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Coherent cross talk and parametric driving of matter-wave vortices
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We show that the interaction between vortices and sound waves in atomic Bose-Einstein condensates can be
elucidated in a double-well trap: With one vortex in each well, the sound emitted by each precessing vortex
can be driven into the opposing vortex (if of the same polarity). This cross talk leads to a periodic exchange of
energy between the vortices which is long range and highly efficient. The increase in vortex energy (obtained
by simulations of the Gross-Pitaevskii equation) is experimentally observable as a migration of the vortex to
higher density over just a few precession periods. Similar effects can be controllably engineered by introducing
a precessing localized obstacle into one well as an artificial generator of sound, thereby demonstrating the
parametric driving of energy into a vortex.
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I. INTRODUCTION

In a quantum fluid, such as an atomic Bose-Einstein
condensate (BEC) or superfluid helium, vortices possess quan-
tized circulation, synonymous with them being a topological
defect in the macroscopic phase of the underlying Bose-
Einstein condensed component. Quantized vortices, vortex
rings, vortex lattices, and vortex tangles have been the subject
of experimental study in the context of superfluid helium for
over 50 years [1], and in which recent emphasis has been on
their role in quantum turbulence [2,3]. Meanwhile, since the
late 1990s, there has been fast-growing interest in vortices
in Bose-Einstein condensates [4,5], where the controllability
and accessibility of these gases has led to the experimental
generation of single vortices [6,7], giant vortices [8], vortex
dipoles [9], soliton-vortex hybrids [10], and turbulent vortex
tangles [11]. It is worthy of note that recent breakthroughs in
imaging of both helium [12] and BEC [13] systems now enable
the dynamics of quantized vortices to be monitored in real time.

The nature of the vortex-sound interaction in quantum fluids
is far from clear [14]. The superfluid topology constrains
quantized vortices to disappear only by annihilating with an
oppositely charged vortex or by vanishing at the edge of the
system (where they effectively annihilate with their image). In
the limit of zero temperature and for a uniform condensate,
sound waves are the low-lying excitations of the system
and provide the only energy sink for vortex decay [15]. For
example, at zero temperature the reconnection of vortex lines
[17] and the acceleration of a vortex line segment both generate
sound waves [18,19], dissipating the vortical excitation. In the
latter case, the acceleration that drives sound emission may
arise from the influence of velocity fields of other vortices
[20,21], Kelvin-wave excitations of vortex lines [22,57–59],
or the Magnus force arising from an inhomogeneous ambient
density, for example, in a trapped condensate [23]. The exper-
imentally observed decay of vorticity at very low temperature
in superfluid He [24,25] is thought to be primarily due to
the Kelvin-wave dissipation route, with reconnections playing
only a secondary role [3].
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Less well understood is the inverse process, that is, the
absorption of sound by a quantized vortex. Insight may be
gleaned from more general studies of vortex-sound interac-
tions in fluid dynamics [14]. For example, an acoustic ray
model has predicted that certain trajectories of sound wave
can spiral into the core of a vortex filament, transferring energy
into the vortical flow [26,27]. While sound waves can induce
the nucleation of vortices through the collapse of cavitating
bubbles [28,29], sound absorption by pre-existing vortices
is not thought to play a significant role in homogeneous
superfluid helium systems, for example, turbulent states, but
may become considerable in atomic BECs due to their confined
geometry. Indeed, the lack of sound-induced decay of a vortex
precessing in a harmonically trapped BEC has been attributed
to the reabsorption of the emitted sound by the vortex [23]
(although related works [4,18] predict that the sound emission
itself may be prohibited in a harmonic trap due to the sound
wavelength exceeding the size of the system). The harmonic
nature of the trap appears key to supporting a sound-vortex
equilibrium, with trap anharmonicities inducing net vortex
decay [23,30], in close analogy with dark solitons [31,32].

It is difficult to resolve and elucidate the interaction of
sound with a vortex in single trapped condensate [21,23] due
to their co-habitation in the trap. Furthermore, where multiple
vortices exist in a system we may expect that they may interact
via sound waves. However, within a single condensate, the
interaction between vortices is dominated by the effect of their
velocity fields. Such interaction is, for example, the dominant
interaction mechanism in Tkachenko oscillations of a vortex
lattice [54] and the dynamics of vortex dipoles [52,53], clusters
[56], and arrays [57].

Here we will employ a double-well trap geometry to
study the emission and absorption of sound between two
vortices. With a low density channel between the wells and one
vortex in each “subsystem,” the velocity-induced vortex-vortex
interaction is dramatically reduced but sound waves can still
pass between the wells. By examining the dynamics of each
vortex in their weakly connected subsystems, we may then
infer the role of sound waves between vortices.

It is interesting to note that analogous questions exist over
the acoustic properties of dark solitons. Like vortices, dark
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solitons radiate sound waves under acceleration and become
stabilized in harmonic traps [31,33]. The soliton-sound in-
teraction was emphasized by the prediction of parametric
pumping of sound into a dark soliton [20]. Moreover, a double-
well geometry was recently shown to give insight into this
interaction [34]: With one soliton in each well, a long-range
sound-mediated interaction was evidenced by large-scale
exchanges in energy between the solitons, controllable by the
intertrap barrier.

The trap system and the theoretical model are outlined in
Sec. II. In Sec. III we consider how a single vortex behaves in
this double trap system. While these are not the main results
of our work, it is an essential prerequisite to understanding the
dynamics in later sections. In Sec. IV we progress to consider
how two vortices, one in each well, “cross talk,” that is, how
they interact via the exchange of sound waves. In Sec. V we
replace one of the vortices with a moving obstacle, and explore
how the sound generated interacts with the remaining vortex.
In Sec. VI we summarize and discuss our theoretical findings.
In Sec. VII we demonstrate the same qualitative behavior in
an experimentally achievable double trap geometry. Finally, in
Sec. VIII we draw conclusions of our work.

