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Higher-order sidebands in optomechanically induced transparency are discussed in a generic optomechanical
system. We take account of nonlinear terms and give an effective method to deal with such problems. It is shown
that, if a strong control field with frequency ω1 and a weak probe field with frequency ωp are incident upon the
optomechanical system, then there are output fields with frequencies ω1 ± 2� generated, where � = ωp − ω1.
We analyze the amplitude of the output field ω1 + 2� and look at how it varies with the control field and show
that the amplitude of the second-order sideband can be controlled by the strong control field.
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I. INTRODUCTION

The optomechanical system is a rapidly growing field, and
many theoretical [1–29] and experimental [30–41] analyses
have been done. Figure 1(a) shows a schematic diagram of a
generic optomechanical system. The optomechanical system
consists of an optical cavity, in which one mirror of the cavity
is movable with angular frequency �m and mass m. This
optomechanical system is driven by a strong control field with
frequency ω1 and a weak probe field with frequency ωp. This
emerging subject leads to some remarkable and interesting
topics, such as cooling of micromechanical cantilevers to the
ground state of motion [1–4], gravitational-wave detectors [5],
and optomechanically induced transparency [10,11,30,31],
which is an analog of electromagnetically induced trans-
parency. Electromagnetically induced transparency (EIT),
which was originally discovered in atomic vapors, has lead
to many important developments in optical physics [42–46]
and has been reported in many different systems [47,48].
It has been demonstrated recently that a form of induced
transparency is enabled by the radiation-pressure coupling
of an optomechanical system, and such an effect is called
optomechanically induced transparency (OMIT).

OMIT is a very interesting phenomenon and can be
explained by the Heisenberg-Langevin equations. Many fun-
damental works dealing with this topic have been carried out
[6–9]. The Heisenberg-Langevin equations are nonlinear, and
it is very difficult to get an analytic solution to these equations.
If the probe field is far weaker than the control field, one
can use the perturbation method to deal with such a problem.
Considering that the control field provides a steady-state
solution to the system, we write the intracavity field and the
mechanical displacement at the steady state as ā and x̄. The
probe field can be simply considered as a perturbation of the
control field. The total solution of the intracavity field and
the mechanical displacement under both the control field and
probe field can be written as a = ā + δa and x = x̄ + δx.
Using the linearization of the Heisenberg-Langevin equations,
OMIT can be described. In the present work, we take into
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account the nonlinear terms −iGδxδa and h̄G
m

δa∗δa, where G

is the coupling constant which describes the coupling between
the cavity field and the movable mirror, and we give an effective
method to deal with the problem of higher-order sidebands
in OMIT. These terms are ignored in most studies [1–30];
however, we show that these nonlinear terms can lead to some
interesting phenomena of the optomechanical system, such as
second and higher-order sidebands [49,50].

Figure 1(b) shows the frequency spectrogram of a generic
optomechanical system. The frequency of the control field,
shown by the yellow line, is detuned by �̄ from the cavity
resonance frequency which has a linewidth of κ . The first
upper sideband with respect to the pump, viz., the control
field, is referred to as the anti-Stokes field, while the first lower
sideband is referred to as the Stokes field. We choose that �̄

approximately equals −�m, and ωp is offset by the tunable
frequency � from ω1. There are higher-order sidebands in
such a generic optomechanical system due to the nonlinear
terms −iGδxδa and h̄G

m
δa∗δa. In the higher-order sideband

processes the strong control field with frequency ω1 and the
weak probe field with frequency ωp are incident upon the
optomechanical system, and then there are output fields with
frequencies ω1 ± n� generated, where n is a integer. The
output fields with frequencies ω1 + 2� is the second order
upper sideband, while ω1 − 2� is the lower sideband. In
the present work, we only focus on the second-order upper
sideband. We show that higher-order sidebands can also be
tuned by the strong control field.

