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Controllable enhanced dragging of light in ultradispersive media
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We have theoretically demonstrated an enhanced Fizeau effect due to dragging the light that occurs when the
group velocity of light is ultraslow. The proposed experiment can be done in a cell of atomic Rb vapor under
conditions such that the group velocity of light is of the order of a few hundred meters per second. We show
theoretically that higher-order dispersion can influence the Fizeau effect and can be observed experimentally.
It has been shown that the change of phase is sensitive to the motion of the cell with the speed of the order of
10−3 cm/s and for possible displacements as small as 10 Å. The enhanced dragging effect can be applied for
position control, detection of slow mechanical motion, and efficient modulators of light.
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I. INTRODUCTION

The fact that the speed of light in a moving medium differs
from its value in a stationary medium has been known for over
a century [1–3]. In a medium moving with velocity v (see
Fig. 1), the phase velocity of light is given by

u = u0 + vF, (1)

where u0 = c/n is the phase velocity of light with respect to
the medium, n is the index of refraction of the medium, and
F is the Fresnel drag coefficient. Usually, in gases n � 1, the
Fresnel drag coefficient F is negligible.

Quantum coherence effects, such as coherent population
trapping (CPT) [4] and electromagnetically induced trans-
parency (EIT) [5–8], have been the focus of broad research
activity for the last two decades, as they are able to drastically
change the optical properties of media. For example, for EIT
in CW and pulsed regimes [6–10], absorption practically
vanishes. The medium with excited quantum coherence,
phaseonium [5], can be used to make an ultradispersive
prism [11] that has several orders of magnitude higher
angular spectral dispersion. The bending of light has been
also demonstrated using the transverse dragging effect [12].
The corresponding steep dispersion results in the ultraslow
or ultrafast propagation of light pulses [13–17], which can
produce huge optical delays [17] and can be used for drastic
modification of the phase-matching conditions for Brillouin
scattering [18], four-wave mixing [19], controllable switching
between bunching and antibunching [20], storage and retrieval
of pulses [21,22], freezing of a light pulse [23], and ultrahigh
enhancement in absolute and relative rotation sensing using
fast and slow light [24].

In this paper, we study the dragging of light by a gas
medium, and we predict a nonlinear dependence of the Fizeau
effect on the velocity of a cell that can be observed experi-
mentally. The dragging effect in ultradispersive media can be
enhanced and can be controlled by its strong dependence on
the parameters of the driving beam, such as the Rabi frequency
and the detuning. It is shown below that the change of phase is
sensitive to the motion of the cell with a velocity of the order
of 10−3 cm/s and for possible displacements as small as 10 Å.
Applications of the enhanced dragging effect can be found for
efficient modulators of light, position control, and detection of
slow motion.

II. MOVING DIELECTRICS

Consider an electromagnetic wave propagating with wave
number k0 and frequency ω0 in a dielectric medium. The
dispersion relation between k0 and ω0 is given by

k0 = ω0

c
n(ω0), (2)

where n(ω0) is the index of refraction of the medium. Let us
assume the medium moves with velocity v (v � c, c is the
velocity of the light in vacuum) with respect to the laboratory
frame. The wave number and frequency of the wave are k and
ω, respectively, and the transformation from the laboratory to
the frame related to the medium is given by

ω0 = ω − vk, k0 = k − v

c2
ω. (3)

Then, the dispersion relation in the laboratory frame is given
by

k − v

c2
ω = ω − vk

c
n(ω − vk). (4)

Assuming that the velocity is very small, we can use series
with respect kv to the second order as

k − v

c2
ω = ω

c
n(ω) − vk

∂

∂ω

(
ω

c
n(ω)

)
+ v2k2

2c

∂2ωn(ω)

∂ω2
,

(5)

and the phase velocity can be written as

ω

k
= c

n
+ v

(
ng

n
− 1

n2
+ vωV ′

g

2V 2
g

− v

n2Vg

+ v

n3c

)
, (6)

where V ′
g = ∂Vg/∂ω, and F , the Fresnel drag coefficient [2,3]

[see also Eq. (1)], is given by

F = 1 − 1

n2
+ ω

n

∂n(ω)

∂ω
≡ ng

n
− 1

n2
, (7)

where n is the index of refraction of the medium, ng = c/Vg =
n + ω∂n(ω)

∂ω
is the group index, and Vg is the group velocity.

