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Quantum spin mixing in a binary mixture of spin-1 atomic condensates
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We study quantum spin mixing in a mixture of two spin-1 condensates including coherent interspecies mixing
processes, using condensates of 87Rb and 23Na atoms in the ground lower hyperfine F = 1 manifold as prototype
examples. Adopting the single spatial mode approximation for each of the two spinor condensates, we find
the mixing dynamics reduce to that of three coupled nonrigid pendulums with clear physical interpretation.
With suitably prepared initial states, the spin mixing dynamics allow for the determination of interspecies
singlet-pairing as well as spin-exchange interaction parameters.
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I. INTRODUCTION

A topical area in physics today concerns the control and
manipulation of the spinor degrees of freedom associated with
electrons or atoms. Two highly visible subfields attracting
tremendous theoretical and experimental interests are spin-
tronics in condensed-matter systems [1] and spinor atomic
quantum gases [2]. The latter becomes possible due to optical
trapping, which provides equal confinement for all Zeeman
states within a fixed manifold of hyperfine spin F . As a
result, spin-related phenomena are exhibited and detected
in cold atoms, including various quantum phases [3–8] and
quantum magnetism studies [9], the observations of spin
domain formation [10,11], and the dynamics of spin mixing [5]
and spin squeezing [12,13], etc.

According to the formulation of spinor Bose-Einstein
condensate [3–8], its mean-field order parameter in the
hyperfine F state is generally described by a spinor of 2F + 1
components, strongly influenced by the atom-atom interaction.
Within the low energy limit of interests to atomic quantum
gases, when described by contact interactions, effective atomic
interactions must stay invariant with respect to both spatial
and spin rotation, a property for isotropic interaction when
only s wave is involved. Depending on the value of the
spin-dependent interaction parameters, the ground state of a
spinor condensate can be ferromagnetic or antiferromagnetic
(polar) for F = 1 [3–5], while an additional cyclic phase
appears when F = 2 [6–8]. Higher spin cases are generally
more complicated and so far have limited experimental access.

Law et al. [5] pioneered the study of atomic spin mixing.
They adopted numerical approaches and studied quantum spin
mixing dynamics in the absence of an external magnetic (B)
field [5]. Subsequent theoretical and experimental efforts have
contributed to observations and controls of coherent quantum
spin mixing dynamics, tasks rarely feasible in other quantum
many-body systems [14–22].

In the semiclassical picture, using the mean-field approxi-
mation and adopting the single spatial mode approximation
(SMA) [5,23], coherent spin mixing dynamics in a spin-1
condensate is described by a nonrigid pendulum, displaying
periodic oscillations and resonance behavior in an external
B field [24,25]. This picture proves to be widely popular
with experimentalists and has been very successful [14–19].
Analogous efforts have been applied to spin-2 condensates, for

instance, in the higher hyperfine manifold of the ground-state
87Rb atoms [19–22]. An interesting application suggested
by Saito and Ueda [26] provides a practical method for
determining the unknown spin coupling parameters (polar or
cyclic) relying on the mixing dynamics with suitably prepared
initial states.

In recent years, several groups have studied intensively
mixtures of atomic spinor condensates [27–33]. Many inter-
esting properties for mixture spinor condensates are by now
reasonably well understood, both when an external B field
is absent or when it is present. Like in the treatment for a
single species spinor condensate, the semiclassical mean-field
approximation is usually adopted for the mixture, while the
full quantum approach is limited to atom number dynamics
in a few restricted spatial modes of spinor condensates. The
ground-state properties for the mixture are found to a large
extent to be determined by the yet unknown interspecies spin-
exchange interaction parameter. If it is antiferromagnetic and
is sufficiently strong, interesting phases, such as highly frag-
mented ground states, could arise [29,30]. Additionally, there
exists a so-called broken-axisymmetry phase when an external
B field is present [31]. Within the degenerate internal state
approximation [34], which considers atomic interaction poten-
tials as an appropriately weighted contribution from potential
curves associated with the coupled electronic spins of the two
valence electrons, one for each atom (alkali-metal atoms as
considered here) [27,35,36], the interspecies singlet-pairing
interaction vanishes as all interspecies interaction parameters
are determined by a total of only two scattering lengths for
the electronic singlet and triplet channels, respectively. This
approximation provides a zeroth-order estimate for the 87Rb
and 23Na atom mixture we study. Experiences with spin-
exchange interactions within each species show otherwise;
i.e., there is a need for more atomic interaction parameters.

