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Monte Carlo study of fermionic trions in a square lattice with harmonic confinement
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We investigate the strong-coupling limit of a three-component Fermi mixture in an optical lattice with attractive
interactions. In this limit bound states (trions) of the three components are formed. We study the effective
Hamiltonian for these composite fermions and show that it is asymptotically equivalent at the leading order to
an antiferromagnetic Ising model. By using Monte Carlo simulations, we investigate the spatial arrangement
of the trions in this regime and the formation of a trionic density wave, both in a homogeneous lattice and in
the presence of an additional harmonic confinement. Depending on the strength of the confinement and on the
temperature, we found several scenarios for the trionic distribution, including the coexistence of disordered trions
with a density wave and band insulator phases. Our results show that, due to a proximity effect, staggered density
modulations are induced in regions of the trap where they would not otherwise be present according to the local
density approximation.
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I. INTRODUCTION

Ultracold atomic gases trapped in optical lattices provide
us with a new laboratory to investigate quantum many-body
systems. They allow us not only to realize model Hamiltonians
for electronic systems [1,2] but also to investigate systems
which have no direct counterpart in condensed-matter physics.

A shining example in this context is provided by three-
component Fermi mixtures loaded into optical lattices, which
have been theoretically investigated using a variety of ap-
proaches [3–12]. The results support the overall idea that these
mixtures give access to very different phenomena depending
on the parameter regime under investigation, ranging from
Mott insulating behavior for repulsive interactions [11,12] to
color-superfluidity and trionic phases for attractive interactions
[3–10]. Moreover, an interesting interplay between superfluid-
ity and magnetism has been found to induce domain formation
in globally balanced mixtures with SU(3) attractive interaction
[9], in striking contrast with the balanced two-component case.
This tendency toward phase separation is quite general in the
attractive case, being also present for asymmetric interactions
in the strong loss regime [8]. In addition, it has been also
pointed out [13] that multicomponent Fermi mixtures can help
to shed some light on very complex phenomena connected to
quantum chromodynamics.

Testing these theoretical predictions in a laboratory is
within the experimental capabilities of today, although current
experiments are still performed without optical lattices. In-
deed, mixtures of three different magnetic sublevels of 6Li [14]
or 173Yb [15], as well as 40K or 87Sr [16,17], and mixtures of
the two lowest magnetic states of 6Li with the lowest hyperfine
state of 40K [18] already have been successfully trapped and
cooled in current experiments.

In this paper we focus on attractive interactions for the
three-component mixture and more specifically on the strong-
coupling limit, where the potential energy contribution is
dominant. There is substantial evidence [4,7,9] that for strong-
enough attraction the system undergoes a phase transition

from a color-superfluid phase, where superfluid pairs coexist
with unpaired fermions, to a so-called trionic phase, where
three fermions from different components are bound together
in new fermionic particles called trions. The formation of
these three-body bound states poses new questions about their
spatial arrangement and the formation of new phases involving
trions as elementary objects. Several theoretical results [3,6,9]
suggest that trions tend to spontaneously break the translational
invariance of the lattice into two inequivalent sublattices and
give rise to staggered density modulations for a suitable
range of parameters depending on density, temperature, and
dimensionality. Despite the fact that ultracold gases are charge
neutral, we use the expression charge density wave (CDW)
throughout the paper to identify this phase in analogy with the
terminology used for electronic systems.

The existence of a trionic CDW phase in the presence of
harmonic confinement has been investigated using a density
matrix renormalization group [6] in D = 1, while results
for the homogeneous two-dimensional case obtained within
one-loop renormalization group and mean-field approaches [3]
suggest that the CDW could be the dominant instability at
half-filling. By using dynamical mean-field theory on the
Bethe lattice in D = ∞, it has been shown that the superfluid
phase is stable at half-filling against the CDW in a small but
finite region of coupling for weak attraction [9]. This suggests
that the stability of the trionic CDW phase shows a marked
dependence on the dimensionality.

In the present work we consider a two-dimensional square
lattice for very strong attraction both in the homogeneous case
and in the case of harmonic confinement. In order to restrict the
number of parameters, we focus on a globally balanced system,
where Nσ = N and Nσ is the total number of particles for the
component σ . We anticipate that our results show the existence
of various possible scenarios for the spatial arrangement of
trions once trapped and loaded into an optical lattice depending
on the strength of the harmonic confinement and temperature.

