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Trirefringence in nonlinear metamaterials
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We study the propagation of electromagnetic waves in the limit of geometrical optics for a class of nearly
transparent nonlinear uniaxial metamaterials for which their permittivity tensors present a negative principal
component. Their permeabilities are assumed positive and dependent on the electric field. We show that light
waves experience triple refraction—trirefringence. In addition to the ordinary wave, two extraordinary waves
propagate in such media.
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I. INTRODUCTION

Electromagnetic waves in a material medium propagate
according to Maxwell’s equations complemented by certain
relations linking strengths and induced fields—the constitutive
relations. Depending on the dielectric properties of the medium
and on the presence of applied external fields, a variety
of optical effects can be found. One that has wide interest
is the birefringence [1–3], occurring when electromagnetic
waves propagate in media exhibiting two distinct refractive
indexes [1] in a same wave-vector direction. This effect occurs
naturally in some well-known crystalline solids, such as quartz
and sapphire, for instance. In nonlinear media, where the
dielectric coefficients are field dependent, birefringence could
also be induced by the presence of external fields, leading to
the known Kerr, Cotton-Mouton, and magnetoelectric effects
[4,5]. Birefringence has been widely used in the technology of
optical devices [3] and as a powerful experimental technique
for investigating properties of physical systems, including
biological [6] and astrophysical ones [7,8] among others. The
phenomenon of triple refraction has been much less investi-
gated. By trirefringence in a given wave-vector direction, we
mean the existence of three distinct refractive indexes in that
direction. In the realm of linear electrodynamics, trirefringence
does not occur [9]. Nevertheless, nothing was studied when the
dielectric tensors are field dependent (nonlinear electrodynam-
ics).

Multirefringent properties have been measured in tailored
photonic crystals [10]. Such materials are constructed to
manipulate light propagation and, hence, can lead to a variety
of applications [11]. However, in these media, structural details
(lattice constants, defects, etc.) are imperative, and hence, they
cannot be described in terms of effective dielectric tensors [12].
Developments in photonic band-gap materials and the so-
called metamaterials have enabled the discovery of several new
phenomena [12]. For instance, it was experimentally shown
[13] that nearly transparent isotropic metamaterials allow
light propagation when both effective dielectric coefficients
(permittivity and permeability) are negative. In fact, this phe-
nomenon and other unusual properties displayed by isotropic
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media with negative dielectric coefficients were proposed
theoretically long ago [14]. It is worth emphasizing that these
media must be dispersive, and the negative coefficients are
obtained for convenient frequency ranges. Some other unusual
properties exhibited by specific metamaterials are negative
refractive index [15], trapping of light [16,17], perfect lens
devices [18], the electromagnetic cloaking effect [19,20], and
the occurrence of asymmetry for the propagation of light in
opposite wave-vector directions [21]. Wave propagation in
indefinite metamaterials (where not all the principal compo-
nents of the dielectric tensors have the same sign) has been
also considered [12], showing that effects already proposed
in the context of isotropic metamaterials can be obtained and
possibly can be improved. Indefinite metamaterials can also be
used for investigating certain aspects of general relativity [22].

In this paper, we show that nonlinear metamaterials de-
scribed in terms of effective dielectric tensors, may display
trirefringence. Analytical expressions describing this effect
are formally obtained from Maxwell’s electromagnetism, and
a simple theoretical model is numerically examined. A possible
experimental realization of the media expected to display
this effect is also addressed. The vectorial three-dimensional
formalism [23] is used. The units are set such that c = 1.

In the next section, electromagnetic wave propagation in
nonlinear materials is examined. The eigenvalue problem
is stated and formally is solved for a class of nonlinear
materials presenting nonisotropic permittivity tensors (for a
given frequency) and isotropic permeability dependent on the
modulus of the resultant electric field. In Sec. III, trirefringence
phenomenon is theoretically described and is proposed to oc-
cur in nearly transparent nonlinear uniaxial metamaterials. The
analysis is performed in terms of phase and group velocities.
Final remarks and conclusions are presented in Sec. IV.