Then, the wave vector is given by

k =
ω
c

(
n + v

c

) + 1
2

2n′+ωn′′
c

v2ω2(n+ v
c

)2

[c+v(n+ωn′)]2

1 + v
c
(n + ωn′)

, (8)
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FIG. 1. Interferometer to measure the Fizeau effect. The light
beam is split into two beams: one goes through a moving medium
and the other through free space. M1, M2, M3, and M4 are the mirrors.
Two beams combined together on mirror M4, and the signal of the
detector depends on the interference between combined beams.

where n′ = ∂n(ω)
∂ω

and n′′ = ∂2n(ω)
∂ω2 , and the phase shift up to the

second order on velocity v is given by

� =
(

k − ω

c
n

)
L � ωL

c

(
2ωn′ + ω2n′′

2

v2

c2
− v

Vg

)
. (9)

III. MODEL

Now, let us consider a dielectric medium consisting of �-
type atoms. A strong field of frequency ωd is the coupling
field, and a weak field of frequency ωp is the probe field. The
probe and coupling fields can be represented as

Ep,d = E0
p,d exp[ikp,dz − iωp,d t], (10)

where E0
p,d is the amplitude of the fields at z = 0.

The interaction Hamiltonian in the rotating-wave approxi-
mation can be written as

H = h̄[�∗
pei�pt |b〉〈a| + �∗ei�d t |c〉〈a| + adj]

where |b〉〈a| and |c〉〈a| are the atomic projection operators,
�p = ℘abE

0
p/h̄ and � = ℘acE

0
d/h̄ are the probe and coupling

Rabi frequencies, �p = ωab − ωp and �d = ωac − ωd are
detunings for probe and coupling laser beams, and ℘ab and
℘ac are the dipole momenta of the transitions. The coupling
field is resonant with the |a〉 → |c〉 transition (�d = 0).

The density matrix equations are given by

∂ρ

∂t
= i

h̄
[ρ,H ] − 1

2
(
ρ + ρ
) , (11)

where 
 is the matrix of relaxation rates for all components
of the density matrix ρ. The temporal and spatial evolution of
fields is determined by the propagation equations,

∂2Ep,d

∂z2
− 1

c2

∂2Ep,d

∂t2
= 4π

c2

∂2Pp,d

∂t2
, (12)

which in a steady-state and slowly varying amplitude approx-
imation can be written as

∂�p

∂z
= −i

2πω

c
Pab,

∂�

∂z
= −i

2πω

c
Pac, (13)

where Pab and Pac are the atomic polarizations at the
corresponding drive and probe transitions. Solving Eq. (11)
in a steady-state approximation, the atomic polarization at the

probe frequency can be found as

Pab = N℘abρab = ε − 1

4π
Ep = −iN℘ab�p


ab + |�|2

cb

, (14)

where 
cb = γcb + i(ωcb − ωp + ωd ) and 
ab = γab +
i(ωab − ωp). The dielectric function is given by

ε = 1 − i
4π |℘ab|2N

h̄


cb


ab
cb + |�|2 , (15)

and the index of refraction is given by

n = 1 − i
ηγr
cb


ab
cb + |�|2 , (16)

where η = 3λ3N
16π2 and γr = 4ω3

ab|℘ab|2/3h̄c3. The Doppler
broadening is important to take into account; it has been taken
into account by averaging the index of refraction over the
velocity distribution [25] (see also the Appendix):

nD =
∫ +∞

−∞
dv f (u)n(ωp,u), (17)

where f (u) is the velocity distribution of the atoms. To
simplify calculations, we take into account the Doppler
broadening by approximating the distribution function f (v)
by a Lorentzian; in this case the integration can be easily done,
and the results are very close to the integration of the Gaussian
distribution (see Refs. [14,25]). The typical real (solid lines)
and imaginary (dashed lines) parts of the index of refraction
are shown in Fig. 2 as a function of the probe frequency
detuning from the frequency of transition. The Rb parameters
are chosen for simulations: �d = 0, � = 3.5 × 105 s−1,
γr = 2 × 107 s−1, γab = γr + �D , γcb = 3 × 103 s−1, and the
density of Rb atoms is 1013 cm−3. Simulations perform as
well without Doppler broadening (�D = 0) as with taking the
Doppler broadening into account (�D = 0.991 × 109 s−1).
Plots shown in Fig. 2(a) correspond to the case without
Doppler broadening, and plots shown in Fig. 2(b) correspond
to when the Doppler broadening is taken into account. For the
phase shift, Eq. (9), the derivatives of the index of refraction
are

