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Dark solitons and vortices in PT -symmetric nonlinear media: From spontaneous symmetry
breaking to nonlinear PT phase transitions
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We consider nonlinear analogs of parity-time- (PT -) symmetric linear systems exhibiting defocusing
nonlinearities. We study the ground state and odd excited states (dark solitons and vortices) of the system and
report the following remarkable features. For relatively weak values of the parameter ε controlling the strength of
the PT -symmetric potential, excited states undergo (analytically tractable) spontaneous symmetry breaking; as ε

is further increased, the ground state and first excited state, as well as branches of higher multisoliton (multivortex)
states, collide in pairs and disappear in blue-sky bifurcations, in a way which is strongly reminiscent of the linear
PT phase transition—thus termed the nonlinear PT phase transition. Past this critical point, initialization of,
e.g., the former ground state, leads to spontaneously emerging solitons and vortices.
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I. INTRODUCTION

Over the past decade, and since its original inception [1,2],
the theme of PT -symmetric Hamiltonians has gained con-
siderable momentum in the physics and applied mathematics
communities. Such systems, respecting both parity (P) and
time-reversal (T ) symmetries—still exhibiting real spectra
while non-Hermitian—provided an intriguing alternative to
standard Hermitian quantum mechanics. Note that for a stan-
dard Schrödinger-type Hamiltonian with a generally complex
potential U , the PT symmetry dictates that the potential
satisfies the condition U (x) = U ∗(−x) [where (·)∗ stands for
complex conjugation].

Despite the theoretical appeal of such models, it was only
recently shown [3] that optics could be an ideal playground for
the physical or experimental realization of systems featuring
the PT symmetry. However, this also added another element
in the interplay, namely, nonlinearity. In that context, the con-
siderations of Ref. [3] extended from bright and gap solitons
to linear (Floquet-Bloch) eigenmodes in periodic potentials,
examining how these coherent structures are affected by
the genuinely complex, yet PT -symmetric potentials. More
recently, experimental results were reported both in nonlinear
optical systems [4,5] and electronic analogs thereof [6]. These,
in turn, have triggered a wide range of theoretical studies on
nonlinear lattices with either linear [7–15] or nonlinear [16–18]
PT -symmetric potentials and, more recently, on harmonic
PT -symmetric potentials [19].

While the above volume of work has examined numerous
features extending from bright solitons to defect modes, and
from gap solitons to PT lattices, the consideration of defo-
cusing nonlinearities, and especially of dark solitons, has been
extremely limited (see, e.g., Ref. [20]). Little attention (and
again chiefly in the focusing nonlinearity case [3]) has also
been paid to PT -symmetric systems in higher-dimensional
settings and the corresponding interplay with nonlinear states
such as vortices.

In the present work, we study systems with PT -symmetric
Hamiltonians exhibiting defocusing nonlinearities and focus

on the existence, stability, and dynamical properties of the
ground state and excited states, i.e., dark solitons and vortices.
Our main findings for a prototypical PT -symmetric potential,
which is harmonic in its real part and has a localized
imaginary part (parametrized by an amplitude parameter ε),
are summarized as follows. (1) Dark solitons are shown to be
subject to spontaneous symmetry-breaking (SSB) instabilities
for small ε; (2) for higher values of ε, the ground state
and the first excited state (single dark soliton), as well as
pairwise—e.g., 2nd and 3rd, 4th and 5th, etc.—higher excited
states (respective multiple dark soliton states) are subject to a
nonlinear analog of the PT phase transition, colliding and
disappearing in a set of blue-sky bifurcations; (3) beyond
this critical point, the system acts as a soliton generator,
spontaneously emitting dark multisoliton structures; (4) all
of these features have direct counterparts for vortices in
two-dimensional (2D) settings, illustrating the generic nature
of these findings.

The paper is organized as follows. In Sec. II we introduce
the model and study its one-dimensional (1D) version. In
the same section, analytical and numerical results for the
statics and dynamics of the ground state and dark solitons
are presented; we also briefly touch upon the potential effects
of noise in the gain profile. In Sec. III, we discuss nonlinear
PT phase transitions occurring in the 1D setting and study the
dynamics of the system beyond the relevant critical point. In
Sec. IV, we generalize our findings in the 2D setting, studying
vortex states and their nonlinear PT phase transitions. Finally,
in Sec. V, we present a summary of our results.