II. THEORETICAL FRAMEWORK AND TRAP SETUP

We consider a BEC at ultracold temperatures such that
thermal and quantum fluctuations can be neglected and
that the system is well parametrized by a mean-field order
parameter �(r,t) which satisfies the Gross-Pitaevskii equation
(GPE) [35]. We assume a quasi-two-dimensional (quasi-2D)
geometry, whereby harmonic trapping is sufficiently tight
in one dimension, taken here to be the z direction, to
freeze out the corresponding dynamics. Then, using the
decomposition �(r,t) = ψ(x,y,t)ψz(z), one can integrate
out the time-independent axial component ψz(z) from the
three-dimensional (3D) GPE. The transverse order parameter
ψ(x,y,t) then satisfies the 2D GPE,

ih̄∂tψ =
(

− h̄2

2m
∇2 + V (x,y) + g|ψ |2 − μ

)
ψ, (1)

where V (x,y) is the transverse trapping potential and m is the
atomic mass. The 2D chemical potential μ is related to the 3D
chemical potential μ′ via μ = μ′ − h̄ωz/2, where ωz is the trap
frequency in the axial direction. s-wave atomic scattering, of
length a, gives rise to the nonlinear term with coefficient g =
2
√

2πh̄2a/mlz, where lz = √
h̄/mωz is the harmonic oscillator

length of the frozen dimension.
The complex order parameter can be written as ψ(x,y,t) =√

n(x,y,t) exp[iφ(x,y,t)], where n(x,y,t) and φ(x,y,t) are the
distributions of atomic density and phase, respectively. Fur-
thermore, the phase defines the fluid velocity v = (h̄/m)∇φ.
In 2D vortices are singular points about which the phase
wraps around by an integer multiple of 2π and the condensate
flows azimuthally. The density is pinned to zero at the central
point creating a well-defined vortex core which relaxes to its
unperturbed value at a distance of the order of the healing
length ξ = h̄/

√
mng.

We will initially consider an idealized double-well system
consisting of two connected harmonic traps,

V (x,y) = 1
2mω2[(|x| − xc)2 + y2]. (2)
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FIG. 1. Vortex-free density profile along the x axis (black solid
line) in the double harmonic potential (gray solid line) with a barrier
height at x = 0 of V0 = 0.6μ. The corresponding Thomas-Fermi
profile nTF = (μ − V )/g is also shown (black dashed line).

Each trap is circularly symmetric with frequency ω and
displaced from the origin by ±xc, as illustrated in Fig. 1. The
barrier separating the trap, which has a minimum height of
V0 = 1

2mω2x2
c , determines the connectivity between the wells

and thus the degree to which sound and vortices can propagate
between wells. The transfer of sound waves, which have energy
of order μ, between the wells will be possible for V0 < μ and
prohibited for V0 � μ. The capacity for vortices to propagate
between wells will depend additionally on the energy of the
vortex.

While this trap is not directly achievable in experiments
due to its sharp feature at x = 0, it provides a convenient
geometry to consider theoretically: It identifies the main
physical effect in a “clean” manner and allows us to draw on
the established knowledge of vortices in harmonic traps. After
gaining understanding of the energy exchange processes, we
will then demonstrate the same dynamics in experimentally
achievable setups.

The 2D GPE is solved numerically using the Crank-
Nicholson method [37]. Over the course of a typical simu-
lation, the relative change in norm and energy 	N/N and
	E/E are of order 10−6, that is, the solution is numerically
well converged. The vortex-free ground state, with density
profile nVF(x,y), is found by propagating the 2D GPE in
imaginary time. Vortices are further imposed by forcing
the phase distribution during imaginary time propagation
to

φ(x,y) =
∏

i

qiarctan

(
y − yi

x − xi

)
, (3)

where i is the index of a vortex with charge qi located at
(xi,yi). The converged state is then the condensate system with
vortices at the desired locations. These are then propagated
in real time according to Eq. (1). Note that since multiply
charged vortices are energetically unfavorable compared to
multiple singly charged vortices [1,35], we shall only consider
singly charged vortices |qi | = 1 (relative polarity may change).
We will infer the change in energy of vortices in our system
through changes in their position, for example, a drift to lower
density signifies a decrease in the vortex energy. This is exactly
what would be done in reality since vortex energy cannot be
directly measured.

We assume units in which length, speed, and energy are
expressed in terms of the 2D healing length ξ = h̄/

√
mn0g,
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speed of sound c = √
n0g/m, and chemical potential μ = n0g,

where n0 is the peak density.
The ratio μ/h̄ω specifies the nature of the condensate. For

μ/h̄ω � 1 the system is dominated by the trap and its ground
state will approximate the Gaussian harmonic oscillator. For
μ/h̄ω � 1 the repulsive interactions dominate and lead to a
broad condensate profile. Then the kinetic energy of the ground
state, which depends on the gradient of the density, becomes
sufficiently small that one can neglect it. Under this Thomas-
Fermi (TF) approximation, the density profile has the analytic
form nTF = (μ − V )/g [35]. We will focus on a system
corresponding to μ/h̄ω = 10. An example density profile for
this system is shown in Fig. 1. The density is closely matched
by the TF prediction, with the only significant deviation arising
at the condensate perimeter and the barrier, where the variation
in density becomes considerable. The physical effect of this
is a smoothing of the density over a length scale of the
order of the healing length. The TF approximation predicts
that the harmonically trapped condensate extends up to a
TF radius RTF =

√
2μ/mω2 = 14.14ξ . While we hereafter

express length in terms of healing length, this can be trivially
related to the trap harmonic oscillator length lho = √

h̄/mω

via lho = √
10ξ .

III. SINGLE VORTEX

We first explore the dynamics of a single vortex within
the double trap system (2), initially placed in one well. A
vortex tends to follow a path of equipotential through a
trapped condensate, for example, precesses around the trap
center in a single harmonic trap [38]. For our double trap
system we can additionally anticipate a regime in which
the vortex can traverse the interwell barrier and thus follow
a dumbbell-shaped path around the system. As is well
known for single harmonic traps, the energy and angular
momentum associated with the vortex increases as the vortex
is moved to higher density, that is, towards the centers of the
well [4,35].