We therefore propose to study analogous spin mixing dy-
namics as considered before in the F = 2 spinor condensates
to calibrate the interspecies spin-exchange and singlet-pairing
interactions with suitably prepared initial states [26].

II. THE MODEL OF A BINARY SPIN-1
CONDENSATE MIXTURE

The binary mixtures of atomic spin-1 condensates have
been discussed in several earlier studies [28–31]. In addition
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to the individual Hamiltonian for each species of the two
spinor condensates, additional contact interactions exist be-
tween the two species which can be decomposed into spin-
independent and spin-dependent terms as well, described by
V12(�r1 − �r2) = 1

2 (α + βF1 · F2 + γP0)δ(�r1 − �r2) [29,30] with
appropriate interactions parameters α, β, and γ [29,30]. Take
spin-1 condensates of 87Rb and 23Na atoms as examples; the
total Hamiltonian is then given by

Ĥ = Ĥ1 + Ĥ2 + Ĥ12,

Ĥ1 =
∫

dr
{
�̂†

m

(
− h̄2

2M1
∇2 + V o

1 − p1m + q1m
2

)
�̂m

+ α1

2
�̂

†
i �̂

†
j �̂j �̂i + β1

2
�̂

†
i �̂

†
kF1ij · F1kl�̂l�̂j

}
,

Ĥ2 =
∫

dr
{
�̂†

m

(
− h̄2

2M2
∇2 + V o

2 − p2m + q2m
2

)
�̂m

+ α2

2
�̂

†
i �̂

†
j �̂j �̂i + β2

2
�̂

†
i �̂

†
kF2ij · F2kl�̂l�̂j

}
,

Ĥ12 = 1

2

∫
dr

{
α�̂

†
i �̂

†
j �̂j �̂i + β�̂

†
i �̂

†
kF1ij · F2kl�̂l�̂j

+ 1

3
γ (−)i+j �̂

†
i �̂

†
−i �̂j �̂−j

}
, (1)

where Ĥ1 and Ĥ2 describe a single species system of 87Rb
and 23Na atoms, respectively, with the interspecies interaction
described by H12. V o

1 , M1, p1, and q1 (V o
2 , M2, p2, and q2),

respectively, denote the optical trap, the atomic mass, and the
linear and quadratic Zeeman shifts of a 87Rb (23Na) atom.
Both the nuclear spins and the valence electron spins are the
same for the two species. In the subspace of the hyperfine spin
F = 1, the linear Zeeman shifts for both 87Rb and 23Na atoms
are thus almost equal: p1 � p2 (≡ p). �̂i(�r) [�̂i(�r)] annihilate
a 87Rb (23Na) atom at the position �r .

The F = 1 states for both 87Rb and 23Na atoms are well
studied, and their respective atomic collision parameters are
known precisely. References [37,38] provide, respectively, the
numerical values for the a0 and a2 parameters of the F = 1
state for 87Rb and 23Na atoms, which then gives α1/2 and β1/2.
While a number of experimental and theoretical studies have
previously addressed collisions between 87Rb and 23Na atoms
[35,36], the most recent one by Pashov et al. [36] provides a
well-converged data set for singlet and triplet scattering lengths
of as = 70(aB) and at = 109(aB ). This can be used to predict
the required set of atomic intraspecies collision parameters
α, β, and γ , although the actual process is complicated and
therefore yet to be completed. What is certain concerns the
value of the spin-exchange interaction γ , it will actually be
strong, instead of being weak or vanishing. Thus our study
described below provides a worthy alternative approach.

