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N-photon wave packets interacting with an arbitrary quantum system
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We present a theoretical framework that describes a wave packet of light prepared in a state of definite
photon number interacting with an arbitrary quantum system (e.g., a quantum harmonic oscillator or a multilevel
atom). Within this framework we derive master equations for the system as well as for output field quantities
such as quadratures and photon flux. These results are then generalized to wave packets with arbitrary spectral
distribution functions. Finally, we obtain master equations and output field quantities for systems interacting with
wave packets in multiple spatial and/or polarization modes.
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Nonclassical states of light are important resources for
quantum metrology [1,2], secure communication [3], quantum
networks [4–6], and quantum information processing [7,8].
Of particular interest for these applications are traveling
wave packets prepared with a definite number of photons
in a continuous temporal mode, known as continuous-mode
Fock states [9–12]. As the generation of such states becomes
technologically feasible [13–24] a theoretical description of
the light-matter interaction [25] becomes essential (see Fig. 1).

Previously, aspects of continuous-mode single-photon
states interacting with a two-level atom have been examined.
Others have investigated master equations [26], two-time
correlation functions [26,27], properties of scattered light
[27–38], and optimal pulse shaping for excitation [38–42].
The results in these studies were produced with a variety of
methods which have not been applied to many systems other
than two-level atoms or Fock states where N � 1 (however,
see [43]).

One way to approach such problems is through the input-
output formalism of Gardiner and Collett [44–48]. A central
result of input-output theory is the Heisenberg-Langevin
equation of motion driven by quantum noise that originates
from the continuum of harmonic oscillator field modes [46,49].
The application of input-output theory to open quantum
systems has historically been restricted to Gaussian fields
[45,46,50]—vacuum, coherent, thermal, and squeezed—with
several notable exceptions [26,51–54].

In this article we present a unifying method, based on input-
output theory, for describing the interaction between a quan-
tum system and a continuous-mode Fock state. Consequently,
our formalism encapsulates and extends previous results.
Specifically, our method allows one to derive the master
equations and output field quantities for an arbitrary quantum
system interacting with any combination of continuous-mode
N -photon Fock states.

This article is organized as follows. In Sec. I we introduce
the white-noise Langevin equations of motion, the mathe-
matical description of quantum white noise, and the formal
definition of continuous-mode Fock states. In Sec. II we
present the first main results: the method for deriving master
equations for systems interacting with continuous-mode Fock
states and related output field equations. This result is then
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FIG. 1. (Color online) Schematic depiction of a traveling wave
packet interacting with an arbitrary quantum system. The temporal
wave packet is described by a slowly varying envelope ξ (t) which
modulates fast oscillations at the carrier frequency. We consider the
case where the wave packet is prepared in a nonclassical state of
definite photon number.

extended in Sec. III to continuous-mode “N -photon states,”
where the spectral density function is not factorizable. Then,
in Sec. IV we apply our formalism to the study of a two-level
atom interacting with wave packets prepared in N -photon
Fock states. This application is intended to serve as an
instructive example that reproduces and extends results in
previous studies [39–41]. In Sec. V, we present the second
main result: master equations and output field quantities for a
system interacting with Fock-state wave packets in two modes
(e.g., spatial or polarization). This sets the stage for the study of
many canonical problems in quantum optics. As a two-mode
example, we examine the scattering of Fock states from a
two-level atom in Sec. VI. Finally, we conclude in Sec. VII
with discussion and possible applications.

I. MODEL AND METHODS

A description of a system interacting with a traveling
wave packet naturally calls for a formulation in the time
domain. The input-output theory developed in the quantum
optics community provides such a description [45–48,50–52].
Often input-ouput theory is formulated for a one-dimensional
(1D) electromagnetic field, although this is not a necessary
restriction [50]. (Such effective one-dimensional models are
typically thought about in the context of optical cavities [55]
or photonic waveguides [35,56–58].) In this formalism the
rotating wave approximation, the weak-coupling limit (the
Born approximation), and the Markov approximation are made

013811-11050-2947/2012/86(1)/013811(18) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.013811
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[59,60]. Strict enforcement of these approximations is known
as the quantum white-noise limit [61].

In Appendix A 1 we review the quantum white-noise limit;
other introductory material can be found in Refs. [45,46,
59,62]. The main result is a quantum stochastic differential
equation (QSDE) for the unitary time evolution operator that
governs the system-field dynamics. From this equation one can
derive QSDEs for system and field operators driven by white
noise, also known as white-noise Langevin equations. These
equations of motion are what lie at the heart of the derivation
of Fock-state master equations.

The Langevin equations derived in the white-noise limit
are in Stratonovich form [9,46,63]. Stratonovich QSDEs obey
the standard rules of calculus, but expectations can be hard to
calculate because the quantum noises do not commute with
the operators to which they couple. Stratonovich QSDEs can
be converted to an equivalent form known as the Itō QSDEs.
In Itō form the quantum noises commute with the operators
to which they couple, which facilitates taking expectations.
However, differentials must be calculated to second order [46].
To derive master equations we take expectations over field
states and consequently work solely with Itō QSDEs.

A. Derivation of the vacuum master equation from the Itō
Langevin equations

Consider an arbitrary system operator in the interaction
picture, X(t), with the initial condition X(t0) = X ⊗ Ifield. The
time evolution of X is given by the Itō Langevin equation [see
Appendix (A 3)]

dX = (i[H,X] + L†[L]X)dt + [L†,X]SdBt + S†[X,L]dB
†
t

+ (S†XS − X)d�t , (1)

where the action of the superoperator is

L†[L]X = L†XL − 1
2 (L†LX + XL†L). (2)

The operators (S,L,H ) act on the system Hilbert space.
The quantum noise increments dBt , dBt

†, and d�t are field
operators, discussed in more detail shortly.

The first two terms in Eq. (1) describe smooth evolution
from an external Hamiltonian on the system and from a
Lindblad-type dissipator. The second two terms describe the
influence of quantum noise through coupling of a system
operator L linearly to the field operators, for example,
dipole-type coupling. The final term arises from coupling
of a system operator S to a quantity quadratic in the field
operators, such as photon number. Such effective couplings
appear in optomechanical systems [64] and arise after adiabatic
elimination of the excited states in multilevel atoms [65], for
example.

Let us return to the discussion about the quantum noise
increments dBt , dBt

†, and d�t . These field operators are
defined in terms of the fundamental field operators b(t)
and b†(t), whose time arguments are mode labels rather
than indicators of time evolution. They are often referred
to as white-noise operators because they satisfy the singular
commutation relations [b(s),b†(t)] = δ(t − s). This is akin to
classical white noise which is δ-correlated in time. Due to the
singular nature of b(t) and b†(t), it is preferable to work with

the quantum noise increments:

dBt =
∫ t+dt

t

ds b(s) and dB
†
t =

∫ t+dt

t

ds b†(s), (3)

d�t =
∫ t+dt

t

ds b†(s)b(s), (4)

which drive the Heisenberg dynamics in Eq. (1).
Under vacuum expectation, the calculus rules for manipu-

lating QSDEs are summarized by the relations

dBtdB
†
t = dt, dBtd�t = dBt ,

(5)
d�td�t = d�t , d�tdB

†
t = dB

†
t .

These composition rules are often referred to as the vacuum
Itō table.

As a prelude to the derivation of the Fock-state master
equations, we derive the vacuum master equation. First, we
take vacuum expectations of Eq. (1) using the following
notation (to be explained in Sec. II): E0,0[dX] = Tr[(ρsys ⊗
|0〉〈0|)†dX]. Consequently, we need the action of the quantum
noise increments on vacuum,

dBt |0〉 = 0, (6)

d�t |0〉 = 0. (7)

All of the quantum noise terms in Eq. (1) vanish under vacuum.
Then, using the cyclic property of the trace we obtain the
vacuum master equation:

d

dt
�0,0(t) = −i[H,�0,0] + L[L]�0,0, (8)

where the Lindblad superoperator is defined as

L[L]� = L�L† − 1
2 (L†L� + �L†L), (9)

and the subscripts on �0,0 denote that Eq. (8) is a vacuum
master equation.

B. Continuous-mode Fock states

A continuous-mode single-photon state [9,10,12] can be
interpreted as a single photon coherently superposed over
many spectral modes [66,67] with weighting given by the
spectral density function (SDF) ξ̃ (ω),

|1ξ 〉 =
∫

dω ξ̃ (ω)b†(ω)|0〉. (10)

We focus on quasimonochromatic wave packets, where the
spectral spread is much smaller than the carrier frequency,
�ω � ωc [68]. This holds for optical carriers, whose band-
widths are small relative to the carrier frequency. Then we can
define a slowly varying envelope ξ̃ (ω) rotating at the carrier
frequency,

ξ̃ (ω) → ξ̃ (ω)e−iωct , (11)

where ωc is near any relevant system frequencies. The Fourier
transform of the slowly varying envelope, F[ξ̃ (ω)] = ξ (t),
characterizes a square-normalized temporal wave packet,∫

dt |ξ (t)|2 = 1. In the time domain, and within the quasi-
monochromatic approximation, the single-photon state in
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Eq. (10) becomes [10]

|1ξ 〉 =
∫

ds ξ (s)b†(s)|0〉 ≡ B†(ξ )|0〉, (12)

where we have absorbed the possible detuning from the system
frequency into ξ (t). The operator B†(ξ ) creates a single photon
in the wave packet ξ (t). Equation (12) can be interpreted
as a superposition of instantaneous photon creation times
weighted by the temporal wave packet. Since the white-noise
operators are defined in the interaction picture, it is clear that
ξ (t) is a slowly varying temporal envelope rotating at the
carrier frequency. By focusing on quasimonochromatic wave
packets we ensure the approximations made in the quantum
white-noise limit are not violated.