II. WAVE PROPAGATION

The electrodynamics of a continuum medium at rest in the
absence of sources is governed by the Maxwell field equations,

�∇ · �D = 0, �∇ × �E = −∂ �B
∂t

, (1)

�∇ · �B = 0, �∇ × �H = ∂ �D
∂t

(2)
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taken together with the constitutive relations between the
fundamental fields �E and �B and the induced ones �D and �H ,
written here as

Di =
3∑

j=1

εijEj , Hi =
3∑

j=1

μijBj . (3)

The dielectric coefficients εij and μij are the components of the
permittivity and the inverse permeability tensors, respectively,
and they encompass all information about the electromagnetic
properties of the medium. Furthermore, for any vector �α, we
denote its ith component by αi (i = 1,2,3).

The propagation of monochromatic electromagnetic waves
is here examined within the limit of geometrical optics [1]
using the method of field disturbances [24]. This method can be
summarized as follows [23]. Let �, defined by φ(t,�x) = 0, be
a smooth (differentiable of class Cn, n > 2) hypersurface. The
function φ is understood to be a real-valued smooth function
of the coordinates (t,�x) and regular in a neighborhood U of �.
The spacetime is divided by � into two disjoint regions U−,
for which φ(t,�x) < 0, and U+, corresponding to φ(t,�x) > 0.
The discontinuity of an arbitrary function f (t,�x) (supposed to
be a smooth function in the interior of U±) on � is a smooth
function in U and is given by [24]

[f (t,�x)]�
.= lim

{P ±}→P
[f (P +) − f (P −)], (4)

with P +, P −, and P belonging to U+, U−, and �, respec-
tively. The electromagnetic fields are supposed to be smooth
functions in the interior of U+ and U− and continuous across
� (φ is now taken as the eikonal [1] of the wave). However,
they have a discontinuity in their first derivatives such that [24]

[∂tEi]� = ωei, [∂tBi]� = ωbi, (5)

[∂iEj ]
�

= −qiej , [∂iBj ]
�

= −qibj , (6)

where ei and bi are related to the derivatives of the electric and
magnetic fields on � and correspond to the components of
the polarization of the propagating waves [25]. The quantities
ω and qi are the angular frequency and the ith component of
the wave-vector. (Incidentally, we note that the negative signs
appearing in Eq. (6) are missing in the corresponding equations
in Ref. [23].)

For the cases of interest in this paper, the permittivity of the
media under study is described by real diagonal tensors (losses
have been neglected) whose components εij are dependent
only upon the constant frequency of the wave. We set the
magnetic permeability of these media to be real functions of
the modulus of the electric field such that

μij (| �E|) = δij

μ(| �E|) , (7)

where δij = diag(1,1,1). Thus, applying the boundary condi-
tions stated by Eqs. (5) and (6) to the field equations (1) and
(2), we obtain the eigenvalue equation [5,26],

3∑
j=1

Zij ej = 0, (8)

where the Fresnel matrix Zij is given by

Zij = εij − μ′

ωμ2
(�q × �B)iEj − 1

μω2
(q2δij − qiqj ), (9)

with

μ′ .= 1

| �E|
∂μ

∂| �E| , (10)

and q2 .= �q · �q.
Nontrivial solutions for the eigenvalue problem in Eq. (8)

can be found if and only if det |Zij | = 0, which is known
as the generalized Fresnel equation. This equation also gives
the dispersion relations of the media under study. Using the
covariant formulas for the traces of linear operators [27], the
Fresnel equation can be cast as

det |Zij | = − 1
6 (Z1)3 + 1

2Z1Z2 − 1
3Z3 = 0, (11)

where we defined the traces,

Z1
.=

3∑
i=1

Zii, (12)

