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Creation and characterization of vortex clusters in atomic Bose-Einstein condensates

Angela C. White,* Carlo F. Barenghi, and Nick P. Proukakis
School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

(Received 10 April 2012; published 23 July 2012)

We show that a moving obstacle, in the form of an elongated paddle, can create vortices that are dispersed
or induce clusters of like-signed vortices in two-dimensional (2D) Bose-Einstein condensates. We propose
statistical measures of clustering based on Ripley’s K function which are suitable to the small size and small
number of vortices in atomic condensates, which lack the huge number of length scales excited in larger classical
and quantum turbulent fluid systems. The evolution and decay of clustering is analyzed using these measures.
Experimentally it should prove possible to create such an obstacle by a laser beam and a moving optical mask.
The theoretical techniques we present are accessible to experimentalists and extend the current methods available
to induce 2D quantum turbulence in Bose-Einstein condensates.
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I. INTRODUCTION

Turbulent superfluid helium has been shown to exhibit
features typical of ordinary, classical turbulence, on scales
larger than the average intervortex spacing, such as the
same Kolmogorov energy spectrum in three-dimensional (3D)
turbulence [1–8] as well as differences, such as non-Gaussian
velocity statistics [7,9–11]. Two-dimensional (2D) turbulence
is very different from 3D turbulence. In 3D turbulence, on
scales larger than the average intervortex spacing, there is
a flow of energy from large scales to small scales through
the Richardson cascade, whereby large eddies are broken up
into smaller and smaller eddies, giving a Kolmogorov energy
spectrum with k−5/3 scaling. In 2D turbulence there is an
inverse energy cascade, where energy flows from the scale of
energy injection (small scales) to larger scales as like-charged
vortices cluster [12]. This phenomenon is established in
classical fluids and is thought to be the mechanism responsible
for Jupiter’s great red spot [13,14]. The concept of an
inverse energy cascade was introduced by Onsager [15] for
a point-vortex gas consisting of many vortices, where it was
found clusters of like-signed point vortices have a negative
temperature (further detail can be found in subsequent analyses
[16,17]). Beyond the seminal work of Onsager, there is no
fundamental theory that exists for small systems of vortices. In
Bose-Einstein condensates, while there have been a number of
theoretical investigations [18–21] and some experimental work
[22], the question of whether an inverse cascade is a feature
of a system of turbulent vortices in quasi-two-dimensional
systems remains open; this is first because these condensates
are relatively new and second (and more important) because,
due to their relatively small size, they lack the large range
of length scales typical of other 2D turbulent flows (such as
planetary atmospheres).

On the other hand, ultracold Bose condensed atomic gases
are ideal to investigate the dynamics of few-vortex systems as
well as turbulent dynamics of many vortices. The dimension-
ality of such condensates can be easily controlled, allowing
direct study of vortices in two and three dimensions. Advanced
experimental methods for the imaging and detection of vortices
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in Bose-Einstein condensates (BECs) have been developed
[23] and new theoretical proposals have shown that vortices
can be easily manipulated in BECs [24]. There are many
techniques that can be applied to nucleate vortices in BECs,
such as engineering the condensate phase profile [25,26],
stirring the condensate with a blue- or red-detuned laser (for
experiments see [27,28] and for theory see [24,29,30]), mixing
and merging condensates of well-defined phases [31–33],
moving a condensate past a defect [28], rotating the trapping
potential or thermal cloud [34–39], and cooling the condensate
with a rapid quench through the phase transition (Kibble-Zurek
mechanism) [40–42]. Finally, vortices can be nucleated from
dynamical instabilities, such as through the decay of the snake
instability of a soliton [43,44], the bending wave instability
of a vortex ring [45,46], or surface mode excitations of the
condensate [47,48]. In the first experimental demonstration
of 3D quantum turbulence in a BEC, tangled vortices were
created by shaking the condensate with an oscillatory trapping
potential [47–50].