A straightforward extension leads to the definition of nor-
malized, continuous-mode Fock states (referred to hereafter as
Fock states) in the wave packet ξ (t) with N photons [12],

|Nξ 〉 = 1√
N !

[ ∫
ds ξ (s)b†(s)

]N

|0〉 (13a)

= 1√
N !

[B†(ξ )]N |0〉. (13b)

The Fock states in Eq. (13) are a subset of more general
N -photon states for which the SDF is not factorizable [11]. In
Sec. III, we define these states and use them to derive master
equations.

II. FOCK-STATE MASTER EQUATIONS

In this section we derive master equations for a quantum
system interacting with a field prepared in a Fock state. The
derivation is performed in the interaction picture where the
time-dependent operators evolve according to Eq. (1). To
facilitate the derivation we first introduce notation convenient
for representing expectations with respect to a particular field
state. It should be noted that our method is a generalization to
N -photon states of a method introduced in Refs. [53,54] for a
single photon.

Assuming no correlations before the interaction, the total
system is described by the product state

ρ(t0) = ρsys ⊗ |Nξ 〉〈Nξ |, (14)

with the system in the state ρsys and the field in the Fock state
|Nξ 〉. Using the Hilbert-Schmidt inner product for operators A

and B,

〈A|B〉 ≡ Tr[A†B], (15)

one can take expectations with respect to system and/or field
states. For the following derivation it is necessary to define the
asymmetric expectation value,

Em,n[O] ≡ Trsys+field[(ρsys ⊗ |mξ 〉〈nξ |)†O], (16)

where O is a joint operator on the system and field and is
not necessarily separable. We use a convention where capital
letters, |Nξ 〉 denote the number of photons in the input field.
Lowercase letters, for example, |nξ 〉 where n = {0, . . . ,N},
label “reference” Fock states to which the system couples.
Using the Hilbert-Schmidt inner product, we define a set
of generalized density operators �m,n, first introduced in

Ref. [26], by tracing over only the field in Eq. (16):

Em,n[O] ≡ Trsys[�
†
m,nO]. (17)

Such generalized density operators were also used in
Refs. [53,54] for a single photon. We delay the interpretation
of these generalized density operators until Sec. II A.

As the trace in Eq. (16) is over both system and field, it
gives a c-number expectation value. Using the partial trace we
also define an asymmetric partial expectation over the field
alone, which results in an operator. We define this operation
with the notation [69]

	m,n(O) ≡ Trfield[(Isys ⊗ |mξ 〉〈nξ |)†O]. (18)

We base our derivation on the Itō Langevin equations of motion
for system operators. In this picture, the state remains separable
and the expectations will always have the form of Eqs. (16)
and (18).

At this point we must mention an important technical issue.
The composition rules for the quantum noise increments,
expressed in Eq. (5), are generally modified for nonvacuum
fields [46,71]. However, it is shown in Appendix B 2 that the
Itō table for Fock states is identical to that for vacuum. This
allows the techniques from input-output theory to be extended
to Fock states.

A. Fock-state master equations for the system

Recall the first step toward deriving the vacuum master
equation [Eq. (8)] was taking the expectation of Eq. (1) with
respect to vacuum, that is, E0,0[dX]. Analogously, to derive
the Fock-state master equations we must take the asymmetric
expectations, that is, Eq. (16) or Eq. (18). The only explicit
field operators in Eq. (1) are the quantum noise increments
dBt and d�t . Consequently, the action of the quantum noise
increments on Fock states is needed:

dBt |nξ 〉 = dt
√

nξ (t)|n − 1ξ 〉, (19a)

d�t |nξ 〉 = dB
†
t

√
nξ (t)|n − 1ξ 〉. (19b)

In Appendix B 1 we show how to derive these relations.
Equations (17) show how “reference” Fock states of different
photon number couple through the quantum noise increments.

We are now equipped to derive the Fock-state master
equations. From Eq. (18), we take the partial trace over
Fock states for an arbitrary system operator X ⊗ Ifield, whose
equation of motion is given by Eq. (1). Doing so yields the
Heisenberg master equations:

d

dt
	m,n(X(t)) = 	m,n(i[H,X]) + 	m,n(L†[L]X)

+√
mξ ∗(t)	m−1,n(S†[X,L])

+√
nξ (t)	m,n−1([L†,X]S)

+√
mn|ξ (t)|2	m−1,n−1(S†XS − X). (20)

To extract the Schrödinger-picture master equations, we
make use of Eq. (17): Em,n[X(t)] = Trsys[�

†
m,n(t)X]. Then,

using the cyclic property of the trace, we can write the master
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equations for the system state:
d

dt
�m,n(t) = −i[H,�m,n] + L[L]�m,n

+√
mξ (t)[S�m−1,n,L

†]

+√
nξ ∗(t)[L,�m,n−1S

†]

+√
mn|ξ (t)|2(S�m−1,n−1S

† − �m−1,n−1). (21)

This set of coupled differential equations is the main result of
this section. The initial conditions for these equations are as
follows. The diagonal equations �n,n should be initialized with
the initial system state ρsys, while the off-diagonal equations
should be initialized to zero. In order to calculate expectation
values of system operators for an N -photon Fock state one
needs only the top-level density operator �N,N . However,
extracting �N,N requires propagating all equations between
0 and N to which it is coupled. We note some special cases
of Eq. (21) have been derived previously in Refs. [26,53,54];
however, little intuition or physical interpretation was given
to these equations.

The master equations in Eq. (21) require further explana-
tion. The diagonal terms, �n,n, are valid state matrices describ-
ing the evolution of the system interacting with an n-photon
Fock state for n ∈ {0, . . . ,N}. For example, when N = 0 we
recover the vacuum master equation: d�0,0 = −i[H,�0,0]dt +
L[L]�0,0dt, which is the only closed-form equation in
Eq. (21). For N � 1, the diagonal equations couple “down-
ward” toward the vacuum master equation via the off-diagonal
equations �m,n where m �= n. These off-diagonal operators are
non-Hermitian of trace class zero [26]; consequently, they are
not valid state matrices but do satisfy �m,n = �

†
n,m.

The fact that the equations couple downward means that
we need only consider a finite set of equations, which can be
integrated numerically and, in some cases, analytically. For a
field in an N -photon Fock state there are (N + 1)2 equations.
From the symmetry �n,m = �

†
m,n, the number of independent

coupled equations reduces to 1
2 (N + 1)(N + 2).

Finally, we comment on the physical interpretation of these
equations. Absorption of a photon by the system significantly
changes a field prepared in a Fock state, so its dynamics
are non-Markovian [26,53]. This necessitates propagating a
set of coupled master equations. (In contrast, for coherent
states photons can be removed while leaving the field state
unchanged and a single master equation suffices.) Before the
wave packet has interacted with the system ξ (t) is zero and
only the top level equation �N,N contributes to the evolution
of the system. In other words, the system evolves solely
under the terms on the first line of Eq. (21), which describe
evolution from an external Hamiltonian and decay due to
coupling to the vacuum. When the wave packet begins to
interact with the system, ξ (t) becomes nonzero and the other
coupled equations contribute to the evolution of the system.
Then the information flow propagates upward from �0,0 to
�N,N because the equations couple downward.

So far we have discussed the dynamics of the system
before and during the interaction. The last physically important
observation is related to the correlation between the system and
the outgoing field during and after the interaction. Consider
the case where ξ (t) is bimodal. When the temporal spacing
between the peaks is much greater than the characteristic
decay time of the system and since ξ (t) is zero at these

intermediate times, the coherence between the first peak of
the wave packet and the system is lost before the second peak
begins to interact. Thus, only the top-level equation must be
propagated at these times, and the only nonzero terms describe
external Hamiltonian drive and decay into the vacuum. When
the temporal spacing between the two peaks is on the order
of the system decay time or shorter, then the initial temporal
coherence between the peaks can affect the system.

B. Output field quantities

In addition to system observables, we may also be interested
in features of the output field [70]. Consider a field observable
Y (t) with initial condition Y (t0) = Isys ⊗ Y . We insert the Itō
Langevin equation of motion for Y into the asymmetric ex-
pectations. Using Eq. (18), that is, the partial trace 	m,n(Y (t)),
the result is operator-valued Heisenberg master equations . We
focus here on expectation values, Em,n[Y (t)], which are found
by tracing over the system as well, as in Eq. (16). For two field
quantities of interest—photon flux and field quadratures—
we produce a set of coupled differential equations similar
in form to (21). The initial conditions are 	m,n(Y (t0)) =√

mn|ξ (t0)|2I = 0 · I and similarly Em,n[Y (t0)] = 0.

1. Photon flux

The photon flux is given by d�t , which counts the number
of photons in the field in the infinitesimal time increment t to
t + dt ([46], Sec. 11.3.1). The rules of Itō calculus are used
in Appendix A 2 to give the equation of motion for the output
photon flux �out

t ,

d�out
t = L†Ldt + L†SdBt + S†LdB

†
t + S†Sd�t . (22)

Taking expectations over Fock states using Eq. (16) yields an
equation for the mean photon flux,

d

dt
Em,n

[
�out

t (t)
] = Em,n[L†L] + √

mξ ∗(t)Em−1,n[S†L]

+√
nξ (t)Em,n−1[L†S]

+√
mn|ξ (t)|2Em−1,n−1[S†S]. (23)

The solution to this equation E[�out
t (t)] gives the integrated

mean photon number up to time t .