II. DERIVATION OF HIGHER-ORDER SIDEBANDS IN
OPTOMECHANICALLY INDUCED TRANSPARENCY

In this section, we give a full description of the deriva-
tion of higher-order sidebands in optomechanically induced
transparency. We begin our discussion by introducing the
Hamiltonian formulation of a generic optomechanical system
[10,30]:

H = p̂2

2m
+ m�2

mx̂2

2
+ ih̄

√
ηcκε1(â†e−iω1t − âeiω1t )

+ ih̄
√

ηcκ(â†εpe−iωpt− âε∗
peiωpt ) + h̄ωcâ

†â + h̄Gxâ†â,

(1)
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FIG. 1. (Color online) (a) Schematic diagram of a generic
optomechanical system. The optomechanical system is driven by a
strong control field with frequency ω1. If the weak probe field with
frequency ωp is incident upon the optomechanical system, then some
interesting phenomena occur, such as optomechanically induced
transparency. (b) Frequency spectrogram of a generic optomechanical
system. The frequency of the control laser is detuned by �̄ from
the cavity mode which has a linewidth of κ . We choose that �̄

approximately equals −�m, and ωp − ω1, which is recorded as �,
is over the optical resonance of the cavity. There are higher-order
sidebands in such a generic optomechanical system due to the
nonlinear terms −iGδxδa and h̄G

m
δa∗δa.

where p̂ and x̂ are the momentum and position op-
erators of the movable mirror with effective mass m

and angular frequency �m. The term h̄ωcâ
†â is the free

Hamiltonian of the cavity field and the term h̄Gxâ†â
denotes the interaction between the cavity field and the
movable mirror. The term ih̄

√
ηcκε1(â†e−iω1t − âeiω1t ) +

ih̄
√

ηcκ(â†εpe−iωpt − âε∗
peiωpt ) describes the driving field,

and in the present work it contains a strong control
field and a weak probe field. The amplitudes of the pump
field and the probe field are normalized to a photon flux at
the input of the cavity [30] and are defined as ε1 = √

P1/h̄ω1

and εp = √
Pp/h̄ωp, where P1 is the pump power and Pp is

the power of the probe field. κ is the total loss rate which
contains an intrinsic loss rate κ0 and an external loss rate
κex. The coupling parameter ηc = κex/(κ0 + κex), which can
be continuously adjusted, is chosen to be the critical coupling
1/2 here, with the best contrast achieved [30].

In a frame rotating at ω1, the Heisenberg-Langevin equa-
tions read as follows [30]:

˙̂a = (i� − iGx − κ/2)â + √
ηcκε1 + √

ηcκεpe−i�t + âin,

(2)

˙̂x = p̂/m, (3)

˙̂p = −m�2
mx̂ − h̄Gâ†â − 	mp̂ + F̂th, (4)

where � = ω1 − ωc and � = ωp − ω1, and the decay
rates of the cavity field (κ) and mechanical oscillators
(	m) are introduced classically. The quantum noise of
the mirror and cavity are described by âin and F̂th with
〈âin(t)â†

in(t ′)〉 = δ(t − t ′), 〈âin(t)〉 = 0, 〈F̂th(t)F̂ †
th(t ′)〉 = 	m∫

e−iω(t−t ′)[coth(h̄ω/2kBT ) + 1]dω/2π�m, and 〈F̂th(t)〉 = 0.
In this work, we are interested in the mean response of the
system to the probe field, so the operators can be reduced to
their expectation values, viz., a(t) ≡ 〈â(t)〉, a∗(t) ≡ 〈â†(t)〉,
x(t) ≡ 〈x̂(t)〉, and p(t) ≡ 〈p̂(t)〉. In this case we reduce the
operator equations to the mean value equations and drop
the quantum and thermal noise terms because 〈âin(t)〉 = 0

and 〈F̂th(t)〉 = 0. The Heisenberg-Langevin equations then
become

ȧ = (i� − iGx − κ/2)a + √
ηcκε1 + √

ηcκεpe−i�t , (5)