In this paper we add to the numerous existing techniques
applied to induce vortices in BECs and apply a moving
object with an elliptical paddle shape to create vortices. We
demonstrate that the trajectory of the optical paddle through
the condensate can be controlled to create vortices that are both
well distributed or clustered into groups with like winding. To
determine if vortices are indeed clustered, and if this clustering
increases or decreases significantly with time, we develop tools
which are more suitable to the small size and the relative small
number of vortices which can be generated in ultracold-atom
BECs. Drawing on the wealth of available statistical pattern
recognition methods, we analyze our data using Besag’s
function [51], a modification of Ripley’s K function [52,53],
which has been extensively applied across a variety of scientific
fields to measure clustering and clumping of discrete objects
(e.g., [54–60]). Motivated by Besag’s function, we develop
some measures of independent clustering when the system
comprises two unique types of discrete objects. In our case,
these are vortices with “+” or “−” winding in a BEC.
These techniques can distinguish between the cases of mixed
clusters of vortices and independent clusters of vortices of like
winding in the condensate. After reviewing our theoretical
model, we analyze vortex structures obtained by different
forms of stirring by applying both Besag’s function and
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nearest-neighbor techniques. Finally, we summarize our main
conclusions, that the resulting vortex clustering is strongly
dependent on the trajectory of the moving paddle. We find
no compelling evidence of an inverse cascade in these small
systems, in the sense that we do not see an increase in clustering
over time.

II. NUMERICAL MODEL

We simulate the dynamics of a trapped two-dimensional
Bose-Einstein condensate stirred by an optical paddle by
integrating the following 2D dimensionless time-dependent
Gross-Pitaevskii equation (GPE):

i
∂ψ

∂t
= −1

2
∇2ψ + r2

2
ψ + VP ψ + κ2d |ψ |2ψ , (1)

where the interaction strength, κ2d = 2
√

2πaN/az, is written
in terms of the scattering length, a, and the total number of
condensate atoms, N . ψ is scaled as ψ = ar�/

√
N , where

� is the condensate wave function and is normalized to
unity; i.e.,

∫
dx|ψ |2 = 1. Lengths and time are scaled as

r̃/ar = r and t̃ωr = t , where r̃ and t̃ are dimensional with
units of meters and seconds, respectively. az = √

h̄/(mωz) and
ar = √

h̄/(mωr ) are the axial and radial harmonic oscillator
lengths, determined by the axial and radial trapping frequen-
cies, ωz and ωr , respectively.

The potential, VP , describes a far-off-resonance blue-
detuned laser beam shaped into a paddle that follows a rotating
and circular stirring trajectory given by

VP = V0 exp

[
− η2 [x̃ cos(ωt) − ỹ sin(ωt)]2

d2

− [ỹ cos(ωt) + x̃ sin(ωt)]2

d2

]
, (2)

where x̃ = x − v sin(t) and ỹ = y − v cos(t). V0 gives the
peak strength of the potential and is selected to be V0 ∼ 2.6μ,
where μ is the chemical potential of the BEC. η determines
the paddle elongation and d the width. Experimentally, the
paddle can be shaped by shining a far-off-resonance blue-
detuned laser through a mask as in [61]. For a paddle
rotating with a frequency, ω, at the center of the condensate,
x̃ = x and ỹ = y. For a paddle moving at a constant radius
from the center of the condensate without rotating, we take
ω = 1. In all simulations the paddle is initially linearly
ramped up to its maximum stirring frequency, ω, after which
the condensate is stirred at constant ω until tS = 20. The
paddle is then ramped off linearly over t = 5 by making the
replacement

VP →
(

1 − (t − tS)

5

)
VP (3)

in Eq. (2). For paddle sizes and stirring frequencies which
result in vortex formation, the condensate dynamics are
evolved for a further time of t = 45.

Numerically, Eq. (1) is solved pseudospectrally with
periodic boundary conditions and integrated in time by
applying an adaptive fourth- and fifth-order Runge-Kutta

method with the help of xmds [62]. The initial state for our
simulations is obtained by a short propagation of the 2D GPE
in imaginary time [by making the replacement τ = −it in
Eq. (1)] and applying a stationary paddle potential. The con-
densate is parametrized by the nonlinear interaction strength
κ2d = 10399. For example, by choosing experimentally rele-
vant axial and radial trapping frequencies of ωz = 2π × 50 Hz
and ωr = 2π × 5 Hz, this describes a condensate of 2.2 × 106

23Na (6 × 105 87Rb) atoms with scattering length a = 2.75 nm
(a = 5.29 nm). Our simulations are run on a grid of spatial
extent −20 to 20 with grid size Ng = 512 (see Appendix).