II. MODEL, GROUND STATE, AND DARK SOLITONS

Our model, motivated by the above nonlinear optical con-
siderations [but also by ones pertinent to nonlinear phenomena
in Bose-Einstein condensates (BEC’s) [21]], will be, for the
1D setting, as follows:

i∂tu = − 1
2∂2

xu + |u|2u + [V (x) + iW (x)]u, (1)
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where u is the complex electric field envelope (or the macro-
scopic wave function in BEC’s), t denotes the propagation
distance (or time in BEC’s), and x is the transverse direction.
For a PT -symmetric Hamiltonian, the real and imaginary
parts of the potential must satisfy V (x) = V (−x) and W (x) =
−W (−x). Below we focus on the case of a real parabolic
potential, of strength �,

V (x) = 1
2�2x2,

modeling the transverse distribution of the refractive index (or
the external trap in BEC’s), while the imaginary part W (x) is
considered to be an odd, localized function of spatial width
� �−1. As a prototypical example, we will consider

W (x) = εxe−x2/2. (2)

A generalization of this model in two dimensions will be
studied in Sec. IV.

Here, it is important to notice that the evolution of the power
(number of atoms in BEC’s), N = ∫ |u|2dx, is governed by
the equation

dN/dt = 2
∫

|u|2W (x)dx. (3)

Thus, since W (x) is odd, if |u|2 is even then N is conserved
(dN/dt = 0). Below, we show that this is the case for the
stationary states of the system that we will consider here, i.e.,
the ground state and excited states (dark solitons in 1D and
vortices in 2D).

A. Ground state

We first analyze the most fundamental state, namely, the
ground state of the system, shown in Fig. 1. We seek stationary
solutions of Eq. (1) in the form u = ub(x) exp(−iμt), where
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FIG. 1. (Color online) Top panels: Density (left) and phase
(right) of the numerically obtained TF background [solid (blue) line]
compared to the prediction of Eqs. (7) [dashed (orange) line]; the
inset shows the characteristic density dip induced by W (x) at the
origin. Bottom panel: Contour plot showing the evolution of the
density |u(x,t)|2 with an initial condition u(x,0) = ub(x). Parameter
values are μ = 3, � = 0.1, and ε = 0.4. All depicted quantities are
dimensionless.

μ is the propagation constant (or the chemical potential in
BEC’s), while the background field ub obeys the equation

− 1
2∂2

xub + |ub|2ub + [V (x) + iW (x)]ub − μub = 0. (4)

For a sufficiently small imaginary potential, W (x) = εW̃ (x)
[with max{|W̃ (x)|} = O(1)], where ε � 1 [22], and when
the inverse width �−1 of V (x) is sufficiently large, � ∼ ε,
we may find—in the Thomas-Fermi (TF) limit (f ′′ ≈ 0)—an
approximate solution of Eq. (1). This is of the form

ub = [
√

μ + f (x)] exp[iφ(x)], (5)

where the amplitude and phase f (x) and φ(x) [considered to
be small, of order O(ε2) and O(ε), respectively, near the trap
center] are given by

f (x) = max

{
− 1

2
√

μ

(
V + 2W2) , − √

μ

}
, (6)

φ(x) = 2
∫

W dx, (7)

where W = ∫
Wdx (note that above integrals are indefinite

ones). Contrary to the conservative case (ε = 0) [21], this
TF background is characterized by a density dip located at
the center (x = 0) and a nontrivial phase distribution. Both
features are shown in the top panels of Fig. 1, where the
analytical result is compared with the numerical one, which
was obtained by means of a fixed-point algorithm (Newton’s
method). It is observed that the agreement between the two
is excellent. Furthermore, a linear stability—Bogoliubov–de
Gennes (BdG)—analysis (see, e.g., Ref. [23]) shows that the
background ub(x) is stable against small perturbations.

The stability of the analytically found ground state solution
has also been tested by means of direct numerical integration
of Eq. (1) using as an initial condition Eq. (5), and it has
been confirmed that it remains stable for long times, as shown
in the bottom panel of Fig. 1. Note that this occurs even for
relatively large ε (e.g., for ε = 0.4 used in the figure). As is
observed, the ground state is practically stationary: it evolves
in time only for a small initial time interval, during which the
tails of the analytical solution slowly approach the ones of
the exact ground state solution. This is expected because the
spatial structure of the tails is different in the numerical and
approximate solutions—due to the cutoff structure of the latter
that becomes regularized—see, e.g., Ch. 6 of Ref. [24].