2. Field quadratures

A Hermitian field quadrature Zt measurable via homodyne
detection is described by

Zt = eiφBt + e−iφB
†
t . (24)

Following the same prescription, the equation of motion for
the quadrature after the interaction is

dZout
t = eiφdBout

t + e−iφdB
†out
t

= eiφ(Ldt + SdBt ) + e−iφ(L†dt + S†dB
†
t ). (25)

Taking expectations over Fock states using Eq. (16) gives the
mean homodyne current,

d

dt
Em,n

[
Zout

t (t)
] = Em,n[eiφL + e−iφL†]

+ eiφ
√

nξ (t)Em,n−1[S]

+ e−iφ
√

mξ ∗(t)Em−1,n[S†]. (26)
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C. General input field states in the same wave packet

So far we have considered the case where the input field is
a “pure” Fock state. These results can be generalized to field
states described by an arbitrary combination (superposition
and/or mixture) of Fock states in the same wave packet. As the
Fock states span the full Hilbert space, they form a basis for
arbitrary states in the wave packet ξ (t),

ρfield =
∞∑

m,n=0

cm,n|nξ 〉〈mξ |. (27)

The coefficients are constrained by the requirements of valid
quantum states: ρfield � 0, Tr[ρfield] = 1 and ρfield = ρ

†
field.

When the input field is described by Eq. (27) the system
state is

�total(t) =
∑
m,n

c∗
m,n�m,n(t), (28)

where �m,n(t) are the solutions to the master equations.
Generating the full, physical density operator for an arbitrary
field requires combining the appropriate solutions from the
hierarchy of coupled equations in Eq. (21) with associated
weights cm,n. The Heisenberg master equation is found in the
same manner:

	total(t) =
∑
m,n

cm,n	m,n(t). (29)

Finally, the expectation value of a system operator X is given
by

Etotal[X(t)] = Trsys+field[�†
total(t)X] (30)

=
∑
m,n

cm,nEm,n[X(t)]. (31)

This technique also applies to the output field quantities in
Sec. II B. Note that the definition of the Hilbert-Schmidt inner
product, (15), gives rise to the conjugate coefficients in Eq.
(28) but not in Eqs. (29), (31).

III. GENERAL N-PHOTON MASTER EQUATIONS

In many experimental settings multiple photons are not
created in Fock states. Fock states are a subset of more general
N -photon states, which have a definite number of photons
but an arbitrary SDF ψ̃(·). Indeed, a quantum tomography
protocol for characterizing the SDF was recently proposed [72]
and implemented [73]. This motivates the derivation of master
equations for such fields.

In a single spatial and polarization mode, a general N -
photon state is

|ψN 〉 =
∫

dω1 · · · dωN ψ̃(ω1, . . . ,ωN )

× b†(ω1) · · · b†(ωN )|0〉. (32)

Again we assume quasimonochromatic wave packets such that
ψ(·) is a slowly varying envelope with respect to the carrier
frequency. Then, in the time domain a general N -photon state

can be written as

|ψN 〉 =
∫

dt1 · · · dtN ψ(t1, . . . ,tN )b†(t1) · · · b†(tN )|0〉. (33)

These states are not amenable to our analysis directly.
Thankfully, a formalism for dealing with such N -photon states
has been developed [11,74].

To describe N -photon states we make use of the occupation
number representation developed by Rohde et al. [11], which
we review in Appendix C. Using Eq. (C8), Eq. (33) can be
written in a basis of orthogonal Fock states,

|ψN 〉 =
∑

i1�···�iN

λi1,...,iN |n1ξ1
〉|n2ξ2

〉 · · · , (34)

where |nkξk
〉 is a normalized Fock state described by Eq. (13)

with nk photons in basis function ξk(t). Counting the number
of subscripts on λ in Eq. (34) gives the total number of photons
N , and the value of any subscript ik reveals the basis function
that photon is in.

In order to derive the master equation, we must first write
the action of the quantum noise increments on Eq. (34):

dBt |ψN 〉 = dt
∑

k

√
nkξk(t)

∣∣ψk
N−1

〉
, (35)

d�t |ψN 〉 = dB
†
t

∑
k

√
nkξk(t)

∣∣ψk
N−1

〉
, (36)

where |ψk
N−1〉 is defined as

∣∣ψk
N−1

〉 ≡
∑

i1�···�iN

λi1,...,iN |n1ξ1
〉 · · · |nk − 1ξk

〉 · · · (37)

and is interpreted to mean that a single photon in one of the
basis Fock states has been annihilated.

To derive the master equation for a system interacting with
the field |ψN 〉, an asymmetric expectation value needs to be de-
fined for such states: Eψm,ψn

[O] = Tr[(ρsys ⊗ |ψm〉〈ψn|)†O].
As before, this defines the generalized density operators
�ψm,ψn

. Using these definitions the master equations for the
generalized density operators are

d

dt
�ψm,ψn

(t) = L[L]�ψm,ψn
− i[H,�ψm,ψn

]

+
∑

k

√
mkξk(t)

[
S�ψk

m−1,ψn
,L†]

+
∑

k

√
nkξ

∗
k (t)

[
L,�ψm,ψk

n−1
S†]

+
∑
k,k′

√
mknk′ξ ∗

k (t)ξk′(t)

× (
S�ψk

m−1,ψ
k′
n−1

S† − �ψk
m−1,ψ

k′
n−1

)
. (38)

Each master equation couples to a set of equations enumerated
by the indices {m,n,k}. The total number of equations required
to describe such a state depends on the overlap of the initial
wave packet with the particular choice of basis. Equations
for the output field can also be derived for N -photon states,
but we omit them for brevity. Equations similar to Eq. (38)
were derived in Ref. [26] for two photons but did not include
d�t or S.

Finally, we can consider input fields in combinations
(superpositions and/or mixtures) of different N -photon states.
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In particular, we allow the total state to be a combination
of different states with the same photon number and a
combination of states with different photon numbers. To
describe such a state first we need to consider a general
combination of N -photon states. That is,


N =
∑

K,L∈{ψ,φ,...,σ }
cL,K |KN 〉〈LN |, (39)

where the summation is over different states with the same
photon number N . Then we can sum over photon numbers to
obtain the most general input field:

ρfield =
∞∑

p=0

Cp
p. (40)

The coefficients cL,K and Cp are constrained by the require-
ment that the input state be a valid quantum state. Using
Eqs. (40) and (28), the equations for the system and output
field can be found.

IV. EXAMPLE: FOCK-STATE MASTER EQUATIONS FOR
A TWO-LEVEL ATOM INTERACTING WITH A

GAUSSIAN WAVE PACKET

Efficient photon absorption is important for information
transfer from a flying qubit to a stationary qubit. In this section
we analyze this problem with a study of the excitation prob-
ability and output field quantities for Fock states interacting
with a two-level atom. This problem has been studied before in
much detail for a single photon in Refs. [39–41]. Our intention
is to make a direct connection to established results and then to
extend those results to higher photon numbers. Consequently,
we do not focus on optimizing wave-packet shapes as other
studies have [39–42].

The single-mode approximation in Sec. I is rooted in the
presumption that the wave packet can be efficiently coupled
to the two-level atom. This has been considered in the case of
a mode-matched wave packet covering the entirety of the 4π

solid angle in free space [39,40]. A more widely applicable
context is that of strongly confined one-dimensional photonic
waveguides [42] . In such systems the coupling rate into the
guided modes �g can be much larger than into all other modes
�⊥, where the total spontaneous emission rate is � = �g + �⊥
[35,56]. In the following analysis, we take the idealized limit
that coupling to all other modes can be fully suppressed and
we set �⊥ = 0. To properly account for losses, a second mode
can be introduced using the tools of Sec. V and finally traced
over.

In Sec. IV A, we examine the form of the master equation
for the simple case of a two-photon Fock state. Next, in
Sec. IV B we numerically examine a two-level atom interacting
via a dipole Hamiltonian with a wave packet prepared with
at most two photons. First we reproduce the single-photon
excitation results from prior studies, then we broaden these
results to include two photons and output field quantities.
Finally, in Sec. IV C we present a numerical study for
large-photon-number Fock states. This allows us to explore
the relationship between excitation probability, bandwidth,
interaction time, and photon number. For photon numbers
N � 1, we identify a region of strong coupling.

A. Two-photon Fock-state master equations

It is instructive to examine the form of the master equation
for the simple case of interaction with a two-photon Fock state
where both photons are created in the same temporal wave
packet ξ (t), |ψ〉field = |2ξ 〉. From Eq. (21), the two-photon
Fock-state master equations are

�̇2,2(t) = L[L]�2,2 − i[H,�2,2] +
√

2ξ (t)[S�1,2,L
†] +

√
2ξ ∗(t)[L,�2,1S

†] + 2|ξ (t)|2(S�1,1S
† − �1,1), (41a)

�̇2,1(t) = L[L]�2,1 − i[H,�2,1] +
√

2ξ (t)[S�1,1,L
†] + ξ ∗(t)[L,�2,0S

†] +
√

2|ξ (t)|2(S�1,0S
† − �1,0), (41b)

�̇2,0(t) = L[L]�2,0 − i[H,�2,0] +
√

2ξ (t)[S�1,0,L
†], (41c)

�̇1,1(t) = L[L]�1,1 − i[H,�1,1] + ξ (t)[S�0,1,L
†] + ξ ∗(t)[L,�1,0S

†] + |ξ (t)|2(S�0,0S
† − �0,0), (41d)

�̇1,0(t) = L[L]�1,0 − i[H,�1,0] + ξ (t)[S�0,0,L
†], (41e)

�̇0,0(t) = L[L]�0,0 − i[H,�0,0], (41f)

with the initial conditions

�2,2(0) = �1,1(0) = �0,0(0) = ρsys, (42)

�2,1(0) = �2,0(0) = �1,0(0) = 0. (43)

Equations similar to Eqs. (41) were originally derived in
Ref. ([26], Eqs. 71(a)–71(f)) for a two-level atom but without
the S operator and the term proportional to |ξ (t)|2. For an
arbitrary quantum system and single-photon equations which
include S and the term proportional to |ξ (t)|2 were later derived

in Ref. [53]. Then Ref. [54] showed how to propagate these
equations for any superposition or mixture of one photon and
vacuum.