Z2
.=

3∑
i,j=1

ZijZji, (13)

Z3
.=

3∑
i,j,l=1

ZijZjlZli . (14)

As a requirement of the geometrical optics limit, the wave
fields are considered to be negligible when compared with
the external fields. Thus, we assume from now on that the
fields are approximated by their external counterparts �Eext

and �Bext. We set �E ≈ �Eext
.= Ex̂ and �B ≈ �Bext

.= Bŷ, which
could be arbitrary functions of space and time coordinates. Let
us examine the particular case of uniaxial media [1,2] with
permittivity

εij = diag(ε‖,ε⊥,ε⊥). (15)

Using Eqs. (9) and (12)–(14), straightforward calculations
show that Eq. (11) results in the following algebraic fourth-
degree equation for the phase velocity v = ω/q of the
propagating waves,

av4 + bv3 + cv2 + dv + e = 0, (16)

with

a = 6ε2
⊥ε‖, (17)

b = 6μ′

μ2
ε2
⊥EBq̂z, (18)

c = − 6

μ
ε⊥

[
2ε‖q̂2

x + (ε⊥ + ε‖)
(
q̂2

y + q̂2
z

)]
, (19)

d = −6μ′

μ3
ε⊥EBq̂z, (20)

e = 6

μ2
[ε‖q̂2

x + ε⊥(q̂2
y + q̂2

z )]. (21)

We defined q̂α
.= (q̂ · α̂), where q̂

.= �q/q for any unit vector
α̂. Then, q̂ = q̂x x̂ + q̂y ŷ + q̂zẑ and q̂2 .= q̂ · q̂ = 1. Notice
that, when the propagation occurs in the xy plane (spanned
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by the external electric and magnetic fields), the coefficients
b and d are null, and the generalized Fresnel equation
reduces to a quadratic equation in v2, therefore, allowing only
birefringence. The same behavior occurs if μ′ = 0. In fact, in
this situation, we recover linear electrodynamics.

Solving Eq. (16), we obtain

vo = ± 1√
με⊥

, (22)

v±
e = −σ q̂z ±

√
(σ q̂z)2 + 1

με‖

(
ε‖
ε⊥

q̂2
x + q̂2

y + q̂2
z

)
, (23)

where

σ
.= μ′EB

2μ2ε‖
. (24)

The solution vo does not depend on direction of the wave
propagation and is called the ordinary wave, whereas, v±

e

depend on direction of the wave propagation and are called
extraordinary waves [1]. By definition, the velocities of the
waves are given by �v = vq̂, where v is given by Eqs. (22)
and (23). In order to achieve more simplicity, in the following
analysis, we assume the external fields to be constant and
set the wave-vector in a given direction of the xz plane,
i.e., q̂y = 0, q̂x = sin θ , and q̂z = cos θ . In this notation, θ

indicates the angle between the q̂ and the z directions.

III. TRIREFRINGENCE

Two distinct solutions for �v±
e in a same given direction q̂

can be obtained from Eq. (23) if

− 1 <
1

με‖σ 2

(
ε‖
ε⊥

tan2 θ + 1

)
< 0. (25)

Thus, taking into account the ordinary wave, Eq. (25) defines
a region inside which trirefringence occurs in any chosen
direction q̂. Let us examine this effect closer.

In order to guarantee the existence of an ordinary wave, we
must set με⊥ > 0, otherwise, vo is not real. This is true when
both coefficients μ and ε⊥ present the same sign, which can be
positive for usual media or negative for left-handed materials
(in this case, a negative refractive index occurs [14,15,28]).
Let us set these coefficients to be positive. Now, in order to
satisfy Eq. (25), we set ε‖ = −ε‖ < 0. Hence, trirefringence
occurs in directions determined by

ε⊥
ε‖

> tan2 θ >
ε⊥
ε‖

(1 − ε‖μσ 2). (26)