The paper is organized as follows: in the next section we
introduce a model Hamiltonian to describe a three-component
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mixture and we examine the effective trionic Hamiltonian
derived in Ref. [9] as a strong-coupling limit of this model.
We show that this effective Hamiltonian can be mapped
asymptotically at the leading order onto an antiferromagnetic
Ising model which we address using Monte Carlo techniques.
Details of the Monte Carlo technique used are provided in
Sec. III, while the results concerning both the homogeneous
case and the case with harmonic confinement are given in
Sec. IV. Finally, Sec. V concludes with a summary of the
salient points of this paper.

II. MODEL

A three-component mixture of fermions loaded into an
optical lattice can be suitably described by the following
single-band Hubbard Hamiltonian:

H = −J
∑

〈i,j〉,σ
c
†
i,σ cj,σ +

∑
i,σ>σ ′

Uσσ ′ni,σ ni,σ ′

−
∑
i,σ

(
μσ − V0

3r2
p

r2
i

)
ni,σ . (1)

Here ci,σ (c†i,σ ) is the annihilation (creation) operator of
fermions with hyperfine state σ (σ = 1,2,3) on the lattice site
i and ni,σ = c

†
i,σ ci,σ is the fermionic number operator. J is the

hopping amplitude between nearest-neighboring sites 〈i,j 〉,
Uσσ ′ is the on-site two particle interaction between fermions
in different hyperfine states σ and σ ′, and μσ is the chemical
potential for the species σ . The harmonic confining potential is
introduced using the maximally packed radius rp = a

√
N/π

as in Ref. [19], where a is the lattice spacing and its strength is
parametrized by V0. The experimental constraints for realizing
this model by loading a three-component Fermi mixture (e.g.,
6Li [14] or 173Yb [15]) into an optical lattice are discussed in
Refs. [8,9].

As outlined in the Introduction, this model exhibits a rich
variety of physical phenomena. Here, however, we focus on
the strong-coupling trionic phase where bound states of the
three different components are formed [4,7,9] and we can
directly describe the system in terms of the composite trions.
The formation of these composite particles, i.e., the trionic
transition, is extensively discussed, together with their stability
against three-body losses, in Refs. [8–10]. Here we point out
that the strong-coupling regime, i.e., small J/|Uσσ ′ |, which
is the main point of interest in this work, can be realized
in two different ways: (i) by tuning the magnetic field and
correspondingly changing the scattering length, i.e., increasing
|Uσσ ′ |, and (ii) by increasing the depth of the optical lattice
(decreasing J ). Due to the strong dependence of the three-body
loss rate γ3 on the applied magnetic field, at least in the case
of 6Li [14], the results presented in the manuscript essentially
apply to the case of cold gases whenever three-body losses are
negligible, that is, γ3 � 1 and J � |Uσσ ′ |.

As we show in Ref. [9], an effective Hamiltonian for the
trions can be derived by applying strong-coupling perturbation
theory (J/|Uσσ ′ | � 1) to the original Hamiltonian in Eq. (1).
By keeping only the leading-order and next-to-leading-order
terms, which correspond to second- and third-order virtual
hopping processes of the original fermions, the Hamiltonian

has the following form

Heff = −Jeff

∑
〈i,j〉

t
†
i tj + Veff

∑
〈i,j〉

nT
i nT

j

−
∑

i

(
μeff − V0

r2
p

r2
i

)
nT

i . (2)

where ti (t†i ) is the annihilation (creation) operator of a local
trion at lattice site i and nT

i = t
†
i ti is the trionic number

operator. Since trions are color singlets, this Hamiltonian
is analogous to a spinless fermion model with nearest-
neighbor interaction in the presence of an external field. As
a consequence of the Pauli principle double occupancies for
trions are forbidden. The effective trionic hopping parameter
Jeff , the effective interaction between trions in the nearest-
neighboring sites Veff , and the chemical potential μeff are
given, respectively, by

Jeff =
∑
σ,σ ′

J 3

(Uσ,σ ′ + Uσ,σ ′′ )(Uσ,σ ′′ + Uσ ′,σ ′′ )
, (3a)

Veff = −
∑

σ

J 2

Uσ,σ ′ + Uσ,σ ′′
, (3b)