Now suppose the input field is in a superposition of one and
two photons, |ψ〉field = α|1ξ 〉 + β|2ξ 〉, with |α|2 + |β|2 = 1.
From Eq. (28) we combine the solutions to the master
equations [Eq. (41)] to get the physical state,

�total(t) = |α|2�1,1(t) + |β|2�2,2(t)

+α∗β�1,2(t) + αβ∗�2,1(t). (44)
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FIG. 2. (Color online) Comparison of a Gaussian wave packet of bandwidth �/� = 1.46 in three initial field states: a single-photon Fock
state (solid line), a two-photon Fock state (dashed line), and an equal superposition (dash-dotted line). The wave packet |ξ (t)|2 is shown by
thin black lines filled gray. (a) Excitation probability of a two-level atom. (b) Photon flux. It is distinctly modified by interaction with the atom.
(c) Integrated photon flux. For comparison the integrated single-photon flux is plotted when there is no atom.

Notice that the last two terms of Eq. (44) originate in the
coherences of the input field. It is interesting that the “off-
diagonal,” traceless, generalized density operators (e.g., �1,2)
contribute to the calculation of physical quantities, albeit in
Hermitian combinations. Had the field been a “pure” Fock
state or a statistical mixture of one and two photons, these
terms would not appear.

Output field quantities are calculated in the same fashion as
Eq. (44). For example, the mean photon flux is

Etotal
[
�out

t (t)
] = |α|2E1,1

[
�out

t

] + |β|2E2,2
[
�out

t

]
+α∗βE2,1

[
�out

t

] + αβ∗E1,2
[
�out

t

]
, (45)

where Eq. (30) was used to calculate Etotal[·].

B. A two-level atom interacting with one- and two-photon
Gaussian wave packets

Now we specialize to a wave packet prepared with up to
two photons interacting on a dipole transition with a two-level
atom initially in the ground state |g〉. In the absence of an
external system Hamiltonian the master equation parameters
are H = 0, L = √

�|g〉〈e|, S = I , and the coupling rate is
chosen for simplicity to be � = 1. We focus on a square-
normalized Gaussian wave packet, as defined in Ref. [40],
whose peak arrives at time ta ,

ξgau(t) =
(

�2

2π

)1/4

exp

[
− �2

4
(t − ta)2

]
, (46)

with no detuning and frequency bandwidth �. For Gaussian
wave packets the simple relationship between bandwidth and
temporal width enables us to explore the trade-off between
interaction time and spectral support around resonance [75].

To study the excitation probability we numerically integrate
the master equations (41a)–(41f). Then, for a given input field
state we calculate the excitation probability,

Pe(t) = Tr[�total(t)|e〉〈e|], (47)

where �total is given by Eq. (28).

Figure 2(a) presents the excitation probability for a two-
level atom interacting with a Gaussian wave packet Eq. (46)
prepared in a “pure” Fock state of one and two photons as
well as an equal superposition; α = β = 1/

√
2 in Eq. (44).

In the simulations we use a bandwidth known to be optimal
for single-photon Gaussian wave packets: �/� = 1.46 [39].
This gives a maximum excitation probability of Pmax

e ≈ 0.801
for N = 1, as found in other works [39–41]. Putting a second
photon in the wave packet slightly increases this to Pmax

e ≈
0.805; however, we see in Sec. IV C that this is not universal
behavior for all bandwidths and photon numbers.

In Fig. 2(b) we plot the mean photon flux of the output field,
dE[�out

t ]/dt , after interaction with the atom. For the single-
photon wave packet, we see a drastic change in the output
photon flux when the photon is being absorbed by the atom.
For two photons, however, much of the wave packet travels
through the atom undisturbed, since a two-level atom can
absorb at most one photon. The related integrated mean photon
flux, E[�out

t ], is plotted in Fig. 2(c). For these “pure” one-
and two-photon Fock states there exist a definite number
of excitations. Any excitation induced in the atom through
absorption of a photon eventually decays back into the field.
This is shown in Fig. 2(c) where the integrated mean photon
flux for long times approaches the number of initial excitations
{1,1.5,2}. During the absorption of the single-photon wave
packet, the integrated intensity flattens out since the photon
has been transferred to an atomic excitation and arrives only
later after decay.

For a single-photon wave packet, the Schrödinger equation
can be solved analytically for the excitation probability
[35,41]:

Pe(t) = e−�t

∣∣∣∣
∫ t

0
dt ′ ξ (t ′)e− �

2 t ′
∣∣∣∣
2

. (48)

The simulations in Fig. 2 agree with the analytic expression
in Eq. (48). However, it is not clear that the method used to
derive Eq. (48) can be extended to higher photon numbers.
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BARAGIOLA, COOK, BRAŃCZYK, AND COMBES PHYSICAL REVIEW A 86, 013811 (2012)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

10

20

30

40

50

60

photon number (N)
0 10 20 30 40

0.8

0.85

0.9

0.95

1

photon number (N)

(a)

(c)(b)

10210110010-1 103

N=1

N=2 N=10

op
tim

al
 b

an
dw

id
th

 ( 
   

   
 )

bandwidth (units of         )

FIG. 3. (Color online) (a) Maximum excitation probability Pmax
e

of a two-level atom interacting with Gaussian wave packets of
bandwidth �/� for photon numbers N ∈ {1, . . . ,10}. Small (large)
bandwidths correspond to long (short) temporal wave packets. (b)
Scaling of Pmax

e with photon number (red circles). The fit shown is
Pmax

e (N ) = 1 − 0.269N−0.973 (blue line). (c) Scaling of Pmax
e with

optimal bandwidth for each photon number N (red circles). The fit is
�opt(N )/� = 1.45N0.987. Details of the fits can be found in the main
text.

C. Excitation for large photon numbers

In this section we expand the numerical study of excitation
probability to Gaussian wave packets of the form of Eq. (46)
prepared Fock states with photon number N � 1.

1. Scaling

For small bandwidths (�/� � 1), see the left side of
Fig. 3(a), one would expect a high probability of excitation
from the substantial spectral support near the transition
frequency of the atom. However, the long temporal extent
of the wave packet means the photon density over the relevant
interaction time scale τ = 1/� is too small to significantly
excite the atom [40]. A complementary way of understanding
this is that the dissipative terms in the master equations
[terms on the first line of Eq. (21)] prevail over the coherent
coupling (terms on the other lines). By extending the analysis
in Ref. [26], we find a recursive scaling of the excitation
probability for very wide wave packets: Pmax

e ≈ PN , where
PN = NP1(1 − 2PN−1) with P1 = 4 max |ξ (t)|2.

In the other asymptotic regime where bandwidths are large
(�/� � 1) [see the right side of Fig. 3(a)] the maximum
excitation probability is small even for large photon numbers.
This is due to the wave packet being so short that its bandwidth
is spread over frequencies far from the atomic resonance.
We numerically find the asymptotic scaling Pmax

e = 5N�/�

for �/� ∈ [103,107] with R2 = 1 for photon numbers N ∈
{1, . . . ,10}.

At intermediate bandwidths, we note several interesting
features. First, the maximum excitation probabilities are not
universally ordered by photon number and adding photons to
the field can decrease Pmax

e . In fact, there exists a bandwidth
region in Fig. 3, where a single photon in the wave packet is
optimal for excitation, �/� ≈ [.5,1.4].

Second, for each photon number there exists an optimal
bandwidth for excitation. In Fig. 3(b) we have plotted the abso-
lute maximum ofPe (maximized over t and �/�) as a function
of the number of photons. We find excellent agreement (R2 =
1) by fitting to the model Pmax

e (N ) = 1 − aN−b over the range
N ∈ {10, . . . ,40} with coefficients (95% confidence): a =
0.2694(0.2678,0.271), b = 0.973(0.9709,0.975). Therefore,
the absolute maximum ofPe does monotonically increase with
N , but with diminishing returns.

In Fig. 3(c) we investigate the optimal bandwidth for
excitation for each photon number N . Fitting to the model
�max(N )/� = aNb gives a = 1.447(1.418,1.476) and b =
0.9869(0.981,0.9928) with 95% confidence and R2 = 0.9998.
Thus, to achieve this scaling for photon number N , the optimal
bandwidth of the wave packet is �opt(N )/� ≈ 1.45N0.987.
Thus, the optimal width seems to be proportional to the
single-photon optimal bandwidth, �opt(N )/� ≈ 1.46N .

2. Dynamics

Finally, we illustrate the excitation probability dynamics.
Figure 4 shows Pe for bandwidths �/� ∈ {50,1,1/20},
chosen to illustrate three types of behavior. In each subplot
(a)–(c), excitation curves are plotted for photon numbers
N ∈ {1, . . . ,10}.

In Fig. 4(a) a short pulse quickly excites the atom,
which then decays into vacuum with rate � after the wave
packet leaves the interaction region. A larger photon number
corresponds directly to larger maximum excitation. In the
intermediate bandwidth regime, �/� ≈ 1, excitations can be
coherently exchanged between the atom and field, leading
to oscillations in the excitation probabilities. This continues
until the wave packet leaves the interaction region as shown
in Fig. 4(b). Similar damped Rabi oscillations were ob-
served for large-photon-number coherent-state wave packets in
Ref. ([40], Fig. 5). For a single photon in the field, these oscilla-
tions are never seen due to the trade-off between spectral band-
width and photon density [27,76]. At the chosen bandwidth
�/� = 1, a single photon achieves the highest maximum
excitation with maximum excitation falling off roughly with
photon number in agreement with Fig. 3. Finally, in Fig. 4(c)
we see that an atom interacting with a long wave packet is
excited and then decays well within the wave packet envelope
and the Pe(t) curves are nearly symmetric around the peak of
the wave packet for all photon numbers N = {1, . . . ,10}.