We adopt the mean-field approximation and define for
each condensate species a mode function ψ(�r) or φ(�r),
justified by the fact spin-independent density interaction
terms are usually much stronger than spin-dependent ones.
We therefore take �i(�r) ≡ 〈�̂i(�r)〉 =√

n
(1)
j e

iθj ψ(�r) and �i(�r) ≡
〈�̂i(�r)〉 =√

n
(2)
j e

iϕj φ(�r). The spin dynamics are then governed by

the spin-dependent energy functional:

E =
∑
j=1,2

Ej + E12,

Ej = −pjmj + qj

(
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√(
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]
,
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2
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) √
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√
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(1)
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, (2)

where n1,2 = ∑
j n

(1,2)
j , m1,2 = n

(1,2)
1 − n

(1,2)
−1 , η1 = θ1 +

θ−1 − 2θ0, η2 = ϕ1 + ϕ−1 − 2ϕ0, and η3 = θ−1 − θ1 + ϕ1 −
ϕ−1. The interaction parameters are now redefined to ab-
sorb the relevant multipliers: β ′

1 = β1
∫ |ψ(�r)|4d�r , β ′

2 =
β2

∫ |φ(�r)|4d�r , and (β ′,γ ′) = (β,γ )
∫ |ψ(�r)|2|φ(�r)|2d�r . We

note that
∫ |ψ(�r)|2d�r = ∫ |φ(�r)|2d�r = 1. When the two

species are immersible, the overlap between ψ(�r) and φ(�r)
is significantly reduced, leading to diminished β ′ and γ ′,
essentially reducing the system to two stand-alone spin-1
condensates.

Although complicated in form, the above Hamiltonian gives
rise to dynamics that can be interpreted simply in terms
of three coupled nonrigid pendulums, with three pairs of
canonical conjugate variables: (n(1)

0 ,η1), (n(2)
0 ,η2), and (m3 =

m1 − m2,η3). Their corresponding equations of motion are
given by

ṅ
(1)
0 = −2

h̄

∂E
∂η1

, η̇1 = 2

h̄

∂E
∂n

(1)
0

,

ṅ
(2)
0 = −2

h̄

∂E
∂η2

, η̇2 = 2

h̄

∂E
∂n

(2)
0

, (3)

ṁ3 = −4

h̄

∂E
∂η3

, η̇3 = 4

h̄

∂E
∂m3

,

as illustrated schematically in Fig. 1.

III. DETERMINING INTERSPECIES SPIN-DEPENDENT
INTERACTIONS

When discussing spin mixing in a spin-2 condensate, Saito
and Ueda [26] proposed a scheme to determine the value
of intraspecies spin singlet-pairing interaction by choosing
an elementary process (M (1)

F =)0 + (M (2)
F =)0 ↔ 2 + (−2)

which occurs only when the spin singlet-pairing interaction
is nonvanishing. With a suitably chosen initial state of
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FIG. 1. (Color online) A schematic illustration for the three
coupled nonrigid pendulums, with three pairs of canonical variables:
(n(1)

0 ,η1), (n(2)
0 ,η2), and (m3 = m1 − m2,η3). The first two pairs

describe intraspecies spin mixing dynamics, while the remaining third
pair denotes interspecies spin mixing dynamics.

zero magnetization, the mixing dynamics is governed by
coupled first-order ordinary differential equations, which
contain unknown parameters like singlet-pairing interactions
and quadratic Zeeman shifts. The analytic solutions can then
be compared with the experimental measured dynamics to
determine the unknown atomic interaction parameters.

The present study shows that an analogous approach can
be taken to determine the values of interspecies spin-exchange
and singlet-pairing interaction parameters, β ′ and γ ′, for a
binary mixture of spin-1 87Rb and 23Na atom condensates,
by making use of selected elementary collision processes. In
order to determine β ′ and γ ′, from the Hamiltonian of Eq. (1),
we know their relevant collision processes can be categorized
into three types with respective interaction strengths:

(1) β: �1 + �0 ↔ �0 + �1, �−1 + �0 ↔ �0 + �−1;
(2) β − γ /3: �1 + �−1 ↔ �0 + �0, �−1 + �1 ↔ �0 +

�0;
(3) γ : �1 + �−1 ↔ �−1 + �1.
Elementary processes in the first and third types are driven

only by the interspecies spin-exchange interaction or by
the singlet-pairing interaction. Therefore they are potential
candidates for determining β ′ and γ ′, respectively. As a result,
our proposal for their determination consists of two steps.

