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Wave chaos as signature for depletion of a Bose-Einstein condensate
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We study the expansion of repulsively interacting Bose-Einstein condensates (BECs) in shallow one-
dimensional potentials. We show for these systems that the onset of wave chaos in the Gross-Pitaevskii equation
(GPE), that is, the onset of exponential separation in Hilbert space of two nearby condensate wave functions,
can be used as an indication for the onset of depletion of the BEC and the occupation of excited modes within a
many-body description. Comparison between the multiconfigurational time-dependent Hartree for bosons method
and the GPE reveals a close correspondence between the many-body effect of depletion and the mean-field effect
of wave chaos for a wide range of single-particle external potentials. In the regime of wave chaos the GPE
fails to account for the fine-scale quantum fluctuations because many-body effects beyond the validity of the
GPE are non-negligible. Surprisingly, despite the failure of the GPE to account for the depletion, coarse-grained
expectation values of the single-particle density such as the overall width of the atomic cloud agree very well with
the many-body simulations. The time-dependent depletion of the condensate could be investigated experimentally,
for example, via decay of coherence of the expanding atom cloud.
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I. INTRODUCTION

The workhorse for describing the nonequilibrium dynamics
of Bose-Einstein condensates (BECs) of ultracold gases is
the Gross-Pitaevskii equation (GPE) (for a review, see, e.g.,
Refs. [1,2]). Replacing the true many-body wave function
by a single-particle orbital for the macroscopically occupied
condensate (particle number N � 1) results in an equation
of motion that belongs to the class of nonlinear Schrödinger
equations (NLSEs). The GPE provides an appropriate starting
point to investigate the underlying many-body system on the
mean-field level. Effects beyond the GPE have been observed
in BECs, for example in optical lattices with deep wells and
small occupation numbers per site [3]. Other finite-number
condensate effects include the demonstration of atom-number
squeezing [4–6] and of Josephson junctions in a double
well [7–9]. Meanwhile, progress has been made in exploring
the time-dependent many-boson Schrödinger equation. One
approach is the multiconfigurational time-dependent Hartree
for bosons (MCTDHB) method which is a numerically
efficient and, in principle, exact method for the time-dependent
many-body problem [10–12]. In practice, limitations are
imposed by the finite yet large number of configurations
(millions) and orbitals (tens) that can be handled.

We investigate repulsively interacting BECs after release
into shallow one-dimensional (1D) potentials. The Bose
gas is dilute and, initially, practically all particles are in
one single-particle state. The external potential is weak
compared to the single-particle energy. Comparison between
the MCTDHB method and the GPE for the expansion of
the BEC provides detailed insights to what extent the GPE
is capable of describing the condensate dynamics and may
be capable of mimicking excitations out of the condensate

*iva.brezinova@tuwien.ac.at

state. One case in point is our recent observation of true
(physical) wave chaos in the GPE [13], as opposed to numerical
chaos [14] due to discretizations. The latter has been exploited
to study, for example, thermalization in the Bose-Hubbard
system at the mean-field level [15]. Two wave functions
nearby in Hilbert space are exponentially separating from
each other, as measured by the L2 norm. Chaotic wave
dynamics within the GPE is a mathematical consequence
of the nonintegrability resulting from the interplay between
the external (one-body) potential and the nonlinearity which
replaces the interparticle interactions. Its physical implications
are, however, less clear as the original many-body Schrödinger
equation is strictly linear and, thus, regular and nonchaotic.
Previously, a connection between chaotic dynamics within the
GPE and growth in the number of noncondensed particles has
been made for time-dependent external driving which can be
seen as a source of energy [16]. In the present study the external
potentials are time independent such that the total energy
is conserved. While wave chaos is likely associated with
instabilities known for dynamics in periodic potentials (see,
e.g., Ref. [17]), it is a much more general effect since it occurs
for a large class of potentials ranging from harmonic oscillators
with defects to periodic and disordered potentials. The aim of
the present paper is to shed light on the physical meaning of
wave chaos in the GPE for time evolution of BECs. For this
purpose we compare the dynamics described by the mean-field
GPE with the many-body MCTDHB method and relate the
built-up of random fluctuations within the GPE to many-body
observables such as the depletion of the condensate.

The outline of the paper is as follows. After first introducing
the system under investigation in Sec. II we briefly review the
mean-field GPE and the many-body MCTDHB method and
identify relevant observables (Sec. III). The initial state whose
dynamics we study upon release from the initial trapping is
discussed in Sec. IV. We present numerical results for the
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dynamics in Sec. V, followed by conclusions and remarks
(Sec. VI).