The above-discussed phenomenon is displayed in Fig. 1 where
the normal surfaces [1,2] associated with the ordinary and
extraordinary waves are depicted for some specific values
of the quantities appearing in Eq. (26). For any given
direction encompassed by the angles between the two dashed
straight lines, defined by Eq. (26), there are three distinct
solutions: the dashed and dot-dashed curves representing the
extraordinary waves and the circular solid curve representing
the ordinary wave. For angles between the dashed and the solid
straight lines, only birefringence occurs, and finally, only one
refraction occurs for directions encompassed by the angles
between the two solid straight lines. From Fig. 1, it is also worth

FIG. 1. (Color online) Normal surfaces [1,2] of a nonlinear
medium with dielectric coefficients given by εij = diag(−ε‖,ε⊥,ε⊥)
and μ(E). We set a model where the numerical values were taken
such that ε‖ = 6.69, ε⊥ = 1.88, μ = 0.8, and μ′EB = 4.21. The
ordinary wave is represented by the circular solid line, and the
extraordinary waves are represented by the dashed and dot-dashed
curves. The dashed straight lines encompass an angular region in
which trirefringence occurs. In this case, there exist two extraordinary
waves denoted by + and −. The symbol o refers to the ordinary wave.

noticing that, in the sectors where more than one refractive
index occur, the medium under consideration behaves as a
positive or negative medium [1,2], depending on subsectors
and extraordinary waves.

In geometrical optics, the directions of light rays are given
by the directions of the group velocities,

�u = ∂ω

∂ �q = vq̂ + q
∂v

∂ �q , (27)

which are considered as the physical velocities of propagation
of the rays [1]. As we see from Eq. (23), the extraordinary
waves depend on the wave-vector. Thus, the directions of
the extraordinary light rays do not, in general, coincide
with the directions of the extraordinary phase velocities as
explicitly shown by Eq. (27). Taking v = {vo,v

+
e ,v−

e } into the
definition of the group velocity, we obtain that the ordinary
group velocity is identified with the ordinary phase velocity
�uo = voq̂. Nevertheless, the extraordinary group velocities are
given by

�ue = uxx̂ + uzẑ, (28)

with

ux =
v3

e sin θ + σv2
e sin 2θ + ve

με‖

( ε‖
ε⊥

− 1
)

sin θ cos2 θ

v2
e + (1 − η)σve cos θ + η

2με‖
cos2 θ

,

(29)

uz =
v3

e cos θ + σv2
e cos 2θ − ve

με‖

( ε‖
ε⊥

− 1
)

cos θ sin2 θ

v2
e + (1 − η)σve cos θ + η

2με‖
cos2 θ

,

(30)
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FIG. 2. (Color online) Ray surfaces [1,2] of the nonlinear medium
considered in Fig. 1. The ordinary group velocity is represented by
the circular solid line, and the extraordinary group velocities are
represented by the dashed and dot-dashed curves.

and where we defined

η
.= ω

ε‖

∂ε‖
∂ω

. (31)

In these equations, ve
.= v±

e represents the extraordinary
wave velocities in direction q̂, which can be obtained from
Fig. 1 by taking the distances from the associated points on its
wave-vector surfaces to the origin of the coordinate system.
For the particular model set in Fig. 1, the corresponding ray
surfaces [1,2] are depicted in Fig. 2 as a function of the
angle ϕ between �u and the z axis where it was assumed for
simplicity that |η| 
 1. Notice that this assumption resides
in the realm of nonlinear media. In the context of linear
electrodynamics, for which μ′ = 0, Eqs. (28)–(30) show
that |η| 
 1 leads to superluminal group velocity solutions.
Therefore, this assumption is not in disagreement with the
so-called causality requirement [12]. For the ordinary waves,
we have ϕ = θ as anticipated. For the extraordinary waves,
the relationship between these angles can be obtained directly
from Eqs. (29) and (30) as ϕ = arctan[ux(θ )/uz(θ )]. From
Fig. 2, we see that there is a sector inside which there exist
two extraordinary rays in any chosen direction of observation.
For the complementary sector, there are no extraordinary rays.
We point out that any chosen direction for the rays inside the
trirefringent sector is related to two different extraordinary
wave-vectors in Fig. 1. Similarly, for any given wave-vector
inside the two dashed straight lines in Fig. 1, there are
two different extraordinary rays associated with it in Fig. 2.
For instance, let us take the wave-vector in the direction
θ = π/16 as indicated by the arrow drawn in Fig. 1. As
is clear, in this direction, there are three solutions for the
phase velocity, indicating that trirefringence occurs. These
solutions are represented by the points on the +, −, and o