n′ = −
ηγr

(
1 − |�|2


2
cb

)
(

ab + |�|2


cb

)2 (18)

and

n′′ = −
2iηγr

(
1 − |�|2


2
cb

)2

(

ab + |�|2


cb

)3 − 2iηγr |�|2

3

cb

(

ab + |�|2


cb

)2 . (19)

IV. DISCUSSION OF THE OBTAINED RESULTS
AND THEIR APPLICATIONS

Let us consider a moving cell filled with a gas of three-level
�-type atoms placed inside the interferometer as shown in
Fig. 1. The dispersion of the medium can be modified and
controlled by the drive field; in particular, the group velocity
of light can be very low, and the phase shift [given by Eq. (9)]
can be very sensitive to the motion of the cell.

In Fig. 3, we plot the phase shift vs the frequency
detuning of the probe field. Figure 3(a) corresponds to the
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FIG. 2. (Color online) Dependence of real (solid line), Re[n(ω) −
1], and imaginary (dashed line), Im[n(ω)], parts of the index
of refraction of the medium (n = Re[n(ω)] + iIm[n(ω)] given by
Eq. (16)) on the probe frequency detuning (in units of s−1) from
the frequency of transition, ωp − ωab. (a) The Doppler broadening
is not taken into account. (b) The Doppler broadening is taken into
account.

case without Doppler broadening taken into account, and
Fig. 3(b) corresponds to the case when the Doppler broadening
is taken into account. The Rb parameters above are used for
simulations, and the velocity of the cell is 10−4 cm/s. One
can see that the phase shift is very sensitive to such small
velocities. The phase shifts vs the Rabi frequency of the drive
field at some detunings of the probe field are shown in Fig. 4.
The dependence of the phase shift vs velocity of the cell is
shown in Fig. 5. One can clearly see that the phase shift can
have a nonlinear dependence on the cell velocity v.

It is the steep dispersion of the medium that makes the phase
shift very sensitive to the velocity. To understand the results, it
is instructive to perform simplified calculations. For this, let us
approximate the dispersion only by the linear part that can be
seen in Fig. 2. In the frame moving together with the cell, the
dispersion relation between wave number k0 and frequency ω0
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FIG. 3. (Color online) Dependence of the phase shift � on the
probe frequency detuning (in units of s−1), ωp − ωab, (a) without and
(b) with taking into account Doppler broadening.

of light is

k0 = ωab

c
+ ω0 − ωab

Vg

= ωab

c
+ δω0

Vg

. (20)

Transforming now wave number k0 and frequency ω0 of light
to wave number k and frequency ω of light in the laboratory
frame,

k = k0 + v

c2
ω0, ω = ω0 + vk0, (21)

we obtain

k = ωab

c
+ δω0

Vg

+ v

c2
ω0 = ωab

c

(
1+v

c

)
+ δω0

(
1

Vg

+ v

c2

)
,

(22)

ω = ωab

(
1 + v

c

)
+ δω0

(
1 + v

Vg

)
, (23)
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FIG. 4. (Color online) Dependence of the phase shift � on the
Rabi frequency (in units of s−1). (a) the Doppler broadening is not
taken into account. (b) The Doppler broadening is taken into account.
The plots are calculated for probe detunings equal to (1) 0 s−1, (2)
3.0 × 103 s−1, and (3) 5.0 × 103 s−1.

and, finally,

k = ωab

c

(
Vg

Vg + v
+ v

c

)
+ ω − ωab

Vg + v

(
1 + vVg

c2

)
, (24)

where one can see the modification of the wave number has a
v over Vg term,

k � ωab

c
− ωab

c

v

Vg

. (25)