Beyond this initial transient (which is chiefly seeded by the
tail and not the core of the wave form), the profile remains
practically identical to the exact numerical solution in a wide
spatial region—more than 90% of the TF radius

√
2μ/�;

in fact, as we will show below, the relative error is of order
of O(10−2) for ε = O(10−1). Thus, indeed, the error is of
O(ε2) and stays bounded within that order of approximation
for extremely long evolution times; this indicates that since
the system under consideration possesses gain-loss, this state
is indeed an attractor. This is, naturally, also the case at the
vicinity of the central region where the imaginary potential
W (x) acts: Our approximate solution for the ground state,
Eqs. (5)–(7), predicts a localized dip in the density, with an
approximation of the order O(ε2).

The validity of the above arguments is clearly illustrated
by the results shown in Fig. 2. In the top panel of this figure,
we show a contour plot illustrating the time evolution of the
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FIG. 2. (Color online) Top panel: Contour plot showing the
evolution of the density difference � [cf. Eq. (8)] as a function of
time. Bottom panel: The maximum value of � at the center. Parameter
values are the same as the ones in Fig. 1. All depicted quantities are
dimensionless.

density difference,

�(x,t) ≡ |unum(x,t)|2 − |u(x,t)|2, (8)

where u(x,t) is the time evolution of the initial condition
u(x,0) = ub(x) (i.e., our approximate analytical solution for
the ground state of the system) and unum(x) is the numerically
found exact solution of the nonlinear Schrödinger (NLS)
Eq. (1). Since our approximation in deriving Eqs. (5)–(7)
is valid up to order O(ε2), the deviation from the “exact”
(numerical) solution should be of order O(ε2). As shown in the
bottom panel of Fig. 2, this is the case indeed: The maximum
of function � stays bounded by a constant prefactor (of order
unity) times ε2.

B. Dark solitons

Apart from the ground state, excited states of the system—
in the form of stationary dark solitons—can also be found
numerically, by means of Newton’s method. In particular, we
decompose the field into the background ub and the soliton
υ(x,t), using the product ansatz,

ψ = ub(x)υ(x,t), (9)

where the function υ(x,t) assumes—in the absence of the
imaginary potential (ε = 0)—a hyperbolic tangent profile
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FIG. 3. (Color online) Top: Density (left) and phase (right) of a
single stationary dark soliton state. Parameters values are μ = 3, � =
0.1, and ε = 0.3. Bottom: Contour plot showing the small-amplitude
oscillation of a dark soliton for ε < ε(1)

cr . The dashed (white) line
depicts the analytical result of Eq. (5). Parameters are as in the top
panel, but for ε = 0.04. All depicted quantities are dimensionless.

[23,25]. Then, continuation in ε results in a dark soliton state,
such as the one shown in the top panels of Fig. 3.

To describe analytically the dynamics of the dark soliton
on top of the TF background, we substitute Eq. (9) into Eq. (1)
and derive the equation

i∂tυ + 1
2∂2

xυ − |ub|2
(|υ|2 − 1

)
υ = −∂x ln(ub)∂xυ. (10)

Next, we substitute expressions (5)–(7) for ub and simplify
the resulting equation for υ(x,t) by Taylor expanding the
right-hand side term as ∂x ln(ub) ≈ 1

2∂xf (1 + f + f 2 + · · ·).
Then, keeping only leading-order terms, up to order O(ε2)
[recall that the function f (x) is of order O(ε2)], and using the
scale transformations t → μt and x → √

μx, we obtain the
following perturbed NLS equation:

i∂tυ + 1
2∂2

xυ + υ(1 − |υ|2) = μ−2P (υ), (11)

where the perturbation P (υ) is given by

P (υ)= (1 − |υ|2)υ(V + 2W2) + υx

(
1
2Vx − 2(W − i)W

)
.