II. SYSTEM UNDER INVESTIGATION

We consider in the following a system of N bosons
interacting via a pseudopotential which captures the scattering
dynamics of the real interaction potential in the limit of
small wave numbers k → 0. In a 1D system with tight
transverse harmonic confinement with oscillator frequency
ωr the pseudopotential is given by the contact interaction
g1Dδ(x − x ′) with

g1D = 2h̄ωras, (1)

where as is the 3D scattering length provided that as �√
h̄/mωr such that the scattering can still be regarded as

a 3D process [18]. The dynamics of the bosonic system is
then determined by the many-body Hamiltonian (in second
quantization)

Ĥ =
∫

dx
h̄2

2m
∂xψ̂

†(x,t)∂xψ̂(x,t)

+
∫

dx V (x)ψ̂†(x,t)ψ̂(x,t)

+g1D

2

∫
dx ψ̂†(x,t)ψ̂†(x,t)ψ̂(x,t)ψ̂(x,t). (2)

The field operators fulfill the commutation rules for bosons.
We study in the following the expansion of a Bose gas that
is initially trapped also longitudinally (i.e., in the direction of
expansion) by a harmonic potential with frequency ω0 (see
Fig. 1). These initial conditions serve to define characteristic
scales for length, time, and energy. We use the units l0 =√

h̄/mω0 for length, t0 = 1/ω0 for time, and e0 = h̄ω0 for
energy. For a trap with ωr = 2π × 70 Hz and ω0 = 2π × 5.4
Hz used in a recent experiment on Anderson localization [19]
our units take on the numerical values l0 = 4.6 μm and t0 =
29.47 ms.
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FIG. 1. (Color online) The initial (t < 0) harmonic trapping
potential with longitudinal frequency ω0 (black line). At t = 0
the longitudinal harmonic trapping potential is switched off (the
radial trapping potential with frequency ωr remains switched on).
Simultaneously, either a periodic (dashed red line) or a disorder (blue
solid line) potential is switched on. The system expands for t � 0 in
the 1D external potential. The length scale l0 corresponds to 4.6 μm.

We consider in the following N = 1.2 × 104 87Rb atoms.
Upon release from the trap, the particles move in an external
potential V (x) which we specify to be a periodic potential of
the form (see Fig. 1)

V (x) = VA cos

(
2π

l
x

)
, (3)

with l = 0.548 11l0 (corresponding to l ≈ 5.8ξ , with ξ =
h̄/

√
4mμ being the healing length and μ the chemical potential

after release from the trap) and varying potential amplitude VA.
The periodic potential is realized in experiments by crossed
laser beams in linear polarization along the same axis. For
a realistic laser wavelength tuned out of resonance with the
87Rb 5S → 5P transition, λL = 810 nm, the above potential
period of l corresponds to two linearly polarized crossed beams
enclosing an angle of θ ≈ 0.1π .

Alternatively, we also consider Gaussian correlated dis-
order potentials Vd (x) of comparable strength (see Fig. 1).
The potential is generated [13] by placing every 0.1l0 a
Gaussian of width σ and random weight Ai . The random
weights are distributed uniformly in the interval (0,1). The
potential is then averaged and normalized to obtain 〈Vd (x)〉 =
0 and a variance of VA =

√
〈V 2

d (x)〉. The correlation length
of the potential is σ . Unlike for the speckle potential, odd
momenta 〈Vd (x)2n+1〉 vanish. Moreover, the Fourier spec-
trum of the Gaussian correlated disorder does not have a
high-momentum cutoff in contrast to the speckle potential
[20]. As discussed below, our results do not display any
significant qualitative difference between these two types of
potentials.

The interplay between the interparticle interaction and
the external potential plays a key role for chaotic dynamics
resulting from nonintegrability. We investigate in the following
the dynamics of the expanding Bose gas in the mean-
field approximation within the GPE and compare to the
corresponding many-body dynamics within the MCTDHB
method.

III. METHODS

A. Gross-Pitaevskii equation

In the mean-field approximation the existence of a macro-
scopic occupation of one state is assumed such that the
expectation value 〈ψ̂(x,t)〉 = ψ(x,t) takes on finite values and
can be treated as the classical field describing the dynamics of
the BEC. Further, requiring that the expectation value of the
product of four field operators factorizes

〈ψ̂†(x,t)ψ̂†(x,t)ψ̂(x,t)ψ̂(x,t)〉 = |ψ(x,t)|4, (4)

one arrives together with

ih̄
∂ψ(x,t)

∂t
= δ〈Ĥ 〉

δψ∗(x,t)
(5)

and Ĥ from Eq. (2) at the GPE

ih̄
∂ψ(x,t)

∂t
= − h̄2

2m

∂2

∂x2
ψ(x,t) + V (x)ψ(x,t)

+ g1D|ψ(x,t)|2ψ(x,t). (6)