III. VORTEX GENERATION

This paper looks at three stirring motions of the paddle,
VI, VII, and VIII, each of which are specific realizations of
Eq. (2), corresponding to a rotating paddle, a paddle moving
on a deferent from the condensate center, and a paddle moving
along a deferent while rotating, respectively (see Fig. 1, top
row). The stirring motions of the paddle studied generate
contrasting vortex configurations, as discussed below. For each
case, we track the total number of vortices nucleated, as shown
in Fig. 2(a). In all cases, at later times, vortices are lost to
the edge of the condensate. The condensate edge is selected
by identifying where the density falls to less than 30% of
the maximum condensate density at that time. The resulting
profile is then smoothed to give the condensate edge. When
two vortices are closer than a critical separation distance and
are of opposite winding, vortex-pair annihilation occurs, a
mechanism which also reduces the total number of vortices in
the condensate.

For all simulations the total angular momentum of the
condensate is also tracked, given by

〈Lz〉 = −i

∫
dxψ∗

(
x

∂

∂y
− y

∂

∂x

)
ψ. (4)

A. Case I: Paddle rotating at the condensate center

First we look at a paddle rotating about its center with
frequency ω at the center of the condensate. This is modeled by
evolving Eq. (1) with VI = VP (x̃ → x,ỹ → y). The smallest
paddle size we consider is d = 0.5, rotating at a frequency
ω = 6. The rotating motion of the paddle produces circular
spiral sound waves, which at late times interfere with each
other, giving a wave interference pattern (see the first column
of Fig. 1). Paddles with a larger width (d = 1), rotating at
frequencies of ω = 4, 6, and 8, nucleate vortices in addition
to creating spiral sound waves. The density profile for a
paddle rotating at frequency ω = 4 is show in the second
column of Fig. 1 [63]. A greater rate of rotation increases the
number of vortices initially nucleated, as expected. In all cases,
vortices are initially nucleated from the ends of the paddle with
winding opposite to the direction of rotation of the paddle,
as depicted in Fig. 3. At subsequent times, when the local
superfluid velocity surpasses the critical velocity for vortex
nucleation [64], vortices of both signs are nucleated from both
the center and the ends of the paddle. A centered rotating
paddle imparts a small amount of angular momentum to the
condensate. The angular momentum imparted is proportional
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FIG. 1. (Color online) Three stirring motions of the paddle: column 1, density slices for paddle VI with parameters d = 0.5, ω = 6
(dimensionless units); columns 2–4, density and vortex position images for paddles VI, VII, and VIII. Parameters: VI (column 2), d = 1, ω = 4;
VII (column 3), d = 1, ω = 1, v = 4; VIII (column 4), d = 1, ω = 2, v = 4. All paddles have V0 = 150, η = 8 (dimensionless units). Positive
vortices are identified by (pink) pluses and negative vortices by (blue) circles. Time is indicated in white at the bottom left-hand side of
each plot.

to the frequency of the rotating paddle [see Fig. 2(b)]. Note that
after paddles of frequency ω = 6 and 8 have been ramped off,
the condensate angular momentum saturates to approximately
the same value.

B. Case II: Paddle stirring at constant radius

The second stirring motion of the laser paddle we simulate
is a paddle stirring the condensate at a constant radius from
the condensate center, or traveling along a deferent, VII = VP

(ω = 1) (see Fig. 1, column 3, top row, for a schematic of the
paddle motion). This paddle trajectory creates vortices which
tend to group initially in like-signed clusters as shown by the
progressive time samples of the condensate density profiles
in Fig. 1, column 3 (see also [65]). The condensate gains a
large amount of angular momentum [refer to Fig. 2(b)], and
consequently at final times there is a significant imbalance

in the total number of vortices with positive and negative
winding.