In the first step, we try to determine γ ′ from spin mixing
dynamics based on the elementary process of the third type by
preparing an initial state,

� =

⎛
⎜⎜⎝

√
n

(1)
1 eiθ1

0√
n

(1)
−1e

iθ−1

⎞
⎟⎟⎠ ψ, �j =

⎛
⎜⎜⎝

√
n

(2)
1 eiϕ1

0√
n

(2)
−1e

iϕ−1

⎞
⎟⎟⎠ φ. (4)

The reason why we first choose �1 + �−1 ↔ �−1 + �1

is because this elementary process is decoupled from the
intraspecies spin-exchange processes, �1 + �−1 ↔ �0 + �0

and �1 + �−1 ↔ �0 + �0, when the quadratic Zeeman shifts
qj are tuned to large negative values, for instance, with
an off-resonant microwave field [39,40] or to large positive
values with an enhanced uniform B field. Therefore, the
population of the MF = 0 state remains at zero, and the spin
mixing dynamics of Eq. (3) reduce to the following pair of

equations:

ṁ3 = γ ′

12h̄

√[
4n2

1 − (m + m3)2
][

4n2
2 − (m − m3)2

]
sin η3,

η̇3 = β ′
1 − β ′

2

h̄
m + β ′

1 + β ′
2 − β ′ + γ ′/6

h̄
m3

− γ ′

6h̄

2
(
n2

1 + n2
2

)
m3 − 2

(
n2

1 − n2
2

)
m + m2m3 − m3

3√[
4n2

1 − (m + m3)2
][

4n2
2 − (m − m3)2

]
× cos η3. (5)

Based on the dynamics following Eq. (5), we can deduce
the sign of γ ′ from subsequent spin mixing dynamics. By
preparing an initial state with sin η3 > 0, we infer γ ′ > 0 if
m3 increases during the initial short time period of the spin
mixing dynamics; whereas if it decreases, we know γ ′ < 0.
To determine γ ′, we can prepare a suitable initial state, for
example, η3 = π/2 and m1 = m2 = 0, which leads to

(ṁ3)2 = γ ′2

144h̄2

[(
m2

3 − 4n2
1

)(
m2

3 − 4n2
2

) − C2m4
3

]
, (6)

with C = |6(β ′
1 + β ′

2 − β ′)/γ ′ + 1|. If C < 1, ṁ3 = 0 gives
four roots −x2, −x1, x1, and x2, where x1/2 =√

2[n2
1 + n2

2 ∓
√

(n2
1 − n2

2)2 + 4C2n2
1n

2
2]/(1−C2). For C � 1, how-

ever, only two solutions −x1 and x1 exist. The solution for the
mixing dynamics is expressed in terms of the Jacobian elliptic
functions sn(·) and cn(·) as

m3(t) = x1sn

(
x2γ

′t
√

1 − C2

12h̄
,
x1

x2

)
, for C � 1,

m3(t) = x1cn

⎛
⎜⎝(K

⎛
⎝ x1√

x2
1 + x2

3

⎞
⎠ −

γ ′t
√(

x2
1 + x2

3

)
(C2 − 1)

12h̄
,

x1√
x2

1 + x2
3

⎞
⎟⎠ , for C � 1, (7)

where K(·) is the complete elliptic integral of the first kind

and x3 =
√

2[n2
1 + n2

2 +
√

(n2
1 − n2

2)2 + 4C2n2
1n

2
2]/(C2−1).

Next, comparing the analytic formulas of Eq. (7) for the
subsequent spin mixing dynamics, we can determine the value
of γ ′. First, we evaluate C from the experimentally measured
oscillation amplitude x1 of m3(t) as C2 = x2

1 − 4n2
1 − 4n2

2 +
16n2

1n
2
2/x

2
1 . Second, based on the known parameters C, x1, x2,

and x3 and on the experimentally measured oscillation period
of m3(t), we can then deduce the value of γ ′.

In Fig. 2, we illustrate our numerical results which confirm
the stability of the third type elementary interaction processes
and the validity of the analytic solutions Eqs. (7). The initial
state is taken as � = ψ

√
n1(1,0,1)T /

√
2, � = φ

√
n2(1,0, −

i)T /
√

2, with n1 = n2 = n and n = 2 × 104. We further
choose β ′

1/h̄ = −22.4893 × 10−4 Hz and β ′
2/h̄ = 303.816 ×

10−4 Hz. A noise at the level of 10−5 in the population
of the MF = 0 spin state for both atomic species is also
included. The B field is set at a large enough value to suppress
the intraspecies spin-exchange process with the quadratic
Zeeman shifts satisfying q1 = 40|β ′

1|n and q2 = q1�E1/�E2,
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(a)

