cos(2�t) − 0.02 sin(2�t)

+ 0.39 cos(�t + φ) − 0.05 sin(�t + φ)

+ 0.001 cos(2�t + φ) − 0.002 sin(2�t + φ)

+O(10−5), (A22)

where for brevity we have neglected the smallest terms.
Looking at expression (A21) above, it is clear that the main
effects of the modulation are contained in the first and third
terms—other terms being an order of magnitude smaller than
these two. The two bigger terms are both independent of
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FIG. 6. (Color online) In blue (upper solid curve) is the maximum
number of phonons, from Eq. (A21), plotted against relative phase
φ. Contributions due to different expansion orders are explicitly
included: in black (lower solid curve) is the number of phonons
in the unmodulated case (from C̄(0)); in red (upper dashed curve)
is the second-order time-independent contribution (from C̄(2)); in
green (lower dashed curve) is the maximum over one period of the
time-dependent contributions (from first order C(1) and second order
C(2)). The total (blue curve) is equal to the sum of the other three
curves.

time (similar to the single-modulation case), hence they must
come either from the unmodulated solution C(0) or from the
constant part of the second-order solution C̄(2). Again, since
in the unmodulated scenario the mirror is very close to its
ground state, we can reasonably assume that the matrix C(0)

contributes in a negligible way. Therefore, the dependance of
nmax on the phase φ is almost entirely described by the matrix
C̄(2) and is a second order effect in the modulation strengths
ε and η. The maximum number of phonons [i.e., Eq. (A21)

maximized over one period τ = 2π/� of evolution], as well as
the various contributions described here, are plotted in Fig. 6.
We see that the analytic approximation correctly resembles
the numeric solution (see Fig. 4), the two differing only by a
small constant shift which is due to higher-order corrections.
However, the qualitative behavior is fully understood already
at second order; therefore we do not report here explicitly
higher-orders contributions.

From Eq. (A22), we see that C11 (and similarly C22)
undergoes strong oscillations in time, reaching a minimum
value that depends strongly on the phase φ. This tells us that
mechanical squeezing will have a very similar behavior and
hence will also depend strongly on φ.

Entanglement and quantum discord have instead a much
smaller response. Indeed, both quantities are computed using
all entries of the matrix C (and not only two entries as in the
case of phonons). Each entry will have an expression similar
to (A22) and be made of three parts: a constant part, a time-
independent part which oscillates with the relative phase φ, and
a time-dependent part. This can be written in the general form

Cij = Aij + Bij cos(φ + ϕij ) + Cij (t), (A23)

with Aij , Bij , and ϕij constants. In general, the oscillations
Bij cos(φ + ϕij ) will be out of phase with one another. Also,
the time-dependent parts Cij (t) will be generally oscillating
out of phase. Therefore, summing many entries together, these
parts will cancel each other out (as a sum of incoherent waves)
and only the constants Aij survive to play a relevant role.
From this hand-waving reason, we expect that entanglement
and quantum discord should be quite insensitive to phase φ,
as is the case in Fig. 4.
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