3. Strong coupling

The damped Rabi oscillations seen in Fig. 4(b) suggest that
there is a regime where coherent processes dominate over dis-
sipation, known in cavity QED as the strong coupling regime.
The authors of Ref. [76] defined a strong coupling parameter
(for very short rectangular wave packets):

√
Ngeff � �, where

geff = ξ (t)
√

�g . Specifically, the wave packet was taken to be
ξ (t) = 1/

√
tmax for times t � tmax � 1/� and zero otherwise.
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FIG. 4. (Color online) Excitation probability Pe of a two-level atom interacting with Gaussian wave packets of bandwidth �/� =
{50,1,1/20} prepared with N ∈ {1, . . . ,10} photons. Highlighted are N = 1 (solid line), N = 2 (dashed line), and N = 10 (dash-dotted line).
The wave packet |ξ (t)|2 is shown by thin black lines filled gray [normalized in (a) for clarity]. (a) Behavior of short temporal wave packets
(large bandwidths) shows Pe is ordered by photon number. (b) For intermediate bandwidths, we see damped Rabi oscillations, discussed in
Sec. IV C3. Note that Pe is not necessarily ordered. (c) Behavior of long temporal wave packets (small bandwidths) where Pe is again ordered.
Note the different time scales in (a), (b), and (c).

In this limit they showed that full Rabi oscillations for N

photons occur at frequency ωR = geff

√
N . In Fig. 5 we

compare their analytically predicted excitation oscillations
with our numerical calculations for N = 50 photons. In (a), the
wave packet is long compared to 1/� and, while the oscillation
frequencies match, the amplitudes do not due to dissipation.
For short wave packets, as seen in (b), coherent coupling
prevails over dissipation, we see excellent agreement with the
predicted frequency (in our parameters: ωR = 2ξ (t)

√
�gN )

and good agreement with the predicted amplitude.
For nonrectangular pulses the frequency of the Rabi

oscillations is time-dependent, as seen in Fig. 4(b). We must
account for the time variation of the wave packet ξ (t) in order to
define a more general strong coupling parameter. To achieve
strong coupling, the coherent coupling rate into the guided
modes

√
N�g|ξ (t)| must dominate the total relaxation rate

�. We can immediately define the condition for instantaneous
strong coupling:

√
N�g|ξ (t)|/� � 1. However, in order to see

interesting dynamics such as a complete Rabi oscillation, the
coupling must remain strong over a characteristic time scale
τ . From this argument we define an average strong coupling
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FIG. 5. (Color online) Comparison of the numerically calculated
(dark blue line) and analytically predicted (dashed orange line) Rabi
oscillations for rectangular wave packets (normalized for clarity) with
N = 50 photons. (a) Wave packet length tmax large compared to 1/�.
(b) Wave packet length approaching the limit tmax � 1/�. We see
increasing agreement between prediction and our numerics.

parameter,

√
N�g

�τ

∫ ts+τ/2

ts−τ/2
dt |ξ (t)| � 1 ∀ ts . (49)

If for any wave packet ξ (t) there is a value of ts such that
Eq. (49) is much greater than 1, then average strong coupling
has been achieved over the time window τ .

A natural choice for τ is the characteristic decay time of
the atom, 1/�. In Fig. 6(a) we present a contour plot of the
average strong coupling parameter for Gaussian wave packets
prepared in a single-photon Fock state (N = 1). Ideal coupling
to the guided mode is assumed, �g = � = 1. We see that
for any bandwidth maximum coupling occurs when the time
window is centered at the Gaussian peak (indicated by the
vertical, dashed white line) and that the strongest coupling is
achieved for �/� = 4. Note that although the average strong
coupling parameter for a single photon never exceeds 1, for
larger photon numbers the

√
N factor can lead to significant

coupling. In Fig. 6(b) the excitation probability dynamics are
shown for an optimal bandwidth �/� = 4 wave packet. We
see the appearance of damped Rabi oscillations when the wave
packet has N = 50 photons that are completely absent when
only a single photon is in the field. For comparison, a wave
packet of bandwidth �/� = 2 is shown in Fig. 6(c). Even at
this bandwidth, damped Rabi oscillations appear for N = 50
photons, albeit with reduced contrast and frequency.

V. TWO-MODE FOCK-STATE MASTER EQUATIONS

In this section we derive the master equations for a system
interacting with an arbitrary combination of continuous-mode
Fock states in two modes (spatial or polarization). This
generalization allows one to consider wave packets scattering
off of atoms or addressing multiple dipole transitions, for
instance. The analysis for two modes is conceptually identical
to but algebraically more complicated than the single-mode
case.
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FIG. 6. (Color online) (a) Contour plot of the average strong
coupling parameter for a Gaussian wave packet prepared with a single
photon as a function of center of the time window (ts) and bandwidth
�/� (where τ = 1/�). (b),(c) Excitation probability of a two-level
atom interacting with a wave packet of bandwidths �/� = 4 for (b)
and �/� = 2 for (c). Only N = 1 and N = 50 photons are shown.
The normalized wave packets |ξ (t)|2 are shown by thin black lines
filled gray.

A. Multimode Itō Langevin equations

The evolution of a system operator driven by multiple
quantum noises is given by the multimode Itō Langevin
equation,

dX =
(

i[H,X] +
∑

i

L†[Li]X

)
dt + [L†

i ,X]Sij dBj

+ S
†
ij [X,Li]dB

†
j + (S†

kiXSkj − δijX)d�ij . (50)

where the modes are labeled by the subscripts {i,j,k} and
repeated indices are summed. H is an external system
Hamiltonian, the operator Li couples the system to the ith
field mode, and the scattering operator Sij is constrained by
SikS

†
jk = δij I and S

†
kiSkj = δij I [see ([77], Appendix A), ([78],

Sec. IV), and [79] and the references therein for more details on
multimode QSDEs]. Note that the subscript t on the multimode
quantum noise increments has been dropped for notational
compactness in favor of the mode labels {i,j}. The multimode
quantum noise increments are defined,

dBi =
∫ t+dt

t

ds bi(s), and d�ij =
∫ t+dt

t

ds b
†
i (s)bj (s).

(51)

The composition rules for these quantum noises increments
under Fock state expectation are

dBidB
†
j = δij dt, dBid�jk = δij dBk,

(52)
d�ijd�kl = δjkd�il, d�ijdB

†
k = δjkdB

†
i .

B. Two-mode Fock states

We consider the case where photons in mode one are
prepared in a temporal wave packet ξ (t) and those in mode
two are in the wave packet η(t). The two-mode Fock state with
N photons in mode one and Q photons in mode two is,

|Nξ 〉 ⊗ |Qη〉 = 1√
N !Q!

[B†
1(ξ )]N [B†

2(η)]Q|0; 0〉,

where the operators B
†
i (·) are defined in Eq. (12).

C. Two-mode Fock-state master equations for the system

Here we specialize the multimode equations [Eqs. (50)
and (51)] to two modes by restricting the indices to run over
the mode labels {1,2}. In Appendix D we show how do this
calculation for any number of modes. We introduce notation
for representing asymmetric expectations over two-mode Fock
states,

Em,n;p,q [X(t)]=Trsys+field[(ρsys⊗|mξ 〉〈nξ |⊗|pη〉〈qη|)†X(t)]

≡Trsys[�
†
m,n;p,q (t)X], (53)

which also defines the two-mode generalized density operators
�m,n;p,q in analogy with Eq. (17). The reference field state is
written as a tensor product where the labels {m,n} refer to
mode one and {p,q} to mode two. The two-mode Heisenberg
master equations are found by taking field expectations over
the equation of motion (50). Thus, the action of the quantum
noises on two-mode Fock states is needed:

dB1|mξ ; pη〉 = dt
√

mξ (t)|m − 1ξ ; pη〉, (54a)

dB2|mξ ; pη〉 = dt
√

pη(t)|mξ ; p − 1η〉, (54b)

d�11|mξ ; pη〉 = dB
†
1

√
mξ (t)|m − 1ξ ; pη〉, (54c)

d�12|mξ ; pη〉 = dB
†
1
√

pη(t)|mξ ; p − 1η〉. (54d)

The actions of d�21 and d�22 are similar.
We then obtain the Schrödinger-picture master equations

with Eq. (53) and the cyclic property of the trace,

d

dt
�m,n;p,q (t)

= −i[H,�m,n;p,q ] + (L[L1] + L[L2])�m,n;p,q

+√
mξ (t)[Si1�m−1,n;p,q ,L

†
i ] + √

pη(t)[Si2�m,n;p−1,q ,L
†
i ]

+√
nξ ∗(t)[Li,�m,n−1;p,qS

†
i1] + √

qη∗(t)[Li,�m,n;p,q−1S
†
i2]

+√
mn|ξ (t)|2(Si1�m−1,n−1;p,qS

†
i1 − �m−1,n−1;p,q )

+√
pq|η(t)|2(Si2�m,n;p−1,q−1S

†
i2 − �m,n;p−1,q−1)

+√
mq ξ (t)η∗(t) Si1�m−1,n;p,q−1S

†
i2

+√
np ξ ∗(t)η(t) Si2�m,n−1;p−1,qS

†
i1, (55)
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where the subscript i is summed over the mode labels. The
initial conditions are

�m,n;p,q (0) = ρsys, if m = n and p = q, (56)

�m,n;p,q (0) = 0, if m �= n or p �= q. (57)

To solve a two-mode master equation with N photons in
mode one and Q photons in mode two, ρfield = |Nξ 〉〈Nξ | ⊗
|Qη〉〈Qη|, we need to propagate (N + 1)2 × (Q + 1)2 coupled
equations. As in the single-mode case the symmetries in the
generalized density operators, �n,m;q,p = �

†
m,n;p,q , reduce the

number of independent equations to 1
4 (N + 1)(N + 2)(Q +

1)(Q + 2).