We now apply the perturbation theory for dark solitons
(details can be found in Refs. [23,25]). First we note that in
the absence of the perturbation, P (υ) = 0, Eq. (11) possesses
a dark soliton solution of the form

υ(x,t) = cos ϕ tanh ξ + i sin ϕ, (12)

where ξ ≡ cos ϕ [x − x0(t)], with ϕ and x0 = (sin ϕ)t rep-
resenting the soliton phase angle and center of the soliton,
respectively. Then, in the case P (υ) 
= 0, and in the framework
of the adiabatic approximation, the functional form of the
soliton of Eq. (11) is assumed to be unchanged, but its param-
eters ϕ and x0 become unknown slowly varying functions of
time. We find that the evolution of these parameters, which is
determined by the perturbation-induced change of the energy
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of the system [23,25], is described by the following equations:

dx0

dt
= sin ϕ(t), (13)

dϕ

dt
= −1

2

∂V (x0)

∂x0
−

∫ +∞

−∞
sech4(ξ )[tanh(ξ )W2 + WW]dx,

(14)

where we have assumed almost black solitons, with sufficiently
small phase angles. This way, we can combine Eqs. (13)
and (14) and derive, for a given W (x), an equation of motion
for the soliton center x0. Hereafter, we use a Gaussian-shaped
imaginary potential of the form (2). Note that other choices,
e.g., W (x) = ε sech2(x) tanh(x), have led to similar results. To
examine the stability of the equilibrium at x0 = 0, we Taylor
expand Eq. (14), obtaining to leading order

d2x0

dt2
= −ω2

osc x0, ω2
osc ≈

(
�√

2

)2

− 6

5
ε2. (15)

Equation (15) implies that if the amplitude ε of W (x) is less
than a critical value, ε(1)

cr = √
5/12 �, then the soliton performs

oscillations in the effective potential with frequency ωosc. Such
a case is demonstrated in the bottom panel of Fig. 3, where
we show a dark soliton oscillating around the trap center for
ε = 0.04 < ε(1)

cr . The numerically found trajectory, obtained
by direct numerical integration of Eq. (1), is compared with
the analytical result of Eq. (15) [dashed (white) line]; as is
observed, the agreement between the two is excellent.

On the other hand, Eq. (15) dictates that if ε > ε(1)
cr then

the soliton will become unstable. The above prediction has
been confirmed numerically, both by means of a BdG analysis
and by employing direct simulations. In the framework of the
latter, the stability of the dark soliton is studied by considering
the anomalous mode eigenfrequency ωα (which is associated
with the dark soliton motion [23,26]). If the imaginary part
of this eigenfrequency is zero (nonzero) then the soliton is
stable (unstable). We have found that this eigenfrequency
is real for ε < ε(1)

cr and, in this case, ωα coincides with the
analytically found oscillation frequency ωosc. On the other
hand, for values ε > ε(1)

cr , the anomalous mode eigenfrequency
ωα becomes imaginary, thus signaling the onset of the
spontaneous symmetry-breaking (SSB) instability of the dark
soliton, which displaces the dark soliton from the trap center.
The detailed dependence of ωα on the amplitude ε of the
imaginary potential W , as found by the BdG analysis, is
illustrated in Fig. 4. It is observed that the anomalous mode
ωα initially moves toward the origin, and past the critical point
ε(1)

cr (cf. thin vertical line), becomes imaginary, manifesting
the soliton’s exponential instability. Importantly, as shown
in Fig. 4, for small ε the agreement between the analytical
prediction of Eq. (15) [dashed (black) line] and the BdG
numerical result [lowest solid (orange) line] is very good.

C. Effect of noise-induced perturbations

Let us now consider an experimentally relevant situation,
where the (localized) gain which acts on the system is
associated with the presence of noise. This is important in
order to ensure the robustness of our results presented above
in realistic cases where PT symmetry is not strictly enforced.
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FIG. 4. (Color online) The linear spectrum, as obtained numeri-
cally by BdG analysis, of the single dark-soliton branch for � = 0.1
and μ = 3: Top (bottom) panel shows the real (imaginary) part of the
lowest eigenfrequencies ω as a function of the amplitude ε. The lowest
solid (orange) line in the top panel and the upper solid (orange) curve
in the bottom panel depict, respectively, the real and imaginary parts of
the anomalous mode eigenfrequency ωα . The dashed (black) lines in
both panels indicate the analytical result of Eq. (15). The thin vertical
line shows the point ε(1)

cr , where the anomalous mode eigenfrequency
becomes imaginary. All depicted quantities are dimensionless.