μeff =
∑

σ

μσ +
∑
σ>σ ′

Uσ,σ ′ +
∑

σ

zJ 2

Uσ,σ ′ + Uσ,σ ′′
, (3c)

where in the sum σ , σ ′, and σ ′′ are different from each other
and z is the number of the nearest neighbors [9]. For the
SU(3)-symmetric case these expressions simplify [9,20,21] to

Jeff = 3J 3

2U 2
, (4a)

Veff = 3J 2

2|U | , (4b)

μeff = 3(μσ + U ) − 3zJ 2

2|U | , (4c)

where we assume U < 0 for attractive interactions.
From Eqs. (4a) and (4b), it follows that, due to the specific

features of the underlying three-component Fermi mixture
[22], Jeff/Veff = J/|U | � 1 and therefore the effective trionic
Hamiltonian intrinsically maps onto the strong-coupling limit
of a spinless fermion model, while the corresponding weak-
coupling regime does not have a counterpart in terms of the
three-component mixture. Indeed the trions are not yet formed
for small values of the interaction and the system is in a
color-superfluid state [9].

The effective Hamiltonian is asymptotically dominated by
the interaction term, while the kinetic term is only a subleading
contribution in the strong-coupling regime. Incidentally, it
is worth pointing out that the analogous strong-coupling
approach to a two-component mixture leads instead to a
bosonic model, whose kinetic energy is of the same order
as the interaction term [23].

At the leading order the trionic hopping Jeff is identically
zero and the effective Hamiltonian reduces to

Heff = Veff

∑
〈i,j〉

nT
i nT

j −
∑

i

(μeff − Vi)n
T
i , (5)
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where Vi = V0(ri/rp)2. It is easy to realize that the Hamilto-
nian in Eq. (5) has a structure very similar to the one of an
antiferromagnetic Ising model in a magnetic field, Bi ,

HIsing = I
∑
〈i,j〉

sisj −
∑

i

Bisi, (6)

where the parameters of the two Hamiltonians are related by

I = 1
4Veff, (7a)

Bi = 1
2 (μeff − Vi) − Veff, (7b)

si = 2nT
i − 1, (7c)

with the correspondence “trion” =↑ and “no trion” =↓.
Correspondingly, the homogeneous system (V0 = 0) directly
maps onto an antiferromagnetic Ising model in the presence
of a uniform magnetic field, while the effect of the trap is
equivalent to a nonuniform magnetic field profile. A similar
mapping on a spin model has also been used to investigate
two-component mixtures with hopping imbalance [23].

III. METHOD

In order to investigate the spatial arrangement of trions we
perform Monte Carlo simulations of a two-dimensional lattice
with M sites. By exploiting the mapping established in the
previous section the results can be related to the equivalent
Ising spin model.

The probability in the grand canonical ensemble for a
specific configuration {nT

i } with temperature T = 1/kBβ is
given by

p = Z−1e−βE({nT
i })

= Z−1 exp

⎧⎨
⎩−β

⎛
⎝Veff

∑
〈i,j〉

nT
i nT

j −
∑

i

(μeff − Vi)n
T
i

⎞
⎠

⎫⎬
⎭ .

(8)

The configuration space {nT
i } was sampled by using a

Markov-chain approach [24,25] which is based on creation
or annihilation of a single trion in a given lattice site. This
corresponds to a single spin flip in the equivalent spin model. In
order to have an efficient strategy for the configuration updates,
we used the algorithm of Metropolis et al. [26], where the
transition probability p̄(a → b) between two configurations
is given by

p̄(a → b) = min

[
1,

p(b)

p(a)

]
, (9)

and the stationary probabilities p(a) and p(b) for given
configurations a and b are provided by Eq. (8). This allows the
correct transition probabilities to be generated by computing
only the energy differences between configuration a and b,
connected by a single spin flip in the equivalent spin model.

For the homogeneous system, which is translationally
invariant, we used periodic boundary conditions. In contrast,
a system with harmonic confinement is not translationally
invariant and periodic boundary conditions are unphysical.
Therefore, in order to address trions in a harmonic confine-
ment, we used open boundary conditions, i.e., we set the

occupation of the “missing” neighboring sites at the edges
of the system equal to zero.