We place a vortex in the right-hand well at a position
(xc,yc + rv), where (xc,yc) = ([2V0/mω2]1/2,0) is the origin
of the right-hand trap and rv is the initial offset of the vortex
from the well center. Note that the dynamics are not sensitive
to the direction in which the vortex is initially off-set from
the trap center; this is true throughout this work for all cases
considered. The ensuing dynamics depend sensitively on the
size of the vortex displacement rv and the intertrap barrier
V0. We numerically evolve the vortex dynamics over a long
simulation time [5000(ξ/c)] within this parameter space. Note
when the vortex initial position is very close to the edge of the
cloud (typically within one healing length of RTF) its evolution
becomes indistinguishable from the surface excitations that are
generated and so we do not present results for such extreme
positions.

The stability diagram for the dynamics of the vortex
is plotted in Fig. 2, separating regions of “stable” vortex
dynamics (dots) from those where there is no vortex within
the system in the “final” simulated state (crosses), as discussed
in detail below. Note that we observe a qualitatively similar
stability diagram for a larger (more TF-like) condensate.
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FIG. 2. Stability diagram in rv − V0 space for the single vortex
case showing whether the final state [after a long simulation time
of 5 × 103(ξ/c)] is a single vortex (dots) or the vortex-free state
(crosses). The light-gray region is the crossover regime (case I), in
which the vortex passes into the far well. The dark-shaded region is
the inductive regime (case II), in which the initial vortex induces other
vortices. The lines are the TF predictions for the onset of crossover
dynamics rv/RTF = √

(1 − nmin/n0) using the TF prediction (solid
line) and the numerical values (dashed line) for nmin. The TF radius
of each well is RTF = 14.14ξ .

A. Stable dynamics

If the vortex excitation was stable and free from decay
[36], we would expect the vortex to always remain in the
system. In Fig. 2 we see regimes where this is true (dots) but
also where the vortex is unstable and ultimately leaves the
system (crosses). Stable vortex motion is promoted for large
V0, since the well then behaves likes an isolated harmonic
trap, and for low vortex radii, since the vortex does not feel
a strong effect from the far trap. Under this stable motion
the vortex dynamics is akin to that in a single harmonic
trap [23]: it precesses around the well center with an approx-
imately constant radius and generates a collective motion of
the background condensate of low amplitude (∼ 5%n0). In
Fig. 3 we show a typical snapshot of the condensate. The
density distribution consists of two weakly connected circular
condensates and the vortex appears as a hole (white spot)
in the right-hand well. By subtracting the time-independent
vortex-free density nVF from this density profile, the collective
excitations become clearly visible [Fig. 3(b)]. The precession
frequency of the vortex is ∼0.2ω for small displacements, and
increases with rv , in good agreement with analytic predictions
for vortex precession in a single harmonic trap in the TF
regime [39].

FIG. 3. (Color online) (Left) Density n(x,y) for the single vortex
scenario with yv = 1ξ and V0 = 0.9μ at a time of 1000 ξ/c. Black
(white) corresponds to peak (zero) density. (Right) Renormalized
density n(x,y) − nVF(x,y) for the same data as above. The color
scale is ±10%n0. Each box is of size 64ξ × 32ξ .
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B. Unstable dynamics

In cases where the vortex eventually decays from the system
(crosses in Fig. 2) its initial dynamics falls into one of two
cases. In case I, the dynamics is characterized by the vortex
crossing over into the adjacent well, whereas in case II it is
characterized by inducing a mirror vortex in the adjacent well.
These effects most commonly become manifested in the first
precession of the vortex in the trap, but in a minority of cases
they may arise after several precessions.

1. Case I: vortex crossover

Case I (vortex crossover) arises in the lightly shaded region
in Fig. 2. The vortex can be expected to travel between the wells
when the local potential of the vortex (the value of the potential
at the vortex core) exceeds the interwell barrier. This will tend
to occur for large vortex offsets and a weak intertrap barrier,
as in qualitative agreement with the position of this region in
Fig. 2. Put quantitatively, one would expect crossover to occur
when the vortex density depth nv is less than or equal to the
minimum density at the barrier nmin (one can picture this as
when the vortex can just squeeze through the barrier). If decay-
less, the density depth of the vortex will retain its initial value,
which we can approximate via the TF prediction nv = n0(1 −
r2
v /R2). This is a robust approximation provided that the vortex

position is away from the edge and the barrier, for which the TF
density agrees with the actual density profile to within 0.01n0.
This gives the criteria rv/R �

√
1 − nmin/n0 for crossover to

be possible. We can first approximate nmin via its TF prediction
nTF

min = n0(1 − V0/μ), giving the solid line. However, the onset
of crossover dynamics occurs at considerably lower rv . We
can expect some deviation to arise from the inaccuracy of
using the TF approximation for nmin: The TF approximation
underestimates the density at the point of the barrier, as evident
in Fig. 1.

If we instead use the actual value of the ground-state density
at the barrier, we obtain the threshold shown by the dashed line
in Fig. 2. This lowers the prediction for rv , but only slightly
and the prediction still remains considerably greater than the
observed threshold. This anomaly is likely to arise from the fact
that the vortex radiates sound during its motion and thereby
drifts to lower densities and greater radial position.

In this crossover regime, the ultimate fate of the vortex is to
decay. In Fig. 4 we present an example. The precessing vortex
approaches the barrier [t = 30(ξ/c)] and upon traversing it
[t = 60(ξ/c)], decays into a high-amplitude curved pulse of
sound [t = 67.5(ξ/c)]. The sound pulse reflects off the far
left side of the trap and propagates back through the trap
[t = 120(ξ/c)]. Following many reflections and diffractions
in the trap, the sound pulse becomes randomized, ultimately
forming an isotropic sound field [t = 375(ξ/c)].