curves, found in this particular direction, and their moduli
are v+

e = 0.76, v−
e = 0.20, and vo = 0.82, respectively. From

Eqs. (28)–(30), the corresponding group velocities present
magnitudes u+

e = 0.83, u−
e = 0.55, and uo = 0.82. Their as-

sociated directions are indicated by the arrows appearing in
Fig. 2 where the dashed and dot-dashed arrows correspond to
�u+

e and �u−
e , respectively.

IV. FINAL REMARKS

If the principal permittivity components are also dependent
upon the modulus of the electric field, then analogous
calculations leading to the equations for the phase and group
velocities and conditions for having trirefringence derived in
this paper still hold by identifying

ε‖ → ε‖(E) + E
∂ε‖(E)

∂E
, (32)

and

ε⊥ → ε⊥(E). (33)

Once we work in the regime of high frequencies (required
by geometrical optics), losses must be assumed to be low [1].
Metamaterials with low losses are still a matter of current
investigation [29] with some achievements already obtained
in such a regime [30].

In what concerns the role played by the nonlinearities,
Eqs. (23) and (24) show us that if they exist (i.e., μ′ �= 0), irre-
spective of their strengths, then they will lead to the presence
of two extraordinary waves (hence, allowing trirefringence).
Given the physical quantities appearing in Eqs. (28)–(30), the
thresholds for the strengths of the nonlinearities are such that
causality is not violated. The important quantity related to the
nonlinearities is σ , given by Eq. (24), which is experimentally
controllable, thereby making the predictions here derived
feasible.

Layered media [2,31] seem good candidates for experi-
mental realizations of our assumptions. Consider a system
constituted by a repetition of two thin low loss layers.
One of them is composed of a nonmagnetic (μ1 = 1) and
dispersive [ε1 = ε1(ω)] medium. The other one is composed
of a liquid medium whose permeability and permittivity are
dependent upon the modulus of the resultant electric field
as μ2 = 1 − f (| �E|) and ε2 = 1 − g(| �E|), where f (| �E|) and
g(| �E|) are usually much smaller than unity [32]. Additionally,
if convenient external fields and layer parameters are present,
then it is always possible to guarantee that our constraints are
fulfilled.

Refraction analyses were disregarded in our paper once
they are just a straightforward extension of the analyses valid
for birefringent crystals [2]. The only difference now is the
existence of two extraordinary waves.

Summing up, working in the limit of geometrical optics,
we studied the propagation of electromagnetic waves in nearly
transparent nonlinear uniaxial metamaterials in the presence
of external electric and magnetic fields. We assumed a con-
stant nonisotropic permittivity tensor (for a given frequency)
presenting a negative principal component and an isotropic
permeability dependent on the modulus of the electric field. We
solved the corresponding eigenvalue problem and obtained the
general fourth-degree polynomial equation, whose solutions
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describe the propagation of waves. In this context, we showed
that trirefringence is a phenomenon allowed to occur and could
be described both in terms of wave and ray propagations.
With the present technology in manipulating the dielectric
coefficients in metamaterials [22,31], we hope that the effect
here derived can be experimentally tested and if verified, could
lead to applications.
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