In such a case, an important question is if and how the
noise-induced perturbation affects the stability and dynamics
of the ground state and the dark soliton. To address this
question, we assume that—in the simplest approximation—the
gain side of the potential W (x) (for x > 0) now becomes
W (x)[1 + δ n(x)]; here, n(x) is a uniformly distributed noise
of amplitude δ. Thus, generally, one expects from Eq. (3)
that since the noise n(x) is not parity symmetric, dN/dt 
= 0,
i.e., for any time instant t , the system will either grow
(dN/dt > 0) or decay (dN/dt < 0). As a result, stationary
states (such as the TF background ground state or a single- or
multiple-dark-soliton state) cannot generically exist, at least
in the case of relatively large noise amplitude.

To investigate the significance of this effect of noise,
we have numerically integrated Eq. (1) with prototypical
initial conditions of relevance to our study including the TF
background and the dark soliton, and have let the system to
evolve in the presence of noise perturbations. The results of
our simulations can be summarized in the examples shown
in Fig. 5, where contour plots showing the evolution of the
density of the TF background (top panels) and a single dark
soliton (bottom panels) are given. It is observed that if the noise
amplitude δ is sufficiently small (the value δ = 0.1 was used
in the left panels of the figure) then the dynamics is practically
unaffected by the effect of noise (in fact, the effect of noise
can be observed for larger values of δ, as is explained below).
Note that in the case of the dark soliton, the noise induces
the soliton to perform small-amplitude oscillations (cf. inset
in the bottom left panel of Fig. 5), which can be very well
described by Eq. (15). On the other hand, if the noise is strong
enough (as, e.g., with δ = 1 used in the right panels), then the
ground state either grows or decays, depending on the initial
sign of dN/dt (which depends, in turn, on the particular noise
realization), with an average growth rate determined by the
parameter δ. Notice that in this case of large-amplitude noise,
the dark soliton becomes thermodynamically unstable and is
displaced from the center, performing oscillations of growing
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FIG. 5. (Color online) Contour plots, showing the evolution of the
density when noise is added to Eq. (1), on the gain side of the imag-
inary potential (x > 0). Top: For a relatively small-amplitude noise,
δ = 0.1, the TF background evolves practically unaffected (left),
while for a larger noise, δ = 1, the background grows (right). In both
top panels ε = 0.4. Bottom: A dark soliton performs small-amplitude
oscillations (see inset) after being perturbed by a small-amplitude
noise of δ = 0.1 (left), while a dark soliton is oscillating with a grow-
ing amplitude for a larger-amplitude noise, δ = 1 (right). The ampli-
tude of the imaginary potential is ε = 0.04, for both panels, where in
the absence of noise the soliton is stable [cf. Fig. (4)]. Other parameter
values are μ = 3, � = 0.1. All depicted quantities are dimensionless.

amplitude. The approximate evolution equation for the dark
soliton, Eq. (15), is not valid here, since the noise term becomes
of the same order ε as the rest of the perturbation and needs to
be explicitly accounted for in the antidamped dynamics of the
dark soliton.

Overall, these results support that under weak noise pertur-
bations, the phenomenology presented above (and below) will
persist. Yet, for strong random perturbations, the phenomenol-
ogy changes considerably and should be considered separately
in further detail.

III. NONLINEAR PT PHASE TRANSITIONS

Let us now return to the results of the BdG analysis
presented in the previous section and discuss in more detail
what happens beyond the SSB instability of the single dark
soliton state. As shown in Fig. 4, for values of ε > ε(1)

cr the
unstable imaginary eigenvalue makes a maximal excursion
along the imaginary line and returns to the origin at a second
critical point, ε(2)

cr = 0.62, finally colliding with it. The branch
of single soliton solutions disappears past this critical point.
To better understand how the branch ceases to exist, we first
observe (see top panel of Fig. 3) that the density profile
of the soliton becomes increasingly shallower (i.e., more
“grey”) as ε grows and the second critical point is approached.
This is due to the development of an increasingly strong
even imaginary part of the solution. Furthermore, the stable
background (ground state) solution ub(x) [cf. Eqs. (5)–(7) and
top panel of Fig. 1] develops an odd imaginary part resembling
a (progressively darker) grey soliton. Finally, at ε = ε(2)

cr , the
profiles of these modes become identical and disappear in a
blue-sky bifurcation through their collision. This is shown in
Fig. 6, where the power N is shown as a function of ε. The top
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FIG. 6. (Color online) The power N as function of the strength ε

of the imaginary potential, depicting the full bifurcation diagram for
the ground state and excited states in 1D. The diagram encompasses
the pairwise blue-sky bifurcations/disappearances of the nonlinear
states, namely the ground state with the 1st excited state (single
dark soliton), the 2nd with the 3rd excited state (two- and three-dark
solitons), the 4th with the 5th, and so on. Solid (dashed) lines indicate
dynamically stable (unstable) branches. Here, μ = 3 and � = 0.1.
All depicted quantities are dimensionless.

solid (blue) branch shows the stable ground state, ub, which
ultimately collides with the one soliton (first excited) state at
ε ≈ 0.62 (for μ = 3 and � = 0.1).