ẋ = p/m, (6)

ṗ = −m�2
mx − h̄Ga†a − 	mp. (7)

For the case that the control field is much stronger than the
probe field, we can use the perturbation method to deal with
Eqs. (5)–(7). The control field provides a steady-state solution
(ā, x̄) of the system, while the probe field is treated as the noise,
or perturbation of the steady state. The total solution of the
intracavity field and the mechanical displacement under both
the control field and the probe field can be written as a = ā +
δa and x = x̄ + δx. The steady-state solution of Eqs. (5)–(7)
can be obtained as

ā =
√

ηcκε1

−i�̄ + κ/2
, x̄ = −h̄G|ā|2

m�2
m

, (8)

where �̄ = � − Gx̄. Equations (8) give functions mapping
the intracavity photon number |ā|2 to the displacement x̄. This
system has bistability if the control field is strong enough.
Figure 2 shows the displacement x̄ varies with the power of
the control field by solving Eqs. (8) numerically. We use m =
20 ng, G/2π = −12 GHz/nm, 	m/2π = 41.0 kHz, κ/2π =
15.0 MHz, �m/2π = 51.8 MHz, and � = −�m. All of these
parameters are chosen from a recent experiment [30]. The
wavelength of the control field is chosen to be 532 nm. For
the case where P1 < 18 mW, only one solution exists and the
system has no bistability. For the case where P1 is larger than
18 mW but less than 150 mW, three solutions exist and the
green dashed line in Fig. 2 indicates the unstable solutions. So
the system gives rise to bistability in this case. To obtain an
OMIT, the one solution region should be chosen, and we hold
P1 < 18 mW throughout this work.
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FIG. 2. (Color online) Calculation results of the solutions of
Eqs. (8). Here we plot x̄ under different P1. The green dashed line
indicates the unstable solutions. We use m = 20 ng, G/2π = −12
GHz/nm, 	m/2π = 41.0 kHz, κ/2π = 15.0 MHz, �m/2π = 51.8
MHz, and � = −�m.
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Now we turn to consider the perturbation made by the
probe field. By using a = ā + δa and x = x̄ + δx, Eqs. (5)–(7)
become

d

dt
δa = �δa − iG(āδx + δxδa) + √

ηcκεpe−i�t ,

(9)

�̂δx = −h̄G

m
(āδa∗ + ā∗δa − δa∗δa),

where � = i� − iGx̄ − κ/2 and �̂ = d2

dt2 + 	m
d
dt

+ �2
m. In

what follows, we show that the nonlinear terms −iGδxδa

and h̄G
m

δa∗δa can lead to some interesting effects of the
optomechanical system.

We solve the problem of inputting a probe field, εpe−i�t ,
by using the following ansatz:

δa = δa(1) + δa(2) + · · · , δa∗ = δa∗(1) + δa∗(2) + · · · ,
δx = δx(1) + δx(2) + · · · , (10)

where δa(1)=A−
1 e−i�t+A+

1 ei�t ,δa(2)=A−
2 e−2i�t+A+

2 e2i�t ,
δa∗(1) = (A+

1 )∗e−i�t + (A−
1 )∗ei�t , δa∗(2) = (A+

2 )∗e−2i�t +

(A−
2 )∗e2i�t , δx(1) = X1e

−i�t + X∗
1e

i�t , and δx(2) =
X2e

−2i�t + X∗
2e

2i�t . The physical picture of such an
ansatz is that there are output fields with frequencies ω1 ± n�

generated, due to the nonlinear terms −iGδxδa and h̄G
m

δa∗δa,
where n is a integer. If one ignores such nonlinear terms, then
the terms of the higher-order sidebands in the ansatz cannot
be self-consistent. In the present work, we only consider the
second-order sideband, and the higher-order sidebands (for
example, 3�) are ignored. So we can simplify the ansatz as
follows:

δa = A−
1 e−i�t + A+

1 ei�t + A−
2 e−2i�t + A+

2 e2i�t ,

δa∗ = (A+
1 )∗e−i�t + (A−

1 )∗ei�t + (A+
2 )∗e−2i�t + (A−

2 )∗e2i�t ,

δx = X1e
−i�t + X∗

1e
i�t + X2e

−2i�t + X∗
2e

2i�t . (11)

In what follows, we solve Eqs. (9) by using ansatz (11) and
give the amplitude of the second-order sideband. Substituting
Eqs. (11) into Eqs. (9) leads to six equations:

(� + i�)A−
1 = iG(āX1 + X∗

1A
−
2 + X2A

+
1 ) − √

ηcκεp, (� − i�)A+
1 = iG(āX∗

1 + X1A
+
2 + X∗

2A
−
1 ),

(� + 2i�)A−
2 = iG(āX2 + X1A

−
1 ), (� − 2i�)A+

2 = iG(āX∗
2 + X∗

1A
+
1 ),

(12)
(
�2

m − �2 − i	m�
)
X1 = −h̄G

m
[ā(A+

1 )∗ + ā∗A−
1 − (A−

1 )∗A−
2 − (A+

2 )∗A+
1 ],

(
�2

m − 4�2 − 2i	m�
)
X2 = −h̄G

m
[ā(A+

2 )∗ + ā∗A−
2 − (A+

1 )∗A−
1 ].

We consider that such a second-order sideband is a second-order process whose amplitude is much smaller than the probe field,
so we can simplify these six equations into two groups: one group describes the linear case,

(� + i�)A−
1 = iGāX1 − √

ηcκεp, (� − i�)A+
1 = iGāX∗

1,
(
�2

m − �2 − i	m�
)
X1 = −h̄G

m
[ā(A+

1 )∗ + ā∗A−
1 ], (13)

and the other group describes the the second-order sideband,

(� + 2i�)A−
2 = iG(āX2 + X1A

−
1 ), (� − 2i�)A+

2 = iG(āX∗
2 + X∗

1A
+
1 ),

(14)
(
�2

m − 4�2 − 2i	m�
)
X2 = −h̄G

m
[ā(A+

2 )∗ + ā∗A−
2 − (A+

1 )∗A−
1 ].

Equations (13) were obtained in previous work [30] and are used to study the effect of optomechanically induced transparency.
The equations can easily be solved and A−

1 and X1 are obtained as follows:

A−
1 = 1 + if (�)

κ/2 − i(�̄ + �) + 2�̄f (�)
√

ηcκεp, X1 = −h̄Gāχ (�)

κ/2 − i(�̄ + �) + 2�̄f (�)
√

ηcκεp, (15)

where χ (�) = 1/m(�2
m − �2 − i	m�) and f (�) = h̄G2|ā|2χ (�)/[κ/2 + i(�̄ − �)].

Equations (14) describe the second-order sideband of such an optomechanical system. We also can solve the equations and
obtain A−

2 as follows:

A−
2 = G2āf (2)(�)X2

1 + GA−
1 X1[f (2)(�)(iκ + 3� − 2�̄) − 1]

2�̄f (2)(�)(−�̄ + � + iκ/2) − (�̄ + 2� + iκ/2)
, (16)

with

f (2)(�) = h̄G2|ā|2χ (2�)

(−�̄ + � + iκ/2)(−�̄ + 2� + iκ/2)
. (17)

Equation (16) is made up of two terms: the first term is a direct second-order sideband, and the other term is an upconverted
first-order sideband. The direct second-order sideband, whose amplitude is proportional to G2āX2