In other cases, the vortex undergoes a more gradual decay,
passing many times between the wells. Nota bene more
generally, we can observe some cases where the vortex
undergoes stable crossover dynamics, as we will see later in
Sec. VII.

2. Case II: vortex induction

The second case of unstable dynamics (case II, vortex
induction), characterized by the initial vortex inducing a

FIG. 4. (Color online) Crossover regime dynamics as follows:
snapshots of (left) density n(x,y) and (right) renormalized density
n(x,y) − nVF(x,y) within the crossover regime, for rv = 8ξ and V0 =
0.6μ, at various times. (Spatial and color scales are the same as in
Fig. 3).

second vortex in the far well, arises in the dark shaded region in
Fig. 2. Snapshots of a typical evolution are shown in Fig. 5. As
the vortex precesses close to the adjoining well (t = 300ξ/c),
a mirror vortex becomes excited on the opposite side of the
interwell barrier. This vortex has the opposite charge to the
original vortex and precesses in the opposite direction around
its trap (t = 415ξ/c). This early induction is the characteristic
of this regime of dynamics. The subsequent dynamics can vary
widely. In the example, the initially induced vortex disappears
(t = 500ξ/c), a second vortex is induced (t = 720ξ/c), and
then the original right-hand vortex disappears (t = 920ξ/c).
In other cases the original vortex may disappear as it creates
its mirror vortex, while sometimes the induced vortex may
itself induce a vortex in the right-hand well. As a result
there can arise periods of time where multiple vortices can
appear in the system. For all cases we observe the growth of
a tempestuous sound field during the vortex motion, set up by
the sound emission from the accelerating vortices. All of the
vortices ultimately dissipate and disappear into an energetic
and isotropic sound field [Fig. 5(b) at t = 1540ξ/c].

Up until the point when it disappears, the original vortex
drifts outwards, as shown in Fig. 5(b). Most of the noise in rv(t)
is due to the buffeting effect that the sound field has on the
vortex. However, the sizable jumps in rv at t∼300 and 700(ξ/c)
(highlighted by arrows) occur as a vortex is induced in the far
well, indicating the transfer of energy from the original vortex
to create the new one.

This region of the parameter space occurs for a range
of barrier heights in the vicinity of V0 = μ, for which the
condensate channel is of low density. The energy to create a
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FIG. 5. (Color online) Inductive regime dynamics as follows:
(a) density n(x,y) (left column) and renormalized density n(x,y) −
nVF(x,y) (right column) at various times. Parameters are as follows:
rv = 5ξ and V0 = 0.9μ (box size and color scale are the same as in
Fig. 3). (b) Evolution of the radial position of the vortex rv; arrows
indicate the points at which vortex induction takes place.

vortex depends on the local density. As the barrier height is
reduced below μ, the density in the barrier region increases
and we have confirmed with numerical simulations that the
energy cost to create a vortex here increases sharply.

IV. CROSS TALK OF TWO VORTICES

We now extend to the case where there is initially a vortex
in each well to examine the possibility of sound-induced
interaction between vortices, in analogy to the dark soliton
setup of Ref. [34]. We continue to employ the idealized
double harmonic trap geometry; we will demonstrate the
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FIG. 6. Stability diagram in rv − V0 of the final state [after
5000(ξ/c)] of the two vortex systems for (a) same polarity and (b)
opposite polarity of the vortices. The final state is either two stable
vortices (solid circles), one stable vortex (open circles), or no vortices
(crosses). The second vortex is initially positioned at the center of the
left-hand well. Light and dark shading indicates case I (crossover)
and case II (induction) of the unstable dynamics.

same phenomena in a realizable double trap geometry in
Sec. VII. The additional vortex (denoted “vortex 2”) is created
at the center of the left-hand trap. Note that since it feels the
velocity field of vortex 1 it will not be perfectly stationary.
The displacement of vortex 1, denoted rv , and the height of
the interwell barrier V0, are again key to the dynamics. The
latter parameter now additionally controls the transfer of sound
between the wells, since sound waves have an energy of around
μ. We can also expect sensitivity to the relative polarity of the
vortices. Figure 6 shows the stability diagram of the system for
(a) vortices of the same polarity and (b) vortices of opposite
polarity.

The stability diagrams are somewhat similar to that of the
single vortex case (Fig. 2) and the vortex polarity only has
a small effect on the final state of the system. There are two
stable regions, one for weak barriers and low displacements,
and the other for large barriers. We also see a crossover
regime for weak barriers and large vortex displacements in
which vortex 1 tends to cross into the other well, and an
induction regime for barrier heights centered around μ in
which vortex 1 induces another vortex in the opposite well.
Where vortex instability does occur, the end state is either the
persistence of a single vortex or no vortices at all. We cannot
make any general comments about what favors these two end
states: The dynamics that can develop are sufficiently complex,
for example, featuring vortex crossover and induction, and
interaction with sound waves and collective condensate modes,
that the end state is not readily deterministic. However, the
most important information carried by these plots is simply
whether or not the two-vortex state remains stable (irrespective
of what the outcome of an instability actually is in terms of the
number of vortices left).

Note that in Fig. 6(b) there exists stable dynamics in the
crossover regime. In this case vortex 1 perpetually traverses
both wells in a stable manner while vortex 2 remains localized
in the center of its well.