FIG. 2. (Color online) Population dynamics for every spin com-
ponent. For panels (a)–(c), the interspecies interaction parameters
used are β ′ = 5|β ′

1| and γ ′ = 2|β ′
1|. For panels of (d)–(f), β ′ = 5|β ′

1|
and γ ′ = −2|β ′

1| are used. (a) For 87Rb atoms, the blue solid line, the
red dashed line, and the black dotted-dash line represent the MF = 1,
0, and −1 components, respectively. (b) As in panel (a), but for 23Na
atoms. (c) Time-dependent m3. The blue solid line and the red square
symbols denote numerical and analytical solutions, respectively. (d)
As in panel (a), but with γ ′ = −2|β ′

1|. (e) As in panel (b), but with
γ ′ = −2|β ′

1|. (f) As in panel (c), but with γ ′ = −2|β ′
1|.

where �E1 and �E2 are the hyperfine splittings of 87Rb
and 23Na atoms, respectively. In Figs. 2(a)–2(c), β ′ = 5|β ′

1|
and γ ′ = 2|β ′

1| are used, while β ′ = 5|β ′
1| and γ ′ = −2|β ′

1|
are used for Figs. 2(d)–2(f). The time evolution for each
condensate species is shown in Figs. 2(a) and 2(d) and in
Figs. 2(b) and 2(e), respectively, for 87Rb and 23Na atoms.
We indeed confirm that intraspecies spin mixing dynamics
are suppressed by the large quadratic Zeeman shifts as there
is essentially no atomic population remaining in the MF = 0
spin component eventually. The evolutions for m3 are shown
in Figs. 2(c) and 2(f); they also confirm our predictions based
on the insights gained from the analytical solutions that m3

increases or decreases in the beginning when γ ′ > 0 or γ ′ < 0.
The numerical simulations denoted by solid blue lines agree
well with the analytical solutions of Eqs. (7) denoted by red
square symbols. We further note that ṅ

(1)
1 = −ṅ

(1)
−1 = −ṅ

(2)
1 =

ṅ
(1)
2 = ṁ3/4 with the initial state used in this case. As a result,

we can determine the sign of γ ′ from the population of any
spin component or species.

In the second step, we determine the value of β ′, making
use of the results from the first step. From the known value of
C after the first step, β ′ becomes partially determined to within
the following two choices

β ′
∓ = β ′

1 + β ′
2 ∓ (C ∓ 1)γ ′/6. (8)

To fully determine β ′, we can choose a related elementary
interaction process, for example, the elementary process as
described in the first type �1 + �0 ↔ �0 + �1, and prepare

the initial state

� =

⎛
⎜⎜⎝

√
n

(1)
1 eiθ1√

n
(1)
0 eiθ0

0

⎞
⎟⎟⎠ ψ, � =

⎛
⎜⎜⎝

√
n

(2)
1 eiϕ1√

n
(2)
0 eiϕ0

0

⎞
⎟⎟⎠ φ. (9)

As before we can isolate the elementary collision process
from other ones by suppressing intraspecies spin mixing
dynamics, such as using a sufficiently strong uniform external
magnetic field to guarantee �−1 = �−1 = 0. The interspecies
spin mixing process is only induced by the β ′ term; thus the
spin mixing dynamics is governed by the evolution of m3

through

ṁ3 = − β ′

2h̄

√(
m2 − m2

3

)
(2n1 − m − m3)(2n2 − m + m3)

× sin
η1 − η2 − η3

2
,

η̇3 = β ′
1 − β ′

2

h̄
m + β ′

1 + β ′
2 − β ′

h̄
m3 + γ ′

6h̄
m3

− β ′

2h̄

m3
√

(2n1 − m − m3)(2n2 − m + m3)√
m2 − m2

3

. (10)

β ′ can then be fully determined as follows. First we can
infer the sign of β ′ from the initial stage of the time
evolution for m3, as in the earlier section on determining the
sign of γ ′. For an initial state with � = ψ

√
n1(1,1,0)T /

√
2

and � = φ
√

n2(1, − i,0)T /
√

2, where (η1 − η2 − η3)/2 =
θ1 − θ0 − ϕ1 + ϕ0 = −π/2, we confirm β ′ > 0 (β ′ < 0) if
m3 initially increases (decreases). The actual value of β ′
is determined by comparing the analytic or numerical so-
lutions using the two choices of β ′ from Eq. (8) to ex-
perimental measurements. Again we assume n1 = n2 = n =
2 × 104, β ′