1, arises from the two-phonon
upconverted process of the control field.
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By using the input-output notation, we can obtain the output
fields as follows:

sout = c1e
−iω1t + cpe−iωpt − √

ηcκA−
2 e−i(2ωp−ω1)t

−√
ηcκA+

1 e−i(2ω1−ωp)t − √
ηcκA+

2 e−i(3ω1−2ωp)t , (18)

where c1 = ε1 − √
ηcκā and cp = εp − √

ηcκA−
1 . The terms

c1e
−iω1t and cpe−iωpt describe the output fields with the

frequencies of ω1 and ωp, respectively. The transmission of the
probe field is defined as tp = cp/εp. Some previous works [30]
have used cp to study OMIT. It can be obtained that

tp = 1 − 1 + if (�)

κ/2 − i(�̄ + �) + 2�̄f (�)
ηcκ. (19)

The term −√
ηcκA+

1 e−i(2ω1−ωp)t describes the Stokes pro-
cess and has been studied in Ref. [6]. The term
−√

ηcκA−
2 e−i(2ωp−ω1)t describes the second-order upper side-

band process, in which the output field with frequency ω1 +
2� can be produced, while the term −√

ηcκA+
2 e−i(3ω1−2ωp)t

describes the second-order lower sideband process, in which
the output field with frequency ω1 − 2� can be produced.
In what follows, we present a discussion of the amplitude of
the second-order upper sideband. One also can discuss the
amplitude of the second-order lower sideband by using the
same method.

III. DISCUSSION

Now we turn to discuss how the amplitude of the second-
order upper sideband varies with ε1 or equivalent P1. After
such discussion we find that the second-order sideband can
also be tuned by the strong control field.

The amplitude of the input probe light is εp, while the
amplitude of the output field with the second-order sideband
is |−√

ηcκA−
2 |. We define η = |−√

ηcκA−
2 /εp|, which is

dimensionless, as the efficiency of the second-order sideband
process. It should be noted that η, for which we choose 20%
here, for example, just means that the amplitude of the output
second-order sideband is 20% of the amplitude of the input
probe light, which is not the case of that 20% of the probe
light being shifted into the second-order sideband.

Figure 3 shows |tp|2 and η vary with � by using Eq. (16).
We use εp/ε1 = 0.05, and all of the other parameters are
exactly the same as those in Fig. 2. Figures 3(a) and 3(b)
show |tp|2 and η vary with � under the same control field
P1 = 9.33μW. In Fig. 3(a) |tp|2 is very low near �/�m = 1,
which means that the probe field is almost completely absorbed
near the resonance condition � = −� = �m. It seems that
|tp|2 reaches its minimum at � = �m; however, if one zooms
in sufficiently, there is a local maximum at � = �m. From
Fig. 3(b), it can be seen that generation of ω1 + 2� is obvious
only when the resonance condition � = �m is reached.
Figures 3(c) and 3(d) show |tp|2 and η vary with � under a
stronger control field, P1 = 149.3 μW. Figure 3(c) shows that
there is a transparent window near the resonance condition
� = �m, which, however, is not very deep. Figure 3(d) shows
η under the same control field. It can be seen that η also
becomes obvious near � = �m. However, on an enlarged
scale, a local minimum is shown.
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FIG. 3. (Color online) Calculation results of |tp|2 and η vary with
� under different ε1. In panels (a) and (b), we use P1 = 9.33 μW,
and in panels (c) and (d), we use P1 = 149.3 μW.

Now we consider a stronger control field, for example, P1 =
933.0 μW. Figure 4(a) shows |tp|2 in such a control field. There
is a transparent window near the resonance condition � = �m.
The transparent window is obvious and much deeper than the
case in Fig. 3(c). Figure 4(b) shows η varies with � under the
same P1. Unlike the case shown in Fig. 3(b), in Fig. 4(b)
η reaches its local minimum within a frequency window
corresponding to about the cavity linewidth at �/�m = 1.
There is a narrow dip near the resonance condition � = �m,
in which η becomes very small. This means that when the
OMIT occurs, the second-order sideband process is subdued.
Such a result can also be seen in Figs. 4(c) and 4(d). In Fig. 4(c),
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FIG. 4. (Color online) Calculation results of |tp|2 and η vary with
� under different ε1. In panels (a) and (b), we use P1 = 933.0 μW,
and in panels (c) and (d), we use P1 = 3.7 mW. Other parameters are
the same as those in Fig. 2.
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FIG. 5. (Color online) Calculation results of the real and imagi-
nary parts of η under different control fields, ε1. We use P1 = (a) 37.3
μW, (b) 149.3 μW, (c) 335.9 μW, and (d) 3.7 mW. Other parameters
are the same as those in Fig. 2.