C. Case III: Paddle rotating and stirring at constant radius

The final stirring trajectory of the laser paddle we simulate,
VIII = VP , is a combination of the two previous motions, with
the paddle moved at a constant radius from the condensate
center while rotating at a small frequency. This motion can also
be described as a paddle rotating and moving along the deferent
(see Fig. 1, column 4, top row, for a schematic of the paddle
motion). The effect of adding the rotational motion of the
paddle to its trajectory mixes the clusters produced, resulting in
smaller groups consisting of three and four vortices (compare
the vortex distributions in Fig. 1, columns 3 and 4, and [65]).
While initially (for times t < 12) the angular momentum
transferred to the condensate is reduced in comparison to that
of paddle VII [see Fig. 2(b)], this stirring trajectory results in
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FIG. 2. (Color online) Variation of (a) total vortex number and
(b) condensate angular momentum with time. Vortices induced by a
rotating paddle, VI, with d = 1 and v = 4, 6, and 8 are represented by
(orange) pluses, (purple) crosses, and (pink) diamonds, respectively.
Data corresponding to the paddles with v = 4 and d = 1, moving
with trajectories VII (ω = 1) and VIII (ω = 2), are given by (green)
triangles and (blue) squares, respectively.

the greatest transfer of angular momentum to the condensate
at later times.

IV. CLUSTERING ANALYSIS

A. Ripley’s K function

We analyze the clustering of vortices formed by stirring a
2D condensate with a paddle by applying Ripley’s K function,
a statistical pattern analysis method used as a measure of
spatial clustering. In the context of clustering of like-signed
vortices, Ripley’s K function is dependent on the total number

FIG. 3. (Color online) Schematic diagram of vortices nucleated
from a paddle rotating at the condensate center, VI, as the paddle is
ramped up to ω = 8. Positive vortices are identified by (pink) pluses
and negative vortices by (blue) circles; the paddle profile is shaded
(purple).

FIG. 4. (Color online) The function fij (r) in Ripley’s K function.

of like-signed vortices, N , within the total condensate area, A,
and can be expressed as

K(r) = A

N2

N∑
i=1

N∑
j=1

fij (r), (5)

where fij (r) = 1 for a vortex, j , within a distance r of the
reference vortex, i, with like winding. Otherwise, fij (r) = 0
if i = j , or if the distance between vortex i and j is greater
than r . That is,

fij =
[

1 ∀ rij < r, i 
= j,

0 ∀ rij > r or i = j,
(6)

where rij is the distance from a reference vortex i to the
comparison vortex j with like winding. This is depicted in
Fig. 4.

Ripley’s K function looks at the number of like-signed
vortices within a radius, r , from the position of an arbitrarily
chosen vortex, i, at its center (see Figs. 4 and 5). If the
number of vortices with like winding per unit area within this
radius, r , is greater than the overall number of like-signed
vortices per unit area for the whole condensate, then the
vortices are said to be clustered. Clustering results in K(r)
increasing faster than if vortices of either sign are distributed
in a spatially random manner, that is, if they follow a Poisson
distribution. Ripley’s K function for a Poisson-distributed
data set takes the form K(r) = πr2. For a linear scaling of
Poisson-distributed data, it is useful to normalize Ripley’s

FIG. 5. (Color online) Besag’s function L(r/rc) [see Eq. (9)]
for vortices of negative winding at varying times (see legend) for
a condensate with vortices nucleated by a paddle with trajectory VII.
Parameters: d = 1, ω = 1, and v = 4.
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K function to H (r) = √
K(r)/π . Ripley’s L function, also

commonly known as Besag’s function, is obtained from further
normalization of Ripley’s K function:

L(r) =
√

K(r)/π − r. (7)

As the condensate area, A, does not necessarily remain con-
stant over all times, we scale r by the characteristic condensate
radius rc = √

A/π for that time and in our subsequent analysis
evaluate

L(r/rc) =
√√√√ A

π (Nrc)2

N∑
i=1

N∑
j=1

fij (r/rc) − r

rc

, (8)

which simplifies to

L(r/rc) =
√√√√ 1

N2

N∑
i=1

N∑
j=1

fij (r/rc) − r

rc

. (9)

Besag’s function is zero for like-signed vortices which are ran-
domly distributed, takes positive values for vortices clustered
over that spatial scale, and is negative if the vortex distribution
is dispersed. That is,

L(r/rc) =

⎡
⎢⎣

1 clustered,

0 random,

−1 dispersed.

(10)

The radius around a centered vortex containing, on average,
the most like-signed vortices per area is called the radius of
maximal aggregation and is given by the value of r which
maximizes L(r) [59].

For a paddle rotating at a constant radius from the
condensate center, evaluating L(r/rc) [see Eq. (9)] for positive
vortices, as seen in Fig. 5, shows that the clustering of vortices
decreases with time. Although the vortices are clustered, the
amount of clustering is not constant or increasing in time,
giving no evidence of an inverse cascade for this system.