Since the Hamiltonian Eq. (5) in the absence of harmonic
confinement is equivalent to an antiferromagnetic Ising model
in a uniform magnetic field, we have used known results
[27–29] to benchmark our simulations. We performed a careful
finite-size scaling in order to confirm that the thermodynamic
regime has effectively been reached. All the results presented
here were obtained from simulations performed on a 100 ×
100 lattice. Moreover, in order to avoid autocorrelations in
the Markov-chain sampling, we also performed a careful
study of the equilibration time τ and of the number of
measures we used to compute each observable. The excellent
agreement of our simulation with previous results for the
homogeneous system (see, e.g., Fig. 2) demonstrates the
robustness of our simulations. Special care in the choice of
the equilibration time was required to avoid unphysical results
in the nonhomogeneous case.

In order to quantitatively characterize the system, we
evaluated several observables such as the local 〈nT

i 〉 and global
average occupation,

〈nT 〉 = 1

M

∑
i

〈
nT

i

〉
, (10)

and the global CDW order parameter,

C = 1

M

∑
i

(−1)i
〈
nT

i

〉
. (11)

Despite the fact that a nonzero value of C allows us to
determine the existence of the CDW order in our system, in
the inhomogeneous case we cannot use this information to
localize the regions where the CDW order takes place. In this
case we identify these regions by directly looking at the density
profile 〈nT

i 〉. Moreover, we further characterize the system by
evaluating the connected density-density correlation function
�(i,j ), defined as

�(i,j ) = 〈(
nT

i − 〈
nT

i

〉) (
nT

j − 〈
nT

j

〉)〉
, (12)

which provides us with useful information on the density
fluctuations and the correlation length.

IV. RESULTS

A. Homogeneous case

We first consider a homogeneous lattice system without
harmonic confinement. In this case, as we mentioned above,
the Hamiltonian [Eq. (5)] can be mapped onto an antiferro-
magnetic Ising model [Eq. (6)] in the presence of a uniform
magnetic field. Correspondingly, the results for the trionic and
the Ising model can be mapped onto each other by the simple
transformations [Eqs. (7a)–(7c)], and the antiferromagnetic
phase in the Ising model corresponds to the CDW phase for
the trionic system.

In order to investigate the CDW order, we first study the
CDW amplitude C as a function of temperature T for different
values of the chemical potential, as shown in Fig. 1. At T = 0
we found the ground state of the system to exhibit staggered
CDW order for 0 < μeff < 4Veff since C �= 0 (see Fig. 2). In
the homogeneous case the CDW phase is always characterized
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FIG. 1. (Color online) CDW amplitude C for the homogeneous
trionic system as a function of the temperature T for different values
of the chemical potential μeff .

by a commensurate density 〈nT 〉 = 0.5; i.e., the density
modulations in the two sublattices are always symmetric
with respect to half-filling. Outside this range of chemical
potentials, that is, for μeff < 0 or μeff > 4Veff , the CDW order
disappears and the ground state is trivially empty 〈nT 〉 = 0 or
full 〈nT 〉 = 1, i.e., in a band insulator phase. For μ = 0 and
μ = 4Veff the CDW is degenerate with an unordered trionic
phase, whose average density is incommensurate and not fixed
by the value of the chemical potential, being 0 < 〈nT 〉 < 0.5
for μ = 0 and 0.5 < 〈nT 〉 < 1 for μ = 4Veff respectively. This
unordered phase has therefore an infinite compressibility and

0 0.1 0.2 0.3 0.4 0.5
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2.5
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3.5
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Bethe appr.
Analytical
Onsager

CDW
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FIG. 2. (Color online) Monte Carlo phase diagram for the two-
dimensional homogeneous trionic system. The red line with circles
marks the critical temperature Tc for the transition from CDW ordered
trions to unordered trions (UT) within our Monte Carlo approach. For
comparison we also plot, after a suitable rescaling given by Eqs. (7a)–
(7c), the corresponding results for the antiferromagnetic Ising model
from Ref. [27] (blue squares), Ref. [28] (dashed green line), and
Onsager’s solution [29] (black diamond).

a very large degeneracy in the ground state at fixed density.
Both of these peculiar features clearly stem from having
neglected the subleading kinetic energy contribution, which
would restore a finite compressibility and remove the ground-
state degeneracy, thus leading to a metallic phase of trions
[30]. Indeed, the next-to-leading-order Hamiltonian would
coincide with the strong-coupling regime of the homogeneous
spinless fermion model, e.g., studied in Refs. [31,32], which
shows a rich phase diagram including homogeneous metallic
phases, commensurate and incommensurate CDWs, and a
phase separation among these two phases.