D. General input field states in the same wave packet

So far we have considered only the case where the input
fields in modes one and two are in “pure” Fock states,
although we allowed for different wave packets. These results
can be generalized to field states described by an arbitrary
combination (superposition and/or mixture) of Fock states.
Consider the state

ρfield =
∞∑

m,n,p,q=0

cm,n;p,q |nξ 〉〈mξ | ⊗ |qη〉〈pη| (58)

=
∞∑

m,n,p,q=0

cm,n;p,q |nξ ; qη〉〈mξ ; pη|. (59)

As before, the coefficients, cm,n;p,q , are constrained by
the requirements of valid quantum states. For exam-
ple, the entangled N00N state for one photon is given
by ρfield = 1

2 (|1ξ ; 0〉〈1ξ ; 0| + |1ξ ; 0〉〈0; 1ξ | + |0; 1ξ 〉〈1ξ ; 0| +
|0; 1ξ 〉〈0; 1ξ |).

When the input field is described by Eq. (58), the total
system state is given by

�total(t) =
∑

m,n,p,q

c∗
m,n;p,q�m,n;p,q (t), (60)

where �m,n;p,q (t) are the solutions to the master equations in
Eq. (55). The composition for expectation values is given by

Etotal[X(t)] =
∑

m,n,p,q

cm,n;p,qEm,n;p,q [X(t)]. (61)

As before, the conjugate coefficients in Eq. (60) come from
the Hilbert-Schmidt inner product [Eq. (15)]. This technique
also applies to the output field quantities in Sec. V E.

E. Two-mode output field quantities

The output field equations for two modes are significantly
more complicated than the single-mode case because one
can consider linear combinations of the modes. Thus, there
is a continuum of possible of output photon fluxes and field
quadratures. Here we focus on photon flux and field quadrature
observables that are diagonal in the modes. More complicated
output observables that combine both modes can be obtained
using beam-splitter relations—effectively, a change of basis—
as described in Ref. [78].

1. Photon flux

The number of photons scattered from mode j into mode
i in the interval t to t + dt is given by d�out

ij . Its equation of
motion is

d�out
ij = L

†
i Ljdt + L

†
i SjkdBk + S

†
ikLjdB

†
k + S

†
kiSlj d�ij .

(62)

Any possible two-mode photon counting distribution is given
by taking expectations of Eq. (62). For example, tracing over
the system and field for d�11 gives the mean photon flux in
mode one,

d

dt
Em,n;p,q

[
�out

11 (t)
] = Em,n;p,q [L†

1L1]

+√
mξ ∗(t)Em−1,n;p,q [S†

11L1]

+√
pη∗(t)Em,n;p−1,q[S†

12,L1]

+√
nξ (t)Em,n−1;p,q[L†

1S11]

+√
qη(t)Em,n;p,q−1[L†

1S12],

+√
mn|ξ (t)|2

∑
i,j

Em−1,n−1;p,q [S†
i1Sj1].

(63)

The equation for mode two follows similarly.

2. Field quadratures

The output quantum noise in mode i is given by

dBout
i = Sij dBj + Lidt. (64)

Just as in the single-mode case, field quadratures are Hermitian
combinations of Bi and Bi

†. For instance, the field quadrature
in mode one, Z1 = eiφB1 + e−iφB1

†. The equation of motion
for the mean output field quadrature Zout

1 , or homodyne current,
after the interaction is

d

dt
Em,n;p,q

[
Zout

1 (t)
] = Em,n;p,q [eiφL1 + e−iφL

†
1]

+ eiφ
√

mξ ∗(t) Em−1,n;p,q [S†
11]

+ eiφ√
pη∗(t) Em,n;p−1,q [S†

12]

+ e−iφ
√

nξ (t) Em,n−1;p,q [S11]

+ e−iφ√
qη(t) Em,n;p,q−1[S12]. (65)

The equations for Zout
2 follow similarly.

F. General two-mode N-photon states

The formalism developed in Sec. III suffices to describe
arbitrary states in each mode separately and thus is directly
applicable to the two-mode master equations.

A slightly more general case is when there are m photons in
mode one and N − m photons in mode two with an arbitrary
spectral distribution function (such two-mode states can be
entangled in the spectral degree of freedom). These states can
be written

|ψN 〉 =
∫

· · ·
∫

dω1 · · · dωN ξ̃N (ω1, . . . ,ωN )

× b
†
1(ω1) · · · b†1(ωm)b†2(ωm+1) · · · b†2(ωN )|0〉. (66)
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With a straightforward generalization of the formalism de-
veloped in Appendix C and Sec. III one can derive master
equations for states of the form of Eq. (66).

Even more general is an N -photon state distributed over
two modes b1 and b2,

|ψN 〉 =
∫

· · ·
∫

dω1 · · · dωN ξ̃N (ω1, . . . ,ωN )

×
N∏
i

[αib
†
1(ωi) + βib

†
2(ωi)]|0〉. (67)

where αi and βi are weights for modes one and two,
respectively. For example, if we set all the αi = 0 in Eq. (67)
then there would be N photons in mode two. For a small
number of photons it is tedious, but possible, to write down
the occupation number representation of the state in Eq. (67).
Finding an efficient representation for such state with arbitrary
N is an open problem and would allow a derivation of general
two-mode master equations.

VI. TWO-MODE EXAMPLE: FOCK-STATE SCATTERING
FROM A TWO-LEVEL ATOM

In this section we illustrate the use of our two-mode
formalism by examining the photon flux of the transmitted and
reflected fields when Fock states are incident on a two-level
atom [27–31,33–35,37]. The two modes are the forward-
and backward-propagating fields, as in a tightly confined
waveguide QED setting [31,34]. As before, we specialize to a
Gaussian wave packet ξ (t) described by Eq. (46). The master
equation parameters we use are again those for dipole coupling
without external Hamiltonian drive: H = 0, Li = √

�i |g〉〈e|,
Sii = I , Sij = 0 for i �= j , and the coupling rate is chosen to
be �i = 1/2. The forward-propagating field is prepared in a
Fock state with N ∈ {1, . . . ,5} photons while the backward
mode is initially in vacuum; that is, |ψfield〉 = |Nξ ; 0〉.

In Fig. 7(a) we plot the excitation probability Pe for a
two-level atom interacting with a wave packet with bandwidth
�/� = 1. The photon flux of the transmitted and reflected
fields is plotted in Figs. 7(b) and 7(c), normalized to the number
of input photons N .

We first examine the single-photon input state (solid green
curves). While absorbing the photon, the atom has a substantial
Pe. The two peaks in the transmitted flux correspond to
the attenuated input wave packet and the contribution from
remission into the forward mode [28]. Notice the dip between
the peaks occurs when there is a large atomic excitation.
Consequently, this dip in the transmitted photon flux is due
to atomic absorption and destructive interference with the
incoming wave packet [28,29,33,35]. Conversely, energy from
the field that is not absorbed is scattered into the backward
mode through the reemission process [28]. For N > 1, we
see that the excitation probability is comparable to that for a
single photon, but the relative transmitted and reflected photon
fluxes are quite different. In particular, the ratio of transmitted
to reflected flux increases with N .

In order to understand this phenomena it is necessary
to consider the normalized transmitted and reflected photon
numbers in the long-time limit (E[�11] and E[�22]) at
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time (units of      ) 

FIG. 7. (Color online) Scattering of a Gaussian wave packet of
bandwidth �/� = 1 from a two-level atom. The wave packet |ξ (t)|2
(thin black line filled gray) is prepared with N ∈ {1, . . . ,5} photons.
(a) Excitation probability. Photon flux of the transmitted (b) and
reflected (c) fields, normalized to input photon number.

different bandwidths [28,34]. In Fig. 8 we explore this issue
numerically. Recall that the reflection process is facilitated by
absorption and then reemission into the backward mode. Thus,
one would expect reflection to dominate for small-bandwidth
wave packets, which is indeed what is seen in the left-hand
side of Fig. 8. In the large-bandwidth limit very little of
the wave packet is near resonance with the atomic transition
so no absorption occurs and the wave packet is transmitted.

bandwidth (units of         )
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Transmission and Reflection (normalized)

FIG. 8. (Color online) Normalized transmission and reflection for
Gaussian wave packets, prepared with N ∈ {1, . . . ,5} photons, with
bandwidths �/� scattering from a two-level atom. The left (right)
side represents long (short) temporal wave packets. For larger photon
number, note the increased transmission at intermediate bandwidths.
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The bump in the N > 1 transmission and reflection curves
is a consequence of an effective photon-photon interaction
[31,34,80]. By calculating the scattering eigenstates, Zheng
et al. found “multiphoton bound states” [34] which can
increase transmission in that bandwidth region.

It is also possible to examine scattering between the
forward and backward modes, as was studied in Ref. [34],
by propagating the equations for �12 and �21; however, we
omit this analysis for brevity.

VII. DISCUSSION

In this paper we have derived master equations for an
arbitrary quantum system interacting with a continuous-mode
Fock state in one or two modes (spatial and/or polarization).
We generalized these results to include superpositions and
mixtures of N -photon states with arbitrary spectral distribution
functions, and thus we can describe interaction with very
general states of light.

The power of our formalism lies in its direct applicability
to more general systems of interest in quantum optics such as
multilevel atoms, symmetrically coupled atomic ensembles,
and continuous variable systems such as nanomechanical
resonators. For example, it is possible to reproduce the cavity-
mediated, single-photon pulse shaping results of Ref. [67].
First, we identify that H = 0, L → √

γ a, and S = I are the
relevant substitutions. Then, our expression for the output
photon flux [Eq. (23)] is equivalent to Eq. (22) in Ref. [67]
for one photon (i.e., in our equations set Nmax = 1) after some
algebraic gymnastics.