In order to investigate the cross talk between vortices, that
is, their sound-mediated interactions, we focus on the stable
regimes and in particular the stable area occurring for low
barrier heights, for which we can expect unimpeded motion of
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FIG. 7. Vortex dynamics in the two-vortex system with (a) the
same polarity and (b) different polarity. Parameters are as follows:
r1(t = 0) = 4ξ , V0 = 0.6μ. Black (gray) lines correspond to vortex 1
(2). (c) and (d) Plot of the corresponding vortex radii, and additionally
including the evolution of a single vortex in the double trap (gray
dashed line) with initial radius rv(t = 0) = 4ξ . (e) and (f) Plot of the
corresponding phase difference between the two vortices.

sound between the wells. Figure 7 presents the vortex dynam-
ics for rv = 4ξ = 0.28RTF and V0 = 0.6μ. When the vortices
have the same charge [Fig. 7(a)] the vortices periodically spiral
inwards and outwards, and remain out of phase with each other.
The change in the vortex radial position [Fig. 7(c)] is large (the
vortices oscillate between the trap center and a radius of around
6ξ = 0.43RTF), demonstrating a significant transfer of energy
between the vortices. The energy exchange occurs over a time
scale of ∼2000(ξ/c), which is around eight precessions of
the vortex in the trap [the precession period is ∼270(ξ/c)].
In the analogous situation for the dark soliton, the energy
transfer is much slower, occurring over many tens of soliton
oscillations [34].

When the vortices have opposing polarity [Figs. 7(b)
and 7(d)], no significant transfer of energy is observed
between the vortices. The vortices are observed to precess
with an approximately constant radius. The vortex motion
does undergo significant modulations which arise from the
back-action of the randomized sound field on the vortices.
Such modulations do not arise from vortex-vortex coupling as
they are also observed for a single vortex in the double well
[gray dashed line in Fig. 7(d)].

The significant transfer of energy between like-charged
vortices and insignificant transfer between unlike-charged
vortices is consistent across the stable region of the parameter
space at low barrier heights. For high V0 we do not observe
energy transfer since the transfer of sound across the barrier
becomes prohibited.

Further insight into the transfer of energy can be gleaned
by considering the phase difference between the trajectories
of the vortices φ1 − φ2, where φ1 (φ2) is the positional phase
of vortex 1 (2). For the case of the two same-polarity vortices
[Fig. 7(e)] we see a striking pattern. As energy is transferred

from vortex 1 to vortex 2, the relative phase is negative with an
amplitude of around unity. When the energy transfer reverses,
we see a sudden switch in the relative phase, which becomes
positive and again of amplitude of around unity. This phase
pattern repeats in synchrony with the energy transfer. If we
consider the high energy vortex (during any given transfer
period) to be the “driving” vortex, we see that energy is driven
into the other vortex when the “driver” lags the vortex by ap-
proximately a unit phase. This is indicative of strong coupling
between the vortices, which we attribute to sound waves. This
observation will become important in the next section when
we mimic the driving vortex by a moving obstacle.

In comparison, when the vortices are of opposite polarity,
the phase difference accrues with time and suggests no such
coupling exists between the vortices (i.e., the vortices evolve
largely independently).

While it would appear that the vortices periodically drive
energy into each other via their emitted sound, we must rule out
that this effect arises from the long-range interaction between
vortices due to their superimposed velocity fields. To this
aim, we will next attempt to drive a vortex via sound waves
generated by artificial means—a moving localized barrier.

V. PRECESSING OBSTACLE

We return to having one vortex in the system, in the right-
hand well, but now consider a localized obstacle precessing
in the left-hand well. We continue to employ the idealized
double harmonic trap; the same effects will be demonstrated
in an experimentally realizable trap in Sec. VII. The obstacle
corresponds to a Gaussian potential,

Vob(x,y,t) = Aob exp

[
−{x + xc − xob(t)}2 + {y − yob(t)}2

σ 2

]
,

(4)

with time-dependent location (xob(t), yob(t)), amplitude Aob

and width σ . Such a moving Gaussian obstacle can be induced
experimentally by the presence of a blue-detuned laser beam
[9,40].

A. Regular circular precession

We first consider the simplest case where the obstacle
undergoes regular circular motion, with constant radius rob

and angular frequency ωob. The motion is either co-rotating
or antirotating with respect to the vortex. Specifically, the
obstacle coordinates are xob(t) = ±rob sin ωobt and yob(t) =
rob cos ωobt .

We generate sound that mimics the sound generated by
a vortex and so employ precession frequencies similar to
the vortex precession frequency (∼0.23ω for the condensate
system employed here). Such motion is sufficiently slow to
avoid exceeding the superfluid critical velocity and nucleating
vortices [9,40–42]. Simulations confirm that the only excita-
tions generated by the obstacle are spiral sound waves with
typical amplitude ∼1%n0.

Under the influence of such an obstacle, typical vortex
dynamics are presented in Fig. 8. When the barrier moves
in the same direction as the vortex (solid black line in Fig. 8),
the vortex radial position oscillates in time, demonstrating a
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FIG. 8. Evolution of the vortex radius under the influence of an
obstacle undergoing constant-speed circular motion. [Light gray line
(A)] The obstacle moves in the opposite direction to the vortex.
[Black line (B)] The obstacle moves in the same direction as the
vortex. [Dashed line (C)] The barrier moves in the same direction as
the vortex but its motion is terminated at t = 8800(ξ/c). Parameters
are as follows: r1(t = 0) = 4ξ , σ = 2ξ , rob = 4ξ , φob = 0, and ωob =
0.234ω and V0 = 0.6μ.

periodic driving of energy into the vortex. Conversely, if the
barrier moves in the opposite direction to the vortex (gray line)
no driving is observed (although a small outward shift of the
vortex suggests a small loss of energy in this case). These
results show the same qualitative behavior as observed earlier
when a vortex is driven by another vortex.

Terminating the obstacle motion leads to a vortex which
maintains a roughly constant radius and energy (dotted black
line in Fig. 8). In this manner we can parametrically drive net
energy into the vortex.