Equation (25) leads to a large phase shift of the order

� � −ωab

c

Lv

Vg

(26)

after propagating a distance L inside the cell [note that it
coincides with the linear part of the velocity of Eq. (9)]. For
parameters such as L = 1.0 cm, ωab/c = 7.9 × 104 cm−1, and
Vg = 104 cm/s and assuming the easily detectable minimum
phase to be � � 0.1, the minimum detectable velocity is of the
order of v � 10−3 cm/s. Let us note here that, in principle, the
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FIG. 5. (Color online) Dependence of the phase shift � on the
velocity of the medium for probe detunings equal to (1) 0 s−1, (2)
1.0 × 103 s−1, and (3) −2.0 × 103 s−1.

minimum detectable phase shift is determined by fluctuations
of the optical probe field and is given by the signal-to-noise
ratio [5],

δ�min � 1√〈S/N〉 , (27)

and can be much smaller.
Using a different method of detection, for example, moving

the cell at some frequency (as in Ref. [26]) when the satellites
at the frequency of modulation appear near the probe frequency
(with intensity Ip0) due to phase modulation, the intensities of
the satellites I± are given by

I±
Ip0

=
(

ωabLv

cVg

)2

, (28)

which gives us the same sensitivity to the velocity v =
10−3 cm/s. The frequency of modulation used in the exper-
iment [26] is 104 kHz, and the detectable displacement is of
the order of 10 Å, which is much smaller than the wavelength
of laser radiation used in the experiment.

This result shows the accuracy of the position of optical
elements that can be controlled by detecting this signal.
This technology can be important, for example, for ultrashort
(attoseconds, the distance corresponding to 1 as is about �3 Å)
physics and microscopy. It enhances the tools that are able to
provide control for the positioning of the various elements of
the setup.

However, it is worth underscoring here that even with such
an enhanced dragging effect due to slow light, one can apply
this effect for detection of relative rotation but not for detection
of absolute rotation. There is no application to the Sagnac
effect [27,28]. Indeed, the detectable velocity is of the order of
v � �rR, the relative velocity due to rotation of the earth
(�r is the angular velocity of the earth), so, in principle,
one might view this technique as promising for detection of
rotation (and there were recently some proposals of taking
advantage of the ultraslow media for rotation detection [29],
but the situation is more complicated). The situation is so subtle
that the arguments are worth repeating here because there is
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a great deal of misunderstanding of this issue in the literature
(see, for example, [30,31]).

Based upon our calculations above, we can easily estimate
the contribution of the cell to the Sagnac effect. The phase
velocity of light in the laboratory frame is given by

Vv = ω

k
=

ωab

(
1 + v

c

) + δω0
(
1 + v

Vg

)
ωab

c

(
1 + v

c

) + δω0
(

1
Vg

+ v
c2

) , (29)

which can be rewritten as

Vv =
v + ωab+δω0

ωab
c

+ δω0
Vg

1 + v
c2

ωab+δω0
ωab

c
+ δω0

Vg

, (30)

where

V0 = ω0

k0
= ωab + δω0

ωab

c
+ δω0

Vg

(31)

is the phase velocity of light in the frame moving with the
cell; i.e., the velocity of light in the laboratory frame results
from relativistic adding of the phase velocity of light V0 and
the velocity of frame v. Then, we see that when the effect
on the phase velocity is large enough, the time difference
between light propagating in one direction and in the opposite
direction [30] is equal to

�t± = t+ − t− = L

V+v − v
− L

V−v + v
= 4Aeff

c2
�r, (32)

where Aeff = LR/2 is the effective area for these two cells. The
obtained result does not depend on any properties of the slow-
light medium and coincides with the well-known traveling-
time difference in opposite directions (it is more deeply related
to the impossibility of synchronizing clocks along a close line;
see Ref. [32]) given by

�t = 4A

c2
�, (33)

where A is the area of the Sagnac interferometer.
The controversy of the Sagnac effect [28] interpretations

and misinterpretations has been nicely reviewed [30,31]. The
time difference does not depend on particular properties of
waves (slow or fast; linear or nonlinear; electromagnetic
radiation, sound waves, or matter waves; we note here that
using matter waves [33] allows one to enhance the sensitivity
per unit area) used for interferometry. The c in Eq. (33) is
a constant of Lorentz transformation, the speed of light in
vacuum, and it has no relation to the dispersion of media.