With increasing temperature the CDW amplitude decreases
and vanishes at a critical temperature, Tc. The rounding
of the transition and the nonzero magnetization beyond the
critical temperature in Fig. 1 are due to finite-size effects.
We summarize our results in the phase diagram in Fig. 2.
For comparison we also show results for the Ising model
from Ref. [27], obtained by the use of an extended Bethe
approximation, and those from Ref. [28], where an analytical
method based on the relation between the singularities of the
free energy and the zeros of the Ising pseudopartition function
on an elementary circle were used. As one can see, we find
very good agreement with our Monte Carlo simulations. We
also compared our results with Onsager’s solution [29] in
the absence of a magnetic field and again found very good
agreement.

B. Trapped case

Having studied the behavior of the homogeneous lattice
system, we now consider the effect of superimposing a
harmonic trapping potential. It is easy to understand that the
overall effect of the external confinement is to compress the
system and increase the density in the center at the expenses
of the interparticle interaction. Therefore one would expect
that the CDW ground state found in the homogeneous case
will eventually include a band insulating (BI) core for large
enough values of the confining potential. The critical threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

k
B
T /V

eff

0

0.05

0.1

0.15

0.2

0.25

C
D

W
 A

m
pl

it
ud

e

V
0
/V

eff
=1

V
0
/V

eff
=3.7

FIG. 3. (Color online) Global CDW amplitude C of the system
in the presence of harmonic confinement as a function of temperature
T for different values of trapping potential.
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FIG. 4. (Color online) Density profiles 〈nT
i 〉 along the cut y = 0.5 obtained within our Monte Carlo simulation (black line with dots)

for kBTeff/Veff = 0.1 and different values of the harmonic confining potential: V0/Veff = 1 (a), V0/Veff = 1.95 (b), V0/Veff = 2.05 (c), and
V0/Veff = 2.50 (d). For comparison we also plot the LDA density profile (orange line). Below each panel we show a color-coded map plot of
the correlation function �(i,j − i) for i = (x,0.5) and j = (x ′,0.5). (See the detailed explanation in the text).

for this phenomenon can be calculated analytically following
the simple argument below.

The energy of the outermost particle at the edge of the CDW
phase is given by

ECDW = −μeff + V0
r2

CDW

r2
p

= −μeff + 2V0 , (13)

where rCDW = √
2rp is the CDW radius [33], while the energy

of this particle once moved to the trap center [for simplicity
we assume a central site at (0,0)] is given by

EBI = −μeff + 4Veff . (14)

From here it directly follows that ECDW < EBI for V0/Veff < 2
and correspondingly it is energetically more favorable to be
in the CDW phase, while for V0/Veff > 2 more particles will
energetically prefer to move from the edges to the trap center
and form a BI core in the center of the trap surrounded by a
CDW ring.

At zero temperature and for very high trapping potential, we
can also expect the CDW ring to disappear and the system to be
in a maximally packed state with radius rp. The energy needed
to move a single particle one step further out from the edge of
the maximally packed region can be easily evaluated. If this
required energy is negative, the system will not be maximally
packed in the ground state. The energy of a particle at the edge
of the maximally packed system sitting at radius rp is given
by

Ep = αVeff + V0, (15)

with α being the average number of occupied nearest-
neighboring sites of the particle (a direct count yields α ≈ 2.6
for our system consisting of 2500 trions). If this particle is
moved one lattice step further out of the packed region, its
energy is given by

Eo = (
V0/r2

p

)
(rp + a)2 = V0

(
1 + 2a/rp + a2/r2

p

)
. (16)
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Therefore, the condition for the CDW ring to completely
disappear is given by

�E = Ep − Eo < 0 ⇒ V0

Veff
>

α

2 a
rp

+ a2

r2
p

. (17)

At zero temperature and N = 2500 particles, rp/a =√
2500/π ≈ 28.2 and the system would be maximally packed

with no CDW ring only for extremely large values of the
trapping potential

V0

Veff
> 36 , (18)

which are about 5 times higher than the largest values
considered in the numerics below.

In order to consider the properties of the system at finite
temperature and for generic values of the Hamiltonian parame-
ters, we address the system by using the Monte Carlo approach
introduced above. We always consider a two-dimensional
square lattice with M = 100 × 100 sites, where the total
number of trions is fixed to NT = N = 2500, while different
values of the parameter V0, which defines the strength of the
harmonic confinement, and temperature T are investigated.