Taking the minimum radius achieved rmin as a measure
of the driving effectiveness, we demonstrate the driving
effectiveness as a function of the obstacle parameters ωob, Aob,
and σ in Fig. 9. For each case there exists a clear resonance
that maximizes the energy that can be driven into the vortex.
Driving is most effective when the obstacle most closely
mimics a vortex, that is, has a precession frequency close
to that of a vortex and a width and amplitude that generates
a vortexlike perturbation in the density. Furthermore, when
the obstacle moves in the opposite direction to the vortex, no
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FIG. 9. (Color online) Minimum radial position achieved by the
vortex, initially at rv = 4ξ (dashed line), under the influence of a
precessing Gaussian barrier during a total simulation time of 2 ×
104(ξ/c). Unless it is the abcissa, the obstacle parameters are as
follows: ωob = 0.234ω, Aob = μ, σ = 2ξ , and rob = 4ξ . In (a) we
present results for co-rotating (solid line with dots) and antirotating
(dashed line with crosses) system. In (b) and (c) we consider only the
co-rotating system. In (a) we show the precession frequency of the
undriven vortex [green (gray) vertical line].
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FIG. 10. (a) Evolution of the vortex radial position under the
influence of a precessing obstacle with fixed relative phase 	φ = −1,
0 and −1. (b) Minimum radial position achieved as a function of
relative phase. (c) Time scale of the vortex dynamics τ , either the
time to reach the minimum radial position τmin or decay out of the
condensate τdecay. The remaining obstacle parameters are Aob = μ,
σ = 2ξ , and rob = 6ξ .

resonance in driving appears. For this reason, we subsequently
only consider the co-rotating case.

While the phase difference between the vortex and the
obstacle varies with time, the cycling of the vortex in or out
corresponds to when the obstacle lags or leads the vortex,
consistent with the phase behavior for two vortices discussed in
Sec. IV. We will exploit the phase relationship in the following
subsection.

B. Vortex-dependent precession

In Sec. IV we saw that successful driving of one vortex by
another coincided with when the phase of the “driver” lagged
that of the “receiver” by a phase of around unity. Motivated by
this, we next implement a driving scheme in which the obstacle
is forced to have a constant phase offset from the vortex 	φ.
The time-dependent obstacle coordinates become

xob(t) = rv(t) cos[φv(t) + 	φ],

yob(t) = rv(t) sin[φv(t) + 	φ],

where rv(t) = √
x2

v (t) + y2
v (t) is the radial position of the

vortex and φv(t) = arctan(yv(t)/xv(t) its phase angle, relative
to the center of its respective well. We use the same obstacle
height and width as above (Aob = μ and σ = 2ξ ).

Typical results are shown in Fig. 10. When the obstacle is in
phase (	φ = 0) or leads (	φ > 0) the vortex, the vortex drifts
outwards. However, when the obstacle lags the vortex (	φ <

0), the vortex is driven towards the trap center, increasing its
energy. Under optimal conditions, the vortex is driven into
the trap center within a time scale of 4000(ξ/c), significantly
quicker than we observed for constant obstacle precession
frequency.

The relative phase controls whether the vortex decays
(moves outwards) or is driven (moves inwards), and also the
time scale over which this occurs (defined either by the time
scale to reach the minimum radius τmin or decay out of the
condensate τdecay), as mapped out in Figs. 10(b) and 10(c).
The most rapid driving of the vortex occurs when the obstacle
lags the vortex by approximately a unit phase. Nota bene we
found exactly these optimum phase differences to naturally
arise in the two-vortex system [see Fig. 7(e)].
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VI. DISCUSSION

A. Crossover and induction dynamics

Our precursive study of a single vortex in an idealized
double trap has demonstrated “crossover” and “inductive”
regimes. The latter case effectively provides a physical
manifestation of “mirror” vortices. While these states are
transient, they can exist for significant time scales, for example,
several periods of vortex precession. The generation of a vortex
state across a double-well system has been studied in [43].
However, there the vortex-containing BEC partially tunneled
into the adjacent empty well, and so is a distinct creation
mechanism to the one observed here.

B. Origin of the vortex coupling

Our main results show cycling of the energy or radial
position between two vortices, each located in one well. We
have interpreted this as being due to the exchange of sound
waves between the vortices. An alternative origin is that the
vortex coupling arises from the interaction between vortices
as a result of their velocity fields, for example, as plays a
central role in Tkachenko oscillations of a vortex lattice [54,55]
and the dynamics of vortex dipoles [52,53], clusters [56],
and arrays [57]. First, the velocity field-induced vortex-vortex
interaction is weak due to the separation of the vortices in
weakly connected subsystems (a reduction of density near a
boundary has been shown to dramatically reduce this type of
vortex-vortex interaction [60]). Secondly, if the vortex-vortex
interaction were driving the coupled dynamics, we would
expect the vortices to follow lines of equipotential formed by
contributions from the trapping potential and the vortex-vortex
interaction. This is not the case in the observed dynamics, for
which the intervortex distances oscillates rapidly while the
vortex radial position undergoes a much slower oscillation.
Thirdly, and most importantly, we observe the same physical
effect when the vortex-vortex interaction is removed altogether
(i.e., one vortex driven by a sound-generating obstacle).

A further alternative explanation is that the system acts
as a coherent superposition of a vortex-less ground state
and two collective vortex modes, with the dynamics arising
from a coherent beating between these excitations. Again, the
observation of vortex driving via an obstacle would seem to
contradict this picture.

Based on these arguments, we believe that the vortex
cycling is due to the exchange of energy via sound waves.

C. Cross talk between vortices

When the two vortices have the same polarity and different
initial positions and energies, they undergo periodic exchanges
of energy with each other, transferred via sound waves. We
may view this as the driving of a vortex by sound from another
vortex. The transfer of energy occurs rapidly, with a full energy
cycle typically occurring within 10 vortex precessions. The
relative phase between the vortices appears intimately linked
to the exchange of energy, alternating in line with the direction
of energy transfer.

The sound is emitted from the accelerating vortex in the
form of a quadrupolar radiation pattern [23]. The precession
of the vortex in the trap leads to an outward-propagating spiral

wave of sound. This sound carries angular momentum of the
same orientation as the originating vortex (to conserve angular
momentum). If the angular momentum carried by the sound
waves is of the same orientation as the receiving vortex (which
is to say that the vortices are of the same polarity), it serves
to increase the angular momentum and energy of this vortex,
causing it to move towards the high density trap center. By
the reverse argument, one would expect that when the vortices
are of opposite polarity, the receiving vortex would have its
energy and angular momentum reduced. However, in this case,
the vortices have negligible effect on each other (we will return
to this anomaly later).