V. CONCLUSIONS

In this paper, we theoretically demonstrated a possibility
of control of the dragging effect and showed the dependence
of the Fizeau effect on higher-order dispersion that can be
observed experimentally. It has been shown that the change of
phase is sensitive to the motion of the cell with a speed of the
order of 10−3 cm/s and for possible displacements as small
as 10 Å. Applications of the enhanced dragging effect can
be found for efficient modulators of light, position control,
and detection of slow motion. Using slow light allows one
to detect very slow relative motion of the media and also

to develop very efficient phase modulators. The enhanced
dragging effect proves efficient coupling between optical fields
and mechanical motion, in particular sound waves.

The obtained results can be applied to all cases where the
EIT has been achieved. The physics of coherent effects in
�-type three-level atoms is related to the excitation of the
maximum coherence between two ground states (in alkali
atoms, these are the hyperfine levels) under the condition when
a special coherent state, the so-called dark state, is formed. EIT
has been achieved in atomic [5,6,8] and molecular [34,35]
gases, BECs [13], solid-state systems [36–38], metamaterials
[39–41], and even the mechanical effect of light [42].
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APPENDIX: DOPPLER BROADENING

Doppler broadening of atomic gas can be done in many
ways [5,25]. One way is to average the polarization of the
medium consisting of moving atoms, namely,

Pab,D(ωp) =
∫ +∞

−∞
duf (u)Pab(ωp,u). (A1)

Then, relating the polarization of the medium to its dielectric
function as

Pab = ε(ωp,u) − 1

4π
Ep, Pab,D = εD(ωp) − 1

4π
Ep, (A2)

we can write

εD =
∫ +∞

−∞
duf (u)ε(ωp,u), (A3)

and for the gas media we obtain Eq. (17). Knowing the index
of refraction of the medium, we can directly apply Eq. (9) and
obtain the results.

Another way to perform the Doppler broadening is to
average the dispersion relation given by Eq. (4). Indeed, for a
single-velocity atomic beam, we have

k = ωp − ku

c
n(ωp − ku), (A4)

where the index of refraction is given by Eq. (16); here k = kp.
For a beam consisting of many velocity groups, we should add
each contribution of each velocity group together as

k =
∫ +∞

−∞
du

ωp − ku

c
n(ωp − ku)f (u) = ωp

c
nD(ωp), (A5)

where f (u) is the velocity distribution function.
Now, if the atomic gas is moving with velocity v, the

distribution function is shifted as f (u − v), and

k =
∫ +∞

−∞
du

ωp − ku

c
n(ωp − ku)f (u − v). (A6)
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Assuming that the gas velocity v � uD , we can write

f (u − v) � f (u) − v
df

du
+ v2

2

d2f

du2
. (A7)

Then, Eq. (A6) can be rewritten as

k =
∫ +∞

−∞
du

ωp − ku

c
n(ωp − ku)f (u − v)

=
∫ +∞

−∞
du

ωp − ku

c
n(ωp − ku)

(
f (u) − v

df

du
+ v2

2

d2f

du2

)

= I0 − vI1 + v2

2
I2,

where

I0 =
∫ +∞

−∞
du

ωp − ku

c
n(ωp − ku)f (u),

I1 =
∫ +∞

−∞
du

ωp − ku

c
n(ωp − ku)

df

du
,

I2 =
∫ +∞

−∞
du

ωp − ku

c
n(ωp − ku)

d2f

du2
.

Then, similar to Eq. (A5),

I0 = ωp

c
nD(ωp).

Performing integration by parts, we obtain

I1 =
∫ +∞

−∞
du

ωp − ku

c
n(ωp − ku)

df

du

= k

∫ +∞

−∞
duf (u)

d

dωp

(
ωp − ku

c
n(ωp − ku)

)

= k

c

d

dωp

[ωpnD(ωp)],

I2 = k2

c

d2

dω2
p

[ωpnD(ωp)].

Finally, we obtain

k = ωp

c
nD(ωp) − kv

c

d

dωp

[ωpnD(ωp)]

+ k2v2

2c

d2

dω2
p

[ωpnD(ωp)],

which coincides with Eq. (5), from which Eq. (9) follows.
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