B. Measures of independent clustering of like-signed vortices

While Besag’s function gives a measure of the clustering
of vortices with the same winding, it does not discriminate
between cases where like- and opposite-signed vortices are
clustered in the same spatial region and cases where like-signed
vortices are clustered in spatially independent regions (refer to
Fig. 6 for a schematic illustration). It is necessary to make this
distinction when looking for a measure of an inverse cascade
process, as the clustering of like-signed vortices is not expected

FIG. 6. (Color online) Schematic diagrams of (a) spatial in-
dependence and (b) co-clustering in systems with two distinct
types of objects, represented by (pink) pluses and (blue) circles,
respectively.

to occur in the same spatial region as clustered vortices of the
opposite sign. To address this issue we define a measure of
clustering which uses the sign of nearest-neighboring vortices
to determine if clustering occurs in regions that are spatially
independent.

We express this measure of clustering based on looking at
the sign of all j neighboring vortices up to the Bth nearest
neighbor of an arbitrary reference vortex i as

CB(t) = 1

N

N∑
i=1

B∑
j=1

cij (t)

B
. (11)

Here cij = 1 if the vortex i and its j th nearest neighbor are
of the same sign and cij = 0 if vortex i and its j th nearest
neighbor are of opposite sign. If vortex i is separated by a
distance greater than Rc = rc/3 to its j th nearest neighbor,
then cij = 0. B is the maximum nearest neighbor to the
reference vortex i. It is necessary that the value of Rc chosen
is greater than the average intervortex separation distance and
on order of the largest cluster size. Vortices closer than Rc

to the condensate edge will bias the calculation of CB(t) as
they have an area less than πR2

c surrounding them, which their
nearest-neighboring vortices could inhabit. To correct for these
edge effects we omit these vortices which are less than Rc from
the condensate edge from the set of reference vortices but still
include them in the set of comparison vortices for vortices a

FIG. 7. (Color online) Comparison of evolution second-nearest-
neighbor data, C2(t) (top), and fourth-nearest-neighbor data, C4(t)
(bottom), for paddle trajectories VII, VIII, and VI with v = 8 rep-
resented by (green) triangles, (blue) squares, and (pink) diamonds,
respectively. Time is measured from the beginning of stirring the
condensate.
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FIG. 8. (Color online) Comparison of evolution second-nearest-
neighbor data, C2(t) (top), and fourth-nearest-neighbor data, C4(t)
(bottom), for vortices created by rotating a paddle at the condensate
center (VI) with v = 4 (orange pluses), v = 6 (purple crosses), and
v = 8 (pink diamonds). Time is measured from the beginning of
stirring the condensate.

distance greater than Rc from the condensate edge. Systems
for which CB = 0.5 are randomly distributed, and when CB

takes values greater than 0.5 the objects are clustered. We note
that these measures can be applied generically to investigate
cases of co- and independent clustering of two discrete objects
and could be simply extended to look at co- and independent
clustering of many discrete objects.

A comparison of the evolution of CB(t) for the simulation
runs described previously is shown in Figs. 7 and 8. From the
nearest-neighbor analysis we learn the following:

(1) From Fig. 7, we can see that a paddle moving at
a constant radius from the condensate center (VII) creates
vortices that are initially very clustered, indicated by C2 and
C4 taking values very near 1. After the paddle is turned off
the vortices remain clustered, with C2 and C4 not decreasing
below 0.5 until t ≈ 50. At long times (t > 50) vortices become
randomly distributed.

(2) A paddle moving with trajectory VIII creates clusters
that are initially smaller in size than purely moving the paddle
at constant radius from the condensate center (VII). After the
paddle is turned off, the vortex distribution closely follows that
of run VII with vortices remaining clustered until long times
(t > 50) when they become randomly distributed.

(3) When the paddle is only rotated at the conden-
sate center, VI, vortices never become clustered (refer to
Fig. 8).

For all cases, regardless of how the vortices are initially
nucleated, evaluating CB(t) gives no evidence of a tendency
of increasing clustering of like-signed vortices over a scale
of Rc in a turbulent 2D BEC after the laser paddle has
been ramped off. Our observations imply that clusters of
like-signed vortices exist due to the way in which they
were induced in the condensate but do not naturally tend to
cluster.