Importantly, we have confirmed that the above description
holds also for higher excited states (multiple dark soliton
solutions), as shown in Fig. 6: Each pair of the higher excited
states (2nd with 3rd, 4th with 5th, etc.) also disappears in a
blue-sky bifurcation. A general remark is that higher excited
states bifurcate for larger values of ε. Remarkably, this can
be thought of as a nonlinear analog of the PT transition, in
analogy with the pairwise collisions in Ref. [1] (see, e.g., Fig. 1
of that reference) for the linear setting [27].

A relevant and interesting question concerns the dynamics
of the nonlinear states when subject to these (SSB and blue-
sky) bifurcations. To answer this, we numerically integrated
Eq. (1), and the relevant results are shown in Fig. 7. In the top
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FIG. 7. (Color online) Bifurcation-induced dynamics. Top pan-
els: Manifestations of the SSB destabilization scenarios for an
unstable dark soliton past ε = ε(1)

cr . Bottom panels: Soliton generator,
spontaneously leading to two or four solitons from the ground state
used for ε > ε(2)

cr . The parameters are μ = 3 and � = 0.1 and ε = 0.3
(top row), ε = 0.64 (bottom left), and ε = 0.7 (bottom right). All
depicted quantities are dimensionless.
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panels, we illustrate the dynamics of the dark soliton upon its
destabilization at ε = ε(1)

cr . When the SSB manifests itself, the
soliton is either spontaneously ejected toward the lossy side
(and typically found to localize therein, while the background
grows in amplitude and widens) or moves to the gain side,
executing oscillations thereafter.

On the other hand, past ε = ε(2)
cr , using as an initial condition

the form of the TF background (bottom panels of Fig. 7),
we have found that a dark soliton train is spontaneously
formed, with an increasingly larger number of solitons as
larger values of ε are used. This can be intuitively connected
to the observation of Fig. 7 that higher excited multisoliton
states persist for larger ε than lower ones. Again, it is typically
observed that the solitons are nucleated and stay in the vicinity
of the global minimum of W (x), which corresponds to the
“lossy” side of the imaginary potential.

IV. TWO-DIMENSIONAL GENERALIZATIONS

Finally, we consider the case of a 2D PT -symmetric
potential with a real parabolic part,

V (x,y) = 1
2�2(x2 + y2),

and an odd [W (−x, − y) = −W (x,y)] imaginary part,

W (x,y) = ε(x + y)e−(x2+y2)/4.

The bifurcation of the nonlinear structures emerging in 2D
follows a similar, but also more complex, pattern than in the
corresponding 1D setting. Figure 8 depicts the full bifurcation
scenario for solutions bearing no vortices (the TF background
cloud), one to six vortices, and the dark soliton stripe. As in
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FIG. 8. (Color online) The 2D generalization. (a) Bifurcation
diagram for the 2D stationary nonlinear (vortex and DS stripe)
states. Stable (unstable) branches, as per the corresponding BdG
analysis, are depicted with solid (dashed) lines. (b) Series of density
(left) and phase (right) configurations along the branch with even
number of vortices corresponding to the circles in panel (a) (from
top to bottom). (c) Same as (b) for the branch starting with one
vortex and connecting with three vortices corresponding to the
squares in panel (a) (from top to bottom). (d) Same as (b) for the
branch starting with three symmetric vortices and ending with four
vortices corresponding to the triangles in panel (a) (from top to
bottom). Parameter values are μ = 2 and � = 0.2. The field of view
for the configurations is [−10.5,10.5] × [−10.5,10.5]. All depicted
quantities are dimensionless.