As pedagogical examples, we studied features of Fock
states interacting with a two-level atom in one and two modes.
In the single-mode model [Sec. IV] we saw the maximum
excitation probability Pmax

e was low for both small (�/� �
10−1) and large (�/� � 102) bandwidths. The low Pmax

e for
small bandwidths, centered at the atomic resonance, might
seem counterintuitive. In the time domain the corresponding
wave packet is broad; nevertheless, the near-resonant photons
all get absorbed, but are immediately reemitted by the vacuum
coupling, which leads to a small average Pe. This intuition is
confirmed in the two-mode simulations, presented in Sec. VI,
where wave packets with small bandwidths are nearly perfectly
reflected. The reflection is mediated by photon absorption and
the consequent reemission, which is directionally unbiased.
However, destructive interference between the incoming wave
packet and the transmitted mode results in reflection only; that
is, the atom can act as a perfect reflector.

A detailed investigation of this phenomenon requires access
to the individual quantum trajectories [81] rather than the
ensemble averaged evolution given by the master equations.
For a single photon, a step toward the differential equations for
the quantum trajectories, known as stochastic master equations
or quantum filters [82], was given in Ref. [26]. Gheri et al.
([26], Sec. V) suggested using the cascaded systems approach
[51,52] to determine the conditional evolution of a single
photon interacting with a quantum system. This suggestion has
become a standard approach (see, e.g., Ref. [83]). However, an
elegant alternative exists. Recently the single-photon quantum
filtering equations were derived from first principles for

homodyne [53,54] and photon-counting [54] measurements
of the output fields. We are presently extending these to
Fock states in one and two modes. Access to the condi-
tional states would allow for measurement-based feedback
control [71].

A number of interesting applications of our formalism
remain to be explored, including the investigation of pulse
shaping for few-photon states, high-efficiency quantum memo-
ries, and mediated photon-photon interactions. Our formalism
is particularly applicable to quantum networks [4,5]. Recently,
the theory of cascaded quantum systems [51,52] has been
formalized to the point where simple rules for composing
modular quantum optical systems into a network have been
developed [62,78,79,84,85]. One needs only the (S,L,H )-
tuple of each module specified in order to perform network
analysis and simplification. As our description of the system,
input, and output fields is also in terms of a (S,L,H )-
tuple, it is likely that our formalism can be ported to this
setting.
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APPENDIX A: QUANTUM NOISE AND QUANTUM
STOCHASTIC CALCULUS

A rich mathematical machinery forms the foundation
for the manipulation of QSDEs and their derivation from
physical systems. Here we only touch the surface commen-
surate with our purposes; an interested reader is directed to
Refs. [45,46,50,59,61,62,71,86–89] for a more rigorous and
detailed analysis.

We present an introduction to the formalism of quantum
stochastic calculus through the canonical example of a two-
level atom interacting with a quantized, 1D field. The atomic
raising and lowering operators are σ+ = |e〉〈g| and σ− =
|g〉〈e| with transition frequency ω0. The field is described
by creation and annihilation operators, a†(ω) and a(ω),
obeying the commutation relation [a(ω),a†(ω′)] = δ(ω − ω′).
The interaction-picture coupling between the atom and the
field, within the rotating wave approximation, is

Hint(t) = −ih̄σ+
∫

dω κ(ω)a(ω)e−i(ω−ω0)t + H.c., (A1)
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where the dipole coupling, κ(ω) = |〈e|d|g〉|√ω/4πε0h̄cA,
has units of

√
frequency and A is the effective transverse

cross-sectional area of the mode (see Domokos et al. [27]).

1. The quantum white-noise limit

To take the quantum white-noise limit we first assume
weak coupling, that is, that |κ(ω)|2 � ω0. When κ(ω) is
slowly varying around ω0, we make the Markov approximation
that the atom has a flat spectral response; that is, κ(ω) →
κ(ω0). This implies that the correlation time of the field
is short compared to the slowly varying interaction time,
τs ≈ 1/|κ(ω0)|2. From the perspective of atomic operators,
the field is δ correlated in time and retains no memory of its
past interactions. In this limit we can introduce the following
field operators:

b(t) = 1√
2π

∫
dω a(ω) e−i(ω−ω0)t , (A2)

which obey the commutation relation [b(t), b†(t ′)] = δ(t − t ′).
For classical stochastic processes, δ correlation implies white
noise, so the operators b(t) and b†(t) are dubbed quantum
white-noise operators. Recast in terms of these operators the
interaction Hamiltonian is

Hint(t) = i
√

γ [σ− b†(t) − σ+ b(t)], (A3)

where we define κ(ω0) = √
γ /2π and set h̄ = 1.

Under the white-noise-driven Hamiltonian in Eq. (A3), the
system and the field undergo joint unitary evolution via the
propagator U (t) that satisfies the Schrödinger equation,

d

dt
U (t) = √

γ [σ− b†(t) − σ+ b(t)]U (t). (A4)

This expression defies rigorous mathematical definition due
to the singular commutation relation of the operators b(t) and
b†(t). To remedy this we first consider the quantum stochastic
processes,

Bt =
∫ t

0
ds b(s) and B

†
t =

∫ t

0
ds b†(s). (A5)

The singular nature of the quantum white-noise operators can
be removed by expressing Eq. (A4) in terms of the continuous
differential increments dBt and dB

†
t of Eq. (A5):

∫ t+dt

t

ds b(s) �→ dBt and
∫ t+dt

t

ds b†(s) �→ dB
†
t . (A6)

These are the quantum, noncommuting analogs of the classical
Wiener process and are referred to generically as quantum
noise increments. Now Eq. (A4) can be recast in differential
form:

dUt = √
γ (σ− dB

†
t − σ+ dBt ) ◦ Ut . (A7)

Although technically an integral equation, this is referred to as
a QSDE.

In contrast to ordinary differential equations, white-noise
QSDEs have equivalent but nonidentical representations.
Equation (A7) is an example of a Stratonovich QSDE,

identified by the notation dBt ◦ Ut , which indicates the
ordering of dBt and Ut is important, that is, that they do
not commute. Stratonovich QSDEs arise as the natural form
for the quantum white-noise limit of physical processes [86]
and follow the rules of standard calculus. More amenable
for our purposes is the Itō form of a white-noise QSDE.
The quantum Itō integral is defined such that the integrand
and the operator differential, dBt , act on independent time
intervals and therefore commute, which is useful for taking
expectations. Thus, we work exclusively with QSDEs in Itō
form, denoted simply by dBtUt . However, the Itō form brings
the burden of its own calculus, which requires that differentials
be taken to second order.

Performing the conversion from Stratonovich to Itō form
[46,86] on Eq. (A7) and renormalizing a trivial energy shift,
we obtain the QSDE for the unitary time evolution operator

dUt = (√
γ σ−dB

†
t − √

γ σ+dBt − 1
2γ σ+σ−dt

)
Ut . (A8)

The first two terms represent the atomic dipole coupling to the
quantum noise increments, and the third deterministic term is
an artifact of the transformation from Stratonovich to Itō form,
known as the Itō correction.

2. General stochastic time evolution operator

The quantum white-noise limit can be extended to include
coupling of a system operator S̃ to the number of photons in
the field at time t . This interaction Hamiltonian is

Hnum(t) = S̃ b†(t)b(t). (A9)

From this Hamiltonian we identify a third fundamental
quantum noise which can drive the system in the white-noise
limit,

�t =
∫ t

0
ds b†(s)b(s), (A10)

which has increments

∫ t+dt

t

ds b†(s)b(s) �→ d�t . (A11)

Including the possibility of an external system Hamiltonian
H , the most general QSDE for the time evolution operator in
one mode has the form [78]

dUt = {−(
1
2L†L + iH

)
dt − L†SdBt

+LdB
†
t + (S − I )d�t

}
Ut . (A12)

This equation describes the coupling of system operators L,
L†, and S to the quantum noises dB

†
t , dBt , d�t , and I is the

identity operator. The system operator S can be found from
the bare Hamiltonian coupling of S̃ in Eq. (A9) with rules
described in Ref. [86].
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3. Itō Langevin equations

The time evolution operator in Eq. (A12) allows us to
calculate the equation of motion for an operator O. Since
we work with Itō QSDEs, this requires taking differentials to
second order,

d(U †
t OUt ) = dU

†
t OUt + U

†
t OdUt + dU

†
t OdUt . (A13)

Note that in the literature one may encounter the “quantum
flow” notation where an operator O at time t is given in the
Heisenberg picture by jt (O) ≡ U

†
t OUt . When manipulating

QSDEs such as Eq. (A13) one encounters products of the
quantum noise increments. Under vacuum expectation the
rules for these products are given by the vacuum Itō table

× dBt d�t dB
†
t dt

dBt 0 dBt dt 0
d�t 0 d�t dB

†
t 0

dB
†
t 0 0 0 0

dt 0 0 0 0

, (A14)

where we take the row and multiply by the column (row ×
column) to obtain the resulting product under vacuum.

With Eqs. (A13) and (A14) we can write the Itō QSDE for
an operator X ⊗ Ifield,

dX = (i[H,X] + L†[L]X)dt + [L†,X]SdBt

+ S†[X,L]dB
†
t + (S†XS − X)d�t , (A15)

referred to as an Itō Langevin equation. Further, we can write
down the Itō Langevin equation for output field quantities,
such as the quantum noise Bout

t ,

dBout
t = Ldt + SdBt , (A16)

and photon number �out
t ,

d�out
t = L†Ldt + L†SdBt + S†LdBt + d�t . (A17)

Also, note that S†S = 1.