As a first step we calculate the global CDW order parameter
C as a function of temperature T for several values of V0 (see
Fig. 3). According to our calculations, at low temperature the
CDW order parameter C �= 0, and therefore there is always
a finite region where the CDW order takes place for all the
setups we considered (V0/Veff < 6.5).

As already mentioned in Sec. III, we then further char-
acterize the regions where the CDW order takes place by
investigating the density profile 〈nT

i 〉 and the correlation
function �(i,j ). In order to represent the two-dimensional
system in our figures, we take a cross section of the trap along
the y = 0.5 line, which is the closest cut to the center of the
system.

In Fig. 4 we fix the temperature as kBT /Veff = 0.1 and
present results for different values of the harmonic confining
potential. For each setup we plot the density profile 〈nT

i 〉
along the cut y = 0.5 as a function of the x coordinate of
the lattice site i = (x,0.5). Below each panel we also show the
corresponding correlation function �(i,j − i) in a color-coded
map as a function of the distance j − i = (x ′ − x,0) of the two
points along the line y = 0.5.

For comparison with the full Monte Carlo results for the
inhomogeneous system, we also plot the density profiles
obtained within the local density approximation (LDA), which
makes use of the Monte Carlo results for the homogeneous sys-
tem with an effective local chemical potential, μi = μeff − Vi ,
for each lattice site along the trap. Due to the presence of two
inequivalent sublattices in the CDW phase, the LDA density
profile is drawn by considering pairs of neighboring lattice
sites corresponding to different sublattices in the homogeneous
case.

For weak confinement [V0/Veff = 1 in Fig. 4(a)], the
density profile clearly shows staggered density modulations
in the trap center, centered around half-filling. These density
modulations decay very fast at the border of the CDW region,
where the density decays to zero within a few lattice sites.
In this case the LDA provides a fairly good description of
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FIG. 5. Typical configuration of the trapped system for V0/Veff =
1.00 and kBT /Veff = 0.1, showing the presence of density fluctua-
tions close to the edges of the CDW region.

the density profile inside the CDW region, while deviations
can be observed close to the edges. A snapshot of a typical
configuration of the system for this setup is shown in Fig. 5.

In order to better understand these deviations from the
LDA predictions, one has to consider the correlation function
plotted below the density profile in Fig. 4, whose behavior
provides information about the density fluctuations and the
correlation length. Indeed, for i = j , � provides the variance
of the density distribution at the site i along the line y = 0.5,
therefore giving account of the number density fluctuations in
the trap. At the temperature under investigation, the thermal
fluctuations in the bulk of the CDW regions are negligible,
while sizable fluctuations can be observed at the borders of the
CDW regions, as evident also in Fig. 5.
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FIG. 6. Typical configuration of the trapped system for V0/Veff =
2.50 and kBT /Veff = 0.1. The presence of a BI core surrounded by
a CDW ring is evident, with enhanced density fluctuations at the
interface between the two regions.
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FIG. 7. (Color online) Monte Carlo density profile 〈nT
i 〉 for four different values of the harmonic confining potential, V0/Veff = 1.70 (a),

V0/Veff = 1.95 (b), V0/Veff = 2.05 (c), and V0/Veff = 2.50 (d), and different temperatures kBTeff/Veff .

The density fluctuations show a staggered behavior in
correspondence to the majority and minority sublattices of
the disappearing CDW pattern. Only close to the borders of
the CDW domain is there a sizable spread of the correlation
function with the distance j − i, where � also has a character-
istic staggered behavior that vanishes within a few lattice sites.
The apparent left-right asymmetry in the correlation plots is
due to our choice of the lattice position with respect to the
center of the trap, since the first lattice sites around the center
are at x = ±0.5 and there is no central lattice site. At this point
it is convenient to define the central average filling of the trap
as

nT
center =

∑
i=(±0.5,±0.5)

〈
nT

i

〉
4

, (19)

where nT
center = 0.5 for the setup considered in Fig. 4(a).