V. CONCLUSION

In this paper we have covered two main objectives:
(1) We have extended the available methods for creating

vortices in 2D atomic Bose-Einstein condensates, demonstrat-
ing that a paddle can be used to stir a condensate in two
quite different ways, creating long-lived vortex clusters or
more randomly distributed vortices that are turbulent in two
dimensions.

(2) A statistical measure of clustering based on analyzing
nearest-neighbor vortices was defined, motivated by a well-
known statistical spatial point pattern analysis technique,
Besag’s function. These measures have been applied to analyze
how vortices are distributed in 2D condensates.

We find that a paddle moved through the condensate at
a constant radius from the center creates vortices of both
positive and negative winding in clusters. When the paddle is
rotated at the condensate center, vortices created are initially
clustered co-dependently in the same local spatial regions and
later disperse throughout the condensate. For a combination of
moving a paddle at a constant radius through the condensate
while simultaneously rotating the paddle, the vortices induced
are less clustered than if the paddle is only moved at a constant
radius from the condensate center. The latter method can be
applied to create long-lived vortex clusters in BECs. The clus-
ters are considered long lived in terms of two relevant sets of
time scales; the constraining time scale determined by realistic
experimental lifetimes of BECs and the time scales determined
by the system size and properties. The relevant time scales
intrinsic to the system size and length scales are determined
by the average separation distance between vortices (lsep) and
given by τsep = l2

sep/γ where γ is the phase winding of a
vortex, and the largest turnover time, τ = πr2

c /2π ≈ 35, is
determined by the condensate size. As the largest turnover time
is smaller than the longevity of clusters, which persist for ∼50
[see C(4) in Fig. 7], we describe the clusters to be “long lived.”
For our choice of experimental parameters, cluster lifetime is
∼1 s, which is also long lived in comparison to the typical
experimental lifetime of BECs (∼10 s).

The extent of clustering was quantitatively measured by
evaluating two statistical measures of clustering: applying a
modified Ripley function and a technique based on comparing
the sign of nearest-neighboring vortices. We did not observe
an increase in clustering over time. This was despite evolution
times longer than the largest turnover time τ = πr2

c /2π ≈ 35,
determined by the condensate size. Our system contains too
few vortices to determine if the relevant physical process
for 2D turbulent systems in atomic Bose gases is an inverse
cascade of incompressible kinetic energy from small to large
scales manifesting in a clustering of like-signed vortices. In
particular, it would be difficult to apply traditional methods
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used for large systems (planetary atmospheres, superfluid
helium), based on Fourier transforming the velocity field and
analyzing the spectra of energy and enstrophy over many
decades in wave-number space. Our statistical analysis based
on Ripley’s K function and on nearest-neighbor methods
provides a way to quantify an increase or decrease in the
degree of vortex clustering. As these methods are constructed
from a knowledge of the position and winding of vortices
in the system, they are readily accessible experimentally.
Information on vortex location in condensates can be ob-
tained experimentally through standard absorption imaging
techniques (e.g., [23,34,35]), and winding of vortices is found
by analysis techniques giving phase information, such as
condensate interferometry (e.g., [27,66,67]).
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APPENDIX: ERROR CHECKING

To check that our results are independent of the grid size
used, the simulation grid size was doubled from Ng = 512 to
Ng = 1024 for a paddle rotating at the condensate center with
v = 6 and d = 1. In Fig. 9 a comparison is made of the total
vortex number and condensate angular momentum when the
grid size is doubled. The angular momentum is calculated by
evaluating Eq. (4). The reasonable agreement between rates of
vortex production and elimination, as well as evolution of the
condensate angular momentum in both runs, establishes that
the grid size of Ng = 512 applied in the simulations presented
in the body of the paper is adequate. The small variance in
results from doubling the grid size is attributed to

FIG. 9. (Color online) (a) Total number of vortices nucleated by
a paddle rotating at the center of the condensate (VI), with v = 6,
d = 1, and (b) evolution of angular momentum. Simulation grid sizes
Ng = 512 (purple crosses) and Ng = 1024 (pink diamonds).

the condensate edge selection routine used. A further source of
difference is the chaotic nature of vortex dynamics in turbulent
systems. A small amount of numerical noise would be enough
to seed a difference in vortex trajectories.
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V. S. Bagnato, Phys. Rev. Lett. 103, 045301 (2009).

[48] E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalháes, and
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