4. Multimode time evolution operator

The evolution of a system driven by multiple quantum
noises is given by the QSDE for the multimode time evolution
operator,

dUt = {
(Sij − δij I )d�ij − L

†
i Sij dBj + LidB

†
i

− (
1
2L

†
i Li + iH

)
dt

}
Ut, (A18)

where Li is the coupling between the ith mode and the system,
H is an external Hamiltonian, and the scattering operator Sij

is constrained by SikS
†
jk = δij I and S

†
kiSkj = δij I [see ([77],

Appendix A) and ([78], Sec. IV) and the references therein for
more details on multimode QSDEs]. Note that the subscript
t on the quantum noises has been dropped for notational
compactness in favor of the mode labels {i,j}. The multimode

quantum noise increments are defined as∫ t+dt

t

ds bi(s) �→ dBi and
∫ t+dt

t

ds b
†
i (s)bj (s) �→ d�ij .

(A19)

APPENDIX B: QUANTUM STOCHASTIC CALCULUS FOR
FOCK STATES

1. Action of the quantum noise increments on Fock states

Recall the single-photon state is defined by |1ξ 〉 =∫
ds ξ (s)b†(s)|0〉 ≡ B†(ξ )|0〉. The quantum noise increment

dBt acting on this state gives

dBt |1ξ 〉 =
∫ t+dt

t

dr b(r)
∫

ds ξ (s)b†(s)|0〉

=
∫ t+dt

t

∫
drds

(
b†(s)b(r) + δ(s − r)

)
ξ (s)|0〉

=
∫ t+dt

t

ds ξ (s)|0〉 = dt ξ (t)|0〉. (B1)

Some of this algebraic manipulation can be simplified by using
the Gardiner-Collett heuristic dBt ≡ dt b(t) [46]. Using this
and the commutation relation [b(t),B†(ξ )] = ξ (t) this pro-
cedure is extended incrementally to higher photon numbers.
Through induction we obtain

dBt |nξ 〉 = dt
√

nξ (t)|n − 1ξ 〉. (B2)

By the same procedure we find the action of d�t ,

d�t |nξ 〉 = dB
†
t

√
nξ (t)|n − 1ξ 〉. (B3)

2. Fock and N-photon Itō tables

The vacuum Itō table [Eq. (A14)] can require modification
for nonvacuum fields, such as thermal, coherent, and squeezed
fields [46,71]. Here we show, surprisingly, that the Itō tables for
continuous-mode Fock states and N -photon states are identical
to the vacuum Itō table. This property was derived by the
authors of Refs. [53,54] for a single photon, although never
explicitly written in those papers [91].

Consider the expectation of dBt dB
†
t for a single-photon

Fock state. Normally ordering and simplifying gives

〈1ξ |dBtdB
†
t |1ξ 〉 = 〈1ξ |(dB

†
t dBt + dt)|1ξ 〉 = dt. (B4)

Alone, Eq. (B4) is not enough to specify the Itō rule rule for
for dBt dB

†
t because the action of the noise increments on

Fock states couple different photon numbers, as in Eq. (B2).
Consequently, we must consider cross expectations. Only after
showing that 〈1ξ |dBtdB

†
t |1ξ 〉, 〈0|dBtdB

†
t |1ξ 〉, 〈1ξ |dBtdB

†
t |0〉,

and 〈0|dBtdB
†
t |0〉 are proportional to 0 or dt can we say that

dBt dB
†
t = dt for the single-photon Itō table.

Now consider Fock states. One must show that
〈mξ |dBtdB

†
t |nξ 〉 = δm,ndt for all m and n. Thankfully, it

is straightforward to show that after normally ordering the
operators—dBt ,dB

†
t ,B(ξ ), and B†(ξ )—the only surviving

term is proportional to dt (terms proportional to dt2 are set to
zero). Repeating this prescription for every product of the
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quantum noise increments in Eq. (B4), one can show the
equivalence of the Fock and vacuum Itō tables.

The Itō table for an N -photon state with an arbitrary
spectral distribution function (within the quasimonochromatic
approximation) is also identical to the vacuum table. This
follows from the occupation number representation, presented
in Appendix C, which relies on a decomposition in a basis of
orthogonal Fock states, each of which respects its own Fock
Itō table.

APPENDIX C: OCCUPATION NUMBER
REPRESENTATION FOR GENERAL N-PHOTON STATES

Here we review the occupation number representation of a
general N -photon state presented in Ref. [11]. In 1D and in
a single mode, a general quasimonochromatic N -photon state
can be written as

|ψN 〉 =
∫

dω1 · · · dωN ψ̃(ω1, . . . ,ωN )

× b†(ω1) · · · b†(ωN )|0〉 . (C1)

In the time domain, this becomes

|ψN 〉 =
∫

dt1 · · · dtN ψ(t1, . . . ,tN )b†(t1) · · · b†(tN )|0〉, (C2)

where the temporal envelope ψ(t1, . . . ,tN ) is the Fourier
transform of ψ̃(ω1, . . . ,ωN ) [12]. The temporal envelope is
in general neither factorable nor symmetric in tk . It can
be expanded in a set of complex-valued, orthonormal basis
functions that satisfy

∫
dt ξ ∗

i (t)ξj (t) = δi,j ,

ψ(t1, . . . ,tN ) =
∑

i1,...,iN

λ′
i1,...,iN

ξi1 (t1) · · · ξiN (tN ). (C3)

Each subscript runs over the labels for the basis functions, that
is, ik ∈ {1,2, . . .}. The expansion coefficients are given by the
projection of the temporal envelope onto the basis functions,

λ′
α,β,...,ζ =

∫
dt1 · · · dtN ξ ∗

α (t1) · · · ξ ∗
ζ (tN )ψ(t1, . . . ,tN ). (C4)

Defining a creation operator for a single photon in basis mode
ξα(t) as B†(ξα) = ∫

dt ξα(t)b†(t), and using Eqs. (C2)–(C4),
we write the N -photon state as

|ψN 〉 =
∑

i1,...,iN

λ′
i1,...,iN

B†(ξi1 ) · · · B†(ξiN )|0〉. (C5)

These operators acting on vacuum yield an expression for the
N -photon state in terms of basis Fock states [Eq. (13)] in the
basis functions,

|ψN 〉 =
∑

i1,...,iN

λ′
i1,...,iN

√
n1!n2! · · ·|n1ξ1

〉|n2ξ2
〉 · · · . (C6)

Counting the number of subscripts of λ′ gives the total photon
number N , which can be distributed among the basis Fock
states in Eq. (C6). The number of photons nα in a particular
basis function ξα(t) is found by counting the number of indices
of λ′ that are equal to α. For example, since they have three
indices, the coefficients {λ′

i1,i2,i3
} all describe a three-photon

state. The coefficient λ′
1,1,4 refers to the state |2ξ1〉|1ξ4〉, in

which the first and second photons are in ξ1(t) and the third
in ξ4(t). Due to the indistinguishability of photons, λ′

1,4,1 and

λ′
4,1,1 are also coefficients for the state |2ξ1〉|1ξ4〉, although they

need not have the same value. In general, λ′
α,...,ζ is not invariant

under permutation of its indices. The degree to which index
permutations are equal specifies the level of symmetry in the
temporal envelope ψ(t1, . . . ,tN ) [74,92].

Following [11], we define a new set of coefficients,

λi1,...,iN =
√

n1!n2! · · ·
∑
σ∈SN

λ′
σ (i1,...,iN ), (C7)

that sum over all permutations σ (in the symmetric group SN )
of the indices of coefficients of the type in Eq. (C4) so that
no two coefficients in Eq. (C7) refer to the same basis Fock
state. The N -photon state of Eq. (C2), written in terms of these
coefficients, is

|ψN 〉 =
∑

i1�···�iN

λi1,...,iN |n1ξ1
〉|n2ξ2

〉 · · · . (C8)

Now it is clear that these algebraic acrobatics have culminated
in a set of expansion coefficients that are precisely probability
amplitudes,

∑
i1�···�iN

|λi1,...,iN |2 = 1, (C9)

and Eq. (C8) is the occupation number representation of the
general N -photon state in Eq. (C2).

APPENDIX D: MULTIMODE EXPECTATIONS

In this section we extend our formalism to a countable
number of modes. First we define a multimode Fock state in
T modes:

∣∣N1
α ; . . . ; NT

ω

〉 = 1√
N1! · · · NT !

B†(α)N
1 · · · B†(ω)N

T |0〉,
(D1)

where there are N1 photons in the first mode with the envelope
α(t) and

∫ ∞
0 ds |α(s)|2 = 1.

To derive multimode master equations we must introduce
notation, different from the main text, for representing asym-
metric expectations. We define the multimode asymmetric
expectation to be

En1 ;...; nT

m1;...; mT [X(t)]

= Trsys+field
[(

ρsys ⊗ ∣∣m1
α

〉〈
n1

α

∣∣⊗· · · ⊗ ∣∣mT
ω

〉〈
nT

ω

∣∣)†X(t)
]

≡ Trsys
[{

�
n1 ;...; nT

m1;...;mT (t)
}†

X
]
, (D2)

where the superscripts n1 and m1 on E[·] (and �) refer to
“reference states” in mode one. Note that Eq. (D2) also defines
the generalized multimode density operators �

n1 ;...; nT

m1;...;mT (t).
The final ingredient needed to derive the multimode mode

master equation is the action of the quantum noise increments
on Fock states:

dBj

∣∣n1
α; . . . ; nT

ω

〉 = dt
√

njθ (t)
∣∣n1

α; . . . ; n − 1j

θ ; . . . ; nT
ω

〉
,

d�i,j

∣∣n1
α; . . . ; nT

ω

〉 = dB
†
i

√
njθ (t)

∣∣n1
α; . . . ; n − 1j

θ ; . . . ; nT
ω

〉
.
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[39] M. Stobińska, G. Alber, and G. Leuchs, Europhys. Lett. 86,

14007 (2009).
[40] Y. Wang, J. Minár, L. Sheridan, and V. Scarani, Phys. Rev. A

83, 063842 (2011).
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