With the increase of the trapping potential strength, shown
in Figs. 4(b), 4(c), and 4(d), there is a gradual suppression
of the density modulations in the trap center and the CDW
region smoothly migrates away from the trap center evolving
into a CDW ring for large values of the trapping potential. It
is worth noting, e.g., in Fig. 4(b), that the local density in the
central region of the trap fluctuates around an average density

which is significantly higher than half-filling and approaches
nT

center ≈ 0.75 for the setup in Fig. 4(b). For increasing trapping
potential the density modulations eventually disappear in the
center [see Fig. 4(c)], leading to an unordered trionic phase
whose density increases with V0.

As is evident in Figs. 4(b) and 4(c), the LDA approach is
unable to properly describe the density profile in this regime
of parameters, since within the LDA the density modulations
in the center disappear abruptly for much smaller values of
the confinement. The presence of wider stability regions for
the CDW ordering within the full Monte Carlo calculation has
to be explained through a proximity effect: the CDW order
is induced in the trap center from the surrounding ring in the
case nT

center > 0.5, where for the homogeneous case this value
of the density is too high to stabilize the CDW phase. We
recall that in the homogeneous case the CDW order is always
commensurate in our findings and 〈nT 〉 = 0.5. This proximity
effect in the trap can be clearly understood by looking at the
correlation functions, which show the existence of nonzero
correlations between different sites in the central region of the
trap; a feature that is omitted in the LDA description. A similar
effect has also been observed for antiferromagnetic order in a
harmonic trap [34].

013633-7



BACKES, TITVINIDZE, PRIVITERA, AND HOFSTETTER PHYSICAL REVIEW A 86, 013633 (2012)

Finally, for strong confinement [V0/Veff = 2.5 in Fig. 4(d)],
we found that the trions are in a close packed arrangement
in the central region and therefore form a BI core in the trap
center, surrounded by a CDW ring, as evident also in Fig. 6. The
area of this ring decreases for increasing trapping potential,
but as previously mentioned it never vanishes completely for
the values of the confinement potential we considered in our
calculations (V0/Veff < 6.5).

The evolution of the CDW regions at fixed values of
V0/Veff > 1.5 and for increasing temperature T is displayed in
Fig. 7 through the density profile. The CDW ordered region in
the center melts at a temperature which slightly decreases as V0

is increased from V0/Veff = 1.5 in Fig. 7(a) to V0/Veff = 1.95
in Fig. 7(b), while the CDW order in the surrounding ring
is clearly much more robust against thermal fluctuations.
Correspondingly the asymptotic value of the density in the
trapping center nT

center � 0.5 at the melting point for the CDW
core increases as a function of V0. For a strongly confining trap
[V0/Veff = 2.5 in Fig. 7(d)], the CDW order is never present
in the trap center; however, increasing the temperature causes
also the BI core to melt. Further increase of the temperature
has a limited effect on the remaining unordered trionic phase.

Our results for the trapped inhomogeneous system are
summarized in the phase diagram in Fig. 8. The black solid line
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CDW in the ring

UT in the center
CDW in the ring

FIG. 8. (Color online) Phase diagram of the two-dimensional
trionic system in the presence of harmonic confinement. The
black solid line marks the critical temperature Tc for the complete
disappearance of the CDW order in the system. The gray area below
this line and left of the red dashed-dotted line corresponds to the CDW
order in the trap center surrounded by unordered trions (UT). Within
this region the dotted green line marks the transition between a CDW
with nT

center = 0.5 and nT
center > 0.5. The green area below the black

solid line and between the red dashed-dotted line and blue dashed
line corresponds to a CDW order in a ring, while inside and outside
of the ring the trions are in an unordered trionic phase. The unordered
trionic region at the trap center evolves into a band insulator (BI)
within the cyan area, underneath the black solid line and right of the
blue dashed line. At the interface between the BI and CDW regions
as well as outside of the CDW ring the trions are in an unordered
phase. Finally, above the black solid line the whole system is in
an unordered trionic phase since the CDW order disappears due to
thermal fluctuations.

in Fig. 8 always marks the critical temperature Tc for complete
disappearance of the CDW order in the system, irrespective of
the position of the CDW domain. Depending on the harmonic
confinement V0/Veff and the temperature kBT /Veff we get four
different scenarios for the spatial arrangement of trions.