a control field of P1 = 3.7 mW is used. Compared to the case
in Fig. 4(a), it can be seen that the transparent window is
wider, and the effect of OMIT is more obvious. Furthermore,
Figure 4(d) shows that the dip is becoming wider. The value
of η at the dip is not exactly zero since 	m is nonzero. Taken
together Figs. 3 and 4 show that if P1 is small, and the effect
of OMIT does not take place, then the probe field is almost
completely absorbed near the resonance condition � = �m,
and meanwhile the second-order sideband field achieves the
maximum amplitude at � = �m. For the case where the
effect of OMIT takes place, there is a transparent window for
the probe field near the resonance condition � = �m, while
the second-order sideband field reaches its local minimum
within a frequency window corresponding to about the cavity
linewidth when �/�m = 1. It is a suppressive window for
the second-order sideband field. As the power of the control
field becomes larger, both the transparent window for the
probe field and the suppressive window for the second-order
sideband field become wider. The real and imaginary parts of
Ac ≡ √

ηcκA−
2 /εp under different control fields are shown in

Fig. 5. It can be seen that both the real and imaginary parts
of

√
ηcκA−

2 /εp have essential changes during the process of
turning up the control field. Figure 6 shows the calculation
results of |tp|2 and η vary with the optical power of the control
field at the resonance condition � = �m. |tp|2 increases with
the optical power of the control field, while η does not. For the
case where the optical power of the control field is weaker than
about 0.12 mW, η increases sharply with the optical power of
the control field. η reaches its maximum at about P1 = 0.12
mW. For the case of a larger P1, η decreases slowly with the
optical power of the control field. All of the results obtained
from Figs. 3–6 show that the amplitude of the second-order
sideband can be controlled by the strong field ε1.

Up to now, we have shown that taking account of the
nonlinear terms will lead to higher-order sidebands in a generic
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FIG. 6. (Color online) Calculation results of |tp|2 and η vary with
the optical power of the control field at the resonance condition � =
�m. We use εp/ε1 = 0.05, and all of the other parameters are exactly
the same as those in Fig. 2. The blue solid curve represents the
calculation results of |tp|2 and the green dashed curve represents the
calculation results of η.

optomechanical system, and the amplitude of the second-order
sideband can also be tuned by the strong control field.
However, the amplitude of the second-order sideband is very
small. Figure 4 shows that the efficiency of the second-order
sideband process is only about 2%. This means that the field
at the frequency of ω1 + 2� is significantly weaker than the
probe field. In what follows, we show that the amplitude of the
second-order sideband can be made obvious by tuning �.