The cross talk between vortices is analogous to that
predicted for dark solitons in a double well [34]. However,
there the energy transfer occurred over a much longer time
scale, corresponding to many tens of oscillations.

D. Parametric driving of a vortex

By moving a localized obstacle through one well, we
generate angular-momentum carrying sound waves. For suit-
able obstacle parameters, these sound waves drive energy
into a vortex located in the opposite well. This process is
most effective when the time-dependent density perturbation
created by the obstacle closely matches that of the vortex (i.e.,
the same width, precession frequency, and amplitude). Similar
to above, transfer of energy from sound into the vortex only
occurs when the obstacle-induced sound and the vortex have
the same sign of angular momentum.

When the obstacle undergoes uniform circular motion, the
transfer of energy is somewhat slow. More rapid driving of the
vortex occurs when the phase of the obstacle motion is forced
to lag behind the vortex motion. This suggests that the relative
phase between the vortex and incident sound waves is crucial
in controlling the absorption of sound by the vortex.

In Ref. [44] a driving obstacle and vortex resided in the
same trap. There the precessing obstacle periodically formed
a vortex at the condensate edge and drove it into the center,
interpreted as nonlinear Rabi cycling from the ground state
to the first vortex state. Similarly, we may interpret our
observations as oscillations between a high- and low-energy
vortex state. Moreover, our results suggest that sound waves
may have played a central role in transferring energy from the
obstacle to the vortex.

An analogous driving technique has been demonstrated for
a dark soliton in a trapped BEC [20]. Oscillating paddles
generate sound waves and a dipole moment of the condensate,
which deposit some of their energy to the dark soliton.
Similarly to our observations, optimum driving occurred when
the driving frequency approximated the unperturbed soliton
frequency and for strict phase relations between the drive and
soliton.

E. Insight into sound absorption in trapped
and homogeneous systems

Using an acoustic ray model, Nazarenko et al. [26,27]
find that certain trajectories of the sound waves incident on
a vortex line can spiral into the vortex core, imparting their
energy. Despite this, sound absorption is not cited to play
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a significant role in superfluid helium systems, for example,
quantum turbulence [2,3].

Consider an element of vortex line in an infinite homo-
geneous system emitting a pulse of sound. The pulse could
in principle impart energy into a neighboring line element
of matching angular momentum. However, from the point of
emission, the sound spreads radially outwards, diluting its
energy and angular momentum density. Superimpose many
such events from many randomly oriented vortex lines and
the combined sound field will be highly isotropic with no net
angular momentum, incapable of causing any significant net
sound absorption.

Now consider a trapped BEC, for example, the double
trap employed here. An outward spreading sound pulse will
eventually reflect off the trap wall, partially focusing the wave
towards the trap center. While the exact effectiveness of the
focusing will vary with source position and trap shape, it will
nonetheless lead to a greater and more sustained sonic angular
momentum and energy density than in a homogeneous system,
which a suitably placed vortex may be able to gain from.
The focusing of the emitted sound pulse will, however, be
short-lived since the sonic angular momentum will become
randomized after several reflections. Indeed, we see this effect
in Fig. 4 where a sound pulse, initially with net momentum,
becomes rapidly randomized into an isotropic sound field.
The rapid randomization of sound also explains the rapid
equilibrium reached in the vortex position or energy when the
driving obstacle is suddenly made stationary. Sound absorption
is thus likely to play a much more significant role in trapped
condensates than in homogeneous systems.

Irrespective of the source of the sound, we observe
transfer of energy between sound and vortex only when the
angular momentum of the sound and the vortex have the
same orientation. Within the Nazarenko picture [26,27] only
trajectories of sound which spiral into the vortex core can
impart energy and angular momentum to the vortex. When the
sound waves have the same angular momentum as the vortex,
they naturally wrap around the vortex, allowing them to spiral
into the core and interact with the vortex. Conversely, when
the sound has opposite angular momentum to the vortex, the
sound will tend to be deflected by the vortex; in essence, the
vortex is then invisible to sound waves of opposite angular
momentum.

In our disk-shaped quasi-2D system, the vortex line is
rectilinear and can only raise its energy by moving to regions
of higher density (increasing the kinetic energy density of
the flow). In a 3D system, the vortex can additionally
absorb energy by increasing its line length or developing line
excitations. The favored channel has not been studied but is
likely to depend strongly on the distribution and orientation of
the incident sound.

VII. PROPOSED EXPERIMENTAL REALIZATION

The double trap used thus far [defined by Eq. (2)] is
not experimentally realizable. Here we will demonstrate that
the same qualitative phenomena occur in experimentally
realizable traps. We approximate the double harmonic trap (2)
by a single elliptical harmonic trap split by a central Gaussian
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FIG. 11. The split trap potential (gray solid line) and idealized
double harmonic potential (gray dotted line), and their corresponding
density profiles (black lines), all shown along the y axis and satisfying
μ = 10h̄ω.

barrier lying along the y axis, that is,

V (x,y) = m

2

[
ω2x2

4
+ ω2y2

]
+ VBe−x2/2d2 − Vmin, (5)

where

Vmin = −mω2d2

[
ln

VB

mω2d2
+ 1

]
(6)

is an offset such that the potential minimum is zero. Then the
height of the barrier is V0 = VB − Vmin. For a barrier width
d = 5ξ the split trap well approximates the double harmonic
trap as shown in Fig. 11. Assuming typical parameters (a 2D
peak density n0 = 1014m−2, ωz = 2π × 1000 Hz, and ω =
2π × 50 Hz), then for a 87Rb (23Na) BEC, the healing length
is ξ = 0.3(0.7)μm, the speed of sound c = 3(4)mms−1, and
the time unit (ξ/c) = 90(175)μs.