1D, the TF background is stable in all its domain of existence
and collides, in a blue-sky bifurcation, for a large enough
value of ε, with an excited state. However, in contrast to the
1D case where this collision happens with the first excited
state, in 2D the collision occurs with the second excited state,
due to the absence of net topological charge in such a vortex
dipole (see top-right red curve) bearing two opposite charge
vortices emerging from the central dip of the TF background.
At this critical point ε = ε(2)

cr the dipole branch is unstable,
having been destabilized through an SSB bifurcation at an
ε = ε(1)

cr > 0 value (below which for ε > 0 the dipole is
stable—see portion of red solid line in the figure). As this
branch is followed (from top to bottom in the figure), a series
of bifurcations occur where the existing vortices are drawn
to the periphery of the cloud, a dip in the center deepens
leading eventually to a new vortex pair emerging (i.e., a higher
excited state). In this manner, the branches with even number
of vortices are all connected. As more and more vortex pairs
emerge, the cloud “saturates” and can no longer fit in new
vortex pairs, finally colliding with a dark soliton stripe (see
lower blue branch in the figure). This overall bifurcating
structure of even vortex numbers—with a ε → −ε symmetry
where the solutions are just flipped by (x,y) → (−x, − y)—is
depicted, with density and phase profiles, in the series of panels
of Fig. 8(b).

As for the bifurcation scenario of odd number of vortices,
the first excited state bearing a single vortex at the origin
(for ε = 0) is stable for small values of ε, while it again
sustains an SSB bifurcation for larger ε. As ε increases the
vortex moves toward the periphery of the cloud and a dip at
the center of the cloud deepens until a vortex pair emerges
from it. This scenario connects the one-vortex branch with the
asymmetric three-vortex (+ − + vortex tripole) branch, as it is
depicted with the top (magenta and green) lines in panel 8(a)
and the series of snapshots in panels 8(c). As it is evident
from the figure, the asymmetric three-vortex branch eventually
connects with the symmetric one for values of ε → 0. A
similar bifurcation occurs with the symmetric three-vortex
branch, which becomes asymmetric with a deepening dip at
the center where a vortex pair emerges (at the same time that
a vortex is lost at the periphery), connecting in this way with
the four-vortex branch [see series of snapshots in panels 8(d)].

As for the dynamics of unstable steady states, we have
observed—in analogy with the 1D case—that (a) a single
vortex tends to migrate toward the lossy side of the potential,
while the remaining vortices (if present) perform almost
circular orbits at the periphery of the cloud where they are
eventually absorbed; and (b) past ε = ε(2)

cr , using as an initial
condition the form of the TF background, also produces the
spontaneous formation of an increasing number of vortices
for larger values of ε (namely, a “vortex generator”). It is
worth mentioning that the precise structure of the bifurcation
diagram depends of the values of the propagation constant
μ and the trap strength �. For weaker � and/or larger μ the
extent of the TF background will be larger allowing for a longer
bifurcating chain of higher-order vortex states. Nonetheless,
the displayed SSB instabilities and phenomenology and the
nonlinear PT transition involving the cascade of blue-sky
bifurcations (notice that in the 2D case the order is reversed and
the largest ε bifurcation is that involving the TF and the dipole
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states) appear to be universal in confining PT -symmetric
potentials.

V. CONCLUSIONS

In the present work, we have developed some fundamental
insights stemming from the interplay of defocusing nonlin-
earity and PT -symmetric confining potentials. We identified
both a symmetry-breaking bifurcation destabilizing the dark
solitons that leads to nonstationary dynamics, as well as
a nonlinear analog of the PT transition that eventually
terminates both the ground state and the dark soliton branch,
yielding purely gain-loss dynamics within the system. Similar
bifurcation phenomena and dynamics of mobility or of
spontaneous emergence of dynamical patterns forming out
of the destabilization of the nonlinear states were identified in
two-dimensional settings, for vortices.

These investigations, we believe, pave the way for studying
PT -symmetric systems in the context of defocusing nonlin-
earities and of higher dimensional systems, which are some
of the natural extensions of the PT -symmetric literature. A
canonical set of investigations which is still missing concerns

the effects of such potentials in three-dimensional continuum
or higher dimensional lattice contexts, as well as the manipu-
lation of nonlinear states emerging in these systems. Another
relevant possibility arising from our considerations here in
is the study of inexact PT -symmetric nonlinear systems and
their comparison to exact ones, as well as the consideration of
the interplay of the nonlinearity with merely loss (rather than
gain-loss) in the passive-PT nonlinear settings. These themes
will be pursued in future works.
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