1/h̄ = −22.4893 × 10−4 Hz, β ′
2/h̄ = 303.816 ×

10−4 Hz, β ′ = 5|β ′
1|, γ ′ = 2|β ′

1|, q1 = 30|β ′
1|n, and q2 =

q1�E2/�E1, with the analytic solution for m3,

m3(t) = x1(x2 − x4) + (x1 − x2)x4x
2

(x2 − x4) + (x1 − x2)x2
,

(11)
x = sn(d4 − t

√
d3/d2,d1),

where xj=1,2,3,4 are the four roots of ṁ3 = 0, arranged
in descending order x1 > 0 > x2 > x3 > x4, and
d1 = √

(x1 − x2)(x3 − x4)/(x1 − x3)/(x2 − x4), d2 = 2/√
(x1 − x3)(x2 − x4), d3 = [4β ′2 − (β ′

1 + β ′
2 + β ′ + γ ′/3)2]/

16h̄2, and d4 = F [arcsin
√−(x2 − x4)x1/(x1 − x2)/x4,d1],

with F (·) being the elliptic integral of the first kind.
Figure 3 shows population dynamics for all spin com-

ponents. Due to the large yet unequal quadratic Zeeman
shifts q1 and q2, suppression of the intraspecies spin mixing
dynamics leads to a suppressed amplitude for the interspecies
spin-exchange dynamics. As a result, the quadratic Zeeman
shifts cannot be tuned to too large a value, causing nonzero
population in the MF = −1 spin component especially for
23Na atoms as is illustrated in Fig. 3(d).

The other related elementary channels can be employed as
well to determine the interspecies spin-exchange interaction.
Among them, two are capable of determining the combined
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FIG. 3. (Color online) Population dynamics for all spin com-
ponents, with the interspecies interaction parameters β ′ = 5|β ′

1|
and γ ′ = 2|β ′

1| and the quadratic Zeeman shifts q1 = 30|β ′
1|n and

q2 = q1�E2/�E1. (a) For 87Rb atoms, the blue solid line and red
dashed line represent the MF = 1,0 components, respectively. (b) As
in panel (a), but the MF = −1 component is represented by the black
dotted dash line. (c) and (d) As in panels (a) and (b), respectively,
but for 23Na atoms. (e) Time evolution of m3. The blue solid line and
the red square symbols denote numerical and analytical solutions,
respectively.

parameter β ′ − γ ′/3, which can be used further aided by a
determination of the sign of β ′ − γ ′/3.

Before conclusion, we hope to stress that the special mixture
illustrated in this study involves a spin-1 condensate with
ferromagnetic interaction (87Rb) and a polar spin-1 condensate
(23Na) with antiferromagnetic interaction. More generally the

procedure we suggest for determining the interspecies inter-
action parameters remains applicable for mixtures with two
spin-1 ferromagnetic condensates or two antiferromagnetic
condensates.

IV. CONCLUSION

We discuss coherent spin mixing dynamics for a binary
mixture of spin-1 condensates. Under mean-field approxi-
mations, the dynamics are found to reduce to a simple one
corresponding to three coupled nonrigid pendulums: one for
each of the two spin-1 condensates as modeled previously
for a single stand-alone spin-1 condensate [25] and a third
one for the difference in the magnetization between the
two atomic species. By tuning the quadratic Zeeman shift
to a large enough value, intraspecies spin mixing dynamics
can be suppressed, resulting in a pure interspecies spin
mixing dynamics. Using suitably prepared initial states with
zero population in the MF = 0 state for both species, we
can determine the value of the interspecies singlet-pairing
interaction by comparing analytic formulas for the dynamics
to experimental measurements, and at the same time we can
partially determine the value of the interspecies spin-exchange
interaction parameter β ′. Next, starting with an alternative
initial state containing no population in the MF = −1 state
for both atomic species, and using the two possible values for
β ′ partially determined in the first step, we can numerically
or analytically solve the dynamics and compare them with
experimental measurements to determine the correct value
of β ′.
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Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock,
Phys. Rev. Let. 92, 040402 (2004).

[21] T. Kuwamoto, K. Araki, T. Eno, and T. Hirano, Phys. Rev. A 69,
063604 (2004).
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