A. Cross talk of two vortices

The wells are no longer circularly symmetric and so
we specify the y displacement of the vortices rather than
their radial displacement. The stability diagrams for one
and two vortices in the split trap, shown in Fig. 12, are in
close agreement with the corresponding plots for the double
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FIG. 12. Stability diagrams for the vortex dynamics in a split trap
as a function of vortex displacement yv and barrier height V0. (a) A
single vortex in the right-hand well. Solid circles (crosses) correspond
to the final state [after 5000 (ξ/c)] being a vortex (vortex-free) state.
(b) A vortex in each well, of the same polarity. The final state is
either two stable vortices (solid circles), one stable vortex (open
circles), or no vortices (crosses). In both (a) and (b) the light-shaded
(dark-shaded) region corresponds to case I (II) of the vortex dynamics.
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FIG. 13. (Color online) Vortex motion during cross talk in the
split trap. Also shown are plots of the BEC density at t = 0, 850, and
1550 (ξ/c). The vortices move anticlockwise. In the color-density
mapping black corresponds to high density while white corresponds
to zero density. Parameters are V0 = 0.5μ and yv = 3ξ .

harmonic trap [Figs. 2 and 6(a)] and demonstrate the same
crossover and inductive dynamics.

Focusing on a stable case from the two-vortex system (yv =
3ξ and V0 = 0.5μ), we show the evolution of the vortices in
Fig. 13. The vortices drift in and out of the trap center, out of
phase with each other, in agreement with the energy transfer
observed earlier in Fig. 7(a). The period of the energy transfer
is around 1600(ξ/c) or eight vortex precessions. Snapshots
of the condensate density show the initial appearance of the
condensate (vortex 1 at large radius and vortex 2 at the trap
center), after a half-cycle of energy exchange (vortex 1 at the
trap center and vortex 2 at large radius) and after a full cycle of
energy exchange (vortex 1 returns to large radius and vortex 2
returns to the trap center).

B. Precessing obstacle

The addition of a precessing Gaussian obstacle to a
harmonic trap has been demonstrated experimentally [9,40].
We employ obstacle parameters σ = 2ξ , Aob = μ, yob =
3ξ , φob = 0, and ωob = 0.234ω. Here we consider constant
frequency precession of the obstacle; the “phase-locked”
method of Sec. V B requires real-time feedback of the vortex
position and is not experimentally feasible at present. Under
such a perturbation within the split trap (Fig. 14) the vortex
becomes driven into the trap center, in close agreement with
the dynamics in the idealized trap (Fig. 8). The same resonant
behavior as Fig. 9 is also observed in the split trap, for example,
a frequency resonance when ωob approaches the precession
frequency of the unperturbed vortex (∼0.234ω).

C. Experimental observation

The vortex-vortex and vortex-obstacle energy transfer could
be observed through the motion of the vortices in and out of the
trap center. Recently, Freilich et al. [13] demonstrate real-time
tracking of vortices in a BEC. This involves transferring (via
pulsed microwave radiation) a small, representative proportion

t / ( /c)

y 
/ 

x / 

FIG. 14. (Color online) Vortex motion under parametric driving
by a precessing obstacle in the split trap. The BEC density is presented
at t = 0, 12 000, and 20 000 (ξ/c). The obstacle (left well) and the
vortex (right well) move anticlockwise. Parameters are yv(t = 0) =
3ξ , V0 = 0.5μ, σ = 2ξ , Aob = μ, yob = 3ξ , and ωob = 0.234ω.

of the BEC into an untrapped state, which is allowed to
expand and then imaged via optical absorption. This is repeated
at regular time intervals to enable the vortex motion to be
tracked. For 87Rb (23Na) the energy exchange period for
the vortex-vortex case we consider is ∼0.15(0.3)s, while for
the vortex-obstacle case it is ∼1.8(3.5)s. These time scales
are well within the experimental lifetime of vortices in BECs
(up to ∼10 s [7]).

VIII. CONCLUSION

We have shown that two vortices in a double-well trap can
undergo coherent crosstalk, exchanging energy and angular
momentum with each other. This interaction is mediated
by sound waves which are emitted from each vortex due
to their acceleration and impart their energy and angular
momentum onto the other vortex. These observations are
strongly analogous to the sound-mediated interactions be-
tween matter-wave dark solitons, where interaction occurs
through linear-momentum-carrying sound waves. This further
evidences the striking similarities in the acoustic behavior of
vortices and dark solitons. An analogous transfer of energy
into a vortex can be achieved by sound waves generated
by a precessing obstacle. Such pumping could, for instance,
be exploited to counteract thermal decay and extend vortex
lifetimes. Crucially, for the sound energy to be driven into
the vortex, first, the sound must carry angular momentum of
the same sign as the vortex and, secondly, the motion of the
“driver” (be it an obstacle or another vortex) should lag the
motion of the target vortex.

Our observations are robust: We observe the same quali-
tative dynamics for different condensate parameters (e.g., a
large, more Thomas-Fermi condensate). Importantly, these
effects occur in experimentally realizable double-well ge-
ometries and within the time scales of both current vortex
experiments and thermal decay [45,46,58,59].
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Sound absorption is promoted by the trapped nature of the
BEC systems and is likely to play a much more significant
role than in homogeneous superfluids. An example may lie
in the formation of vortex lattices in rotating BECs whereby
nucleated vortices are observed to crystallize into a vortex
lattice. While the necessary dissipation is provided by thermal
decay at raised temperatures [47–49], crystallization at very
low temperatures has been show to be temperature independent
[50]. Here, vortex-sound interactions may play the key role,
enabling energy exchange between vortices and the sound
field [51].

Improved understanding of the rudimentary interactions
between quantum vortices and sound will aid in resolving
their role in wider phenomena such as quantum turbulence [3]
and neutron star glitches [61].
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