(1) For small values of the confinement strength V0 and
T < Tc (gray area, below black solid line, and left of the
red dashed-dotted line in Fig. 8) we found a large region
of CDW order in the trap center. We have estimated the
entropy per particle S(T ) = ∫ T

0 C(T ′)/T ′dT ′, where C(T ′)
is the specific heat, at the maximum critical temperature
kBTc/Veff = 0.54 to be around 1.4kB . Within this region we
can further distinguish between two different cases: (i) For
low T and small V0, the average central filling is nT

center = 0.5
(left of the green dotted line) and (ii) for increasing T and V0

the average central filling is nT
center > 0.5 (right of the green

dotted line). At low but finite temperature the CDW core in
the trap center disappears for V0/Veff = 2 and nT

center = 0.75
at the transition point.

(2) For intermediate values of the confinement strength
there is a CDW order in a ring around the trap center, while in
the central region and outside of the CDW ring the trions are
in an unordered phase (green area below the black solid line
and between the red dashed-dotted line and the blue dashed
line).

(3) For large values of the confinement strength and low
temperatures there is a BI phase of trions in the center, while
the CDW order takes place in the ring surrounding it (cyan
area, below the black solid line and right of the blue dashed
line). At the interface between the BI and the CDW ring as
well as outside of the CDW ring, the trions are in an unordered
phase.

(4) The complete system is in an unordered trionic phase
for high temperatures (white area above the black solid line).

We note that, as one can see in Fig. 9, for T > 0 the average
central filling nT

center is a continuous function of the trapping
potential and increases for increasing V0, while at T = 0
the occupation changes discontinuously from nT

center = 0.5 to
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FIG. 9. (Color online) Average central filling nT
center as a function

of the harmonic confinement potential V0/Veff for different tempera-
tures.

013633-8



MONTE CARLO STUDY OF FERMIONIC TRIONS IN A . . . PHYSICAL REVIEW A 86, 013633 (2012)

nT
center = 1. In the latter case, the system stays in a CDW

ground state until it becomes energetically favorable to move
trions with large potential energy from outside the CDW
domain to the central region at the expense of the interaction
energy according to the simple analytical argument given at
the beginning of this subsection.

V. CONCLUSION

In this paper we have investigated strongly attractive
three-component Fermi gases loaded into an optical lattice
and have explicitly taken the effect of a harmonic confinement
into account. We have considered the effective strong-coupling
Hamiltonian for the trionic phase derived by us in Ref. [9] and
showed that, at the leading order in J/|U |, the trionic hopping
can be safely neglected. Hence the effective Hamiltonian de-
scribes asymptotically immobile trions with nearest-neighbor
interaction. Since this model has a structure analogous to the
antiferromagnetic Ising model, we performed classical Monte
Carlo simulations to study the spatial arrangement of the
trionic particles in this limit.

First we considered a homogeneous system without har-
monic confinement. In this case the Hamiltonian is equivalent
to an antiferromagnetic Ising model in a uniform magnetic
field. The results of our approach have been found to be in very
good agreement with previous results for the Ising spin model.
They show that the trions are arranged in a staggered density
wave configuration at half-filling while they are unordered
for an incommensurate density. When taking into account the
subleading kinetic energy, the degeneracy of this unordered
phase is likely to be lifted, letting the system evolve into a
homogeneous metallic phase, as expected according to the
available literature on the spinless fermion model at strong
coupling [31,32]. We determined the critical temperature for
the disappearance of the CDW order, which is analogous to
the critical temperature of the equivalent spin model.

In the presence of a harmonic trap we found several possible
scenarios for the spatial arrangement of trions, namely, the
coexistence of CDW domains with unordered trions and BI
regions, depending on the strength of the confining potential
and temperature. The CDW region moves from the center
of the trap to a ring for increasing trapping potential. We
found that the staggered density order is also induced,
due to a proximity effect, in regions of the trap where the
average density is not commensurate, in close analogy to the
behavior at the edges of the the antiferromagnetic domain in
trapped two-component Fermi mixtures [34]. The inclusion
of spatial correlations is crucial for a proper description of
this feature, which is indeed missing in a LDA description of
the system.

An important question arising from this investigation is
how the behavior of the trions is modified by the inclusion of a
finite hopping, considering that already the homogeneous case
gives rise to a very rich phase diagram [31,32]. A mapping
onto an equivalent spin Hamiltonian would lead, however, to
a strongly anisotropic XXZ model [23] and would therefore
require an extension from a classical to a quantum Monte Carlo
approach. We postpone this interesting question to a future
work.
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