Figure 7 shows the numerical results of |tp|2 and η vary
with � by using different �. In Figs. 7(a) and 7(b), we use
� = −�m, and the results are the same as those in Figs. 4(c)
and 4(d). In this case, the efficiency of the second-order
sideband process is only about 2%. When we change �, the
trough of |tp|2 also changes. In Fig. 7(c) we find that the trough
of |tp|2 is located at �/�m ≈ 1.4. There is a dip at �/�m = 1,
and it means that the probe field is absorbed greatly in this
case. Figure 7(d) shows that there is an obvious second-order
sideband at �/�m = 1, and the efficiency of the second-order
sideband process is about 15%. Similar results also can be
seen in Figs. 7(e) and 7(f). It should be noted that Figs. 7(c) to
7(f) do not show OMIT. Obviously, there are two absorption
peaks in Figs. 7(c) and 7(e). The first absorption peak is near
the resonance condition of the moving mirror � = �m, while
the second one is near the resonance condition of the cavity
� = −�̄. If the resonance condition of the moving mirror
is the same as the resonance condition of the cavity, the
destructive interference between the probe field photons and
the sideband excitations of the control field, which are induced
by the mechanical oscillation, causes a tunable transparency
window. The detailed process is as follows: The control and
probe fields induce a radiation-pressure force oscillating at the
frequency �, which is the beat frequency between the control
and probe fields. If � is close to the resonance frequency of
the moving mirror �m, the mirror starts to oscillate coherently.
As a result, Stokes and anti-Stokes fields will emerge. If the
resonance condition of the moving mirror is the same as
the resonance condition of the cavity, the anti-Stokes field
is resonantly enhanced, so that the probe laser interferes with
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FIG. 7. (Color online) Calculation results of |tp|2 and η vary with
� under ε1 = 100.0 MHz. We use � = −�m in panels (a) and (b),
� = −1.4�m in panels (c) and (d), and � = −1.8�m in panels (e)
and (f). Other parameters are the same as those in Fig. 2.

the anti-Stokes sideband and leads to a tunable transparency
window [30,33,41]. If we choose � to be off resonance with the
anti-Stokes field, here we take � = −1.4�m as an example,
then the anti-Stokes field is subdued, and the effect of OMIT
disappears. However, the density of states of the cavity field at
the second-order sideband is larger than the density of states
of the case � = −�m, so we get a higher η.

The physical interpretation of why the efficiency of the
second-order sideband has a local minimum on resonance is
that the upconverted first-order sideband process is weak when
OMIT occurs, because the destructive interference between
the probe field and the anti-Stokes field leads to the cavity
field at the frequency � being very weak. A mathematical
interpretation of why the efficiency of the second-order
sideband has a local minimum on resonance can be made
by using Eq. (16), which is made up of two terms as has
been shown before: the direct second-order sideband term
and the upconverted first-order sideband term. If considering
�/�m ≈ 1, f (2)(�) can be estimated to be of the order of
∼10−12. So the first term, which describes the two-phonon
upconverted process of the control field, is much smaller than

the second term. Then Eq. (16) can be simplified as

A−
2 ≈ GA−

1 X1

�̄ + 2� + iκ/2
. (20)

If � = −�m and when OMIT occurs, then |A−
2 | reaches the

local minimum within a frequency window corresponding to
about the cavity linewidth when �/�m = 1 because both
the |A−

1 | and X1 reach the local minimum in this case. A
possible interpretation of the obvious second-order sideband
for the case � ≈ −1.5�m is that the density of states of the
cavity field at the first- and second-order sidebands is equal
when � ≈ −1.5�m. Therefore two-step scattering into the
second-order sideband is rendered more probable than it would
otherwise be. This result also can be obtained by using the
simplified expression of Eq. (16). When we tune �, the effect
of OMIT disappears, and both |A−

1 | and X1 become larger.
More importantly, �̄ + 2� in the denominator of Eq. (20) is
smaller, so it leads to an obvious second-order sideband.

IV. CONCLUSION

The propagation of electromagnetic fields in various sys-
tems covers a wide range of issues [41–57]. An optome-
chanical system is a promising approach to manipulate the
propagation of light [41,49,50]. In this work, we show that a
generic optomechanical system driven by a pump field with
frequency ω1 and a weak probe field with frequency ωp

can lead to the generation of second-order sideband signals
ω1 ± 2� by taking account of nonlinear terms. We give an
effective method to calculate the amplitudes of such fields.
We find that the second-order sidebands can also be tuned by
the strong control field. There are some connections between
OMIT and the second-order sideband process. When OMIT
occurs, the second-order sideband process is subdued. We also
show that the amplitude of the second-order sideband can be
controlled by detuning �.
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