013630-2



WAVE CHAOS AS SIGNATURE FOR DEPLETION OF A . . . PHYSICAL REVIEW A 86, 013630 (2012)

Normalization of the particle density to
∫

dx|ψ(x,t)|2 = 1
leads to the explicit dependence of the nonlinearity on the
particle number N :

ih̄
∂ψ(x,t)

∂t
= − h̄2

2m

∂2

∂x2
ψ(x,t) + V (x)ψ(x,t)

+ g1DN |ψ(x,t)|2ψ(x,t). (7)

Consequently, the GPE predicts the same dynamics for
different N as long as the product g1DN is kept constant. In
the limit N → ∞ with g1DN = const. the (time-independent)
GPE is expected to give exact results for the many-body system
(at least for the ground state of repulsive bosons in three
dimensions [21]).

The parameters for the cigar-shaped trap with frequency
ωr and the particle number N (see Sec. II) together with the
scattering length for 87Rb atoms [22] of as ≈ 110a0 (with a0

the Bohr radius) give rise to the nonlinearity

g0 = g1DN = 2h̄ωrasN ≈ 390e0l0. (8)

Note that the rather high numerical value of g0 is due to the
explicit inclusion of the number of particles N and does not
contradict the assumption of weak interactions. Nevertheless,
the interaction strength is sufficiently strong such that in the
presence of an external potential depletion and fragmentation
of the condensate may occur.

To propagate the GPE, we use a finite element discrete
variable representation (DVR) to treat the spatial discretization
(see, e.g., Refs. [23,24]). The propagation in time is performed
by a second-order difference propagator (for details see
Ref. [13] and references therein).

B. Multiconfiguration time-dependent Hartree
for bosons method

The MCTHDB method [10,11] allows one to describe
many-body effects beyond the mean-field description for the
condensate. Briefly, the many-body wave function is taken as
a linear combination of time-dependent permanents,

|�(t)〉 =
∑
{�n}

C�n(t)|�n; t〉, (9)

where |�n; t〉 corresponds to states with occupation numbers
�n = (n1, . . . ,nM ) and M is the number of single-particle
orbitals. The sum runs over all sets of occupation numbers
{�n} which fulfill N = ∑M

i=1 ni . In the limit M → ∞ the
ansatz Eq. (9) gives the exact many-body wave function.
MCTDHB efficiently exploits the fact that ultracold atoms
may occupy only few orbitals above the condensate state.
By dynamically changing the expansion amplitudes C�n(t) and
the orbitals {�k(�r,t)}, even large many-body systems can be
treated accurately. MCTDHB involves the solution of coupled
linear differential equations in C�n(t) and coupled nonlinear
differential equations in {�k(�r,t)}. The MCTDHB equations
of motion reduce in the case of M = 1 to the GPE [Eq. (7)]
with nonlinearity g1D(N − 1). (The difference between N and
N − 1 can be neglected in the limit of large N .)

Within the MCTDHB method kinetic operators are treated
via a fast Fourier transform which is equivalent to an
exponential DVR [25]. The nonlinear differential equations

in the orbitals are propagated via a fifth-order Runge-Kutta
algorithm. The linear differential equations for the amplitudes
C�n(t) are propagated via a short-iterative Lanczos algorithm.
The propagations are parallelized using OpenMP and MPI.
The Runge-Kutta algorithm has been crosschecked with the
integrator [26,27] ZVODE, which relies on the Gear-type
backward differentiation formula for stiff ordinary differential
equations and gives the same results as the faster Runge-
Kutta algorithm. Further numerical checks give a very good
agreement between the initial and the backward-propagated
density per particle. The difference is of the order of 10−4 and
less (in units of l−1

0 ).

C. Observables

The simplest and most important benchmark observable
for a comparison between the mean-field and the many-body
dynamics is the single-particle density. Within the MCTDHB
method the density is given by

ρ(x,t) = 〈ψ̂†(x,t)ψ̂(x,t)〉
= N

∫
dx2 . . . dxN �∗(x,x2, . . . ,xN ; t)

×�(x,x2, . . . ,xN ; t)

=
M∑

m,n=1

ρm,n(t)�∗
m(x,t)�n(x,t), (10)

where the elements ρm,n(t) are readily accessible as a combina-
tion of the amplitudes C�n(t) and the corresponding occupation
numbers contained in �n (see Ref. [11]). Upon diagonalization
of Eq. (10) the density in terms of the natural orbitals �NO

i (x,t)
and their occupation numbers nNO

i (t) is obtained as

ρ(x,t) =
M∑
i=1

nNO
i (t)

∣∣�NO
i (x,t)

∣∣2
. (11)

In the presence of a BEC the occupation of one state is
“macroscopic” [28] (of order N ). In the following we denote
this condensate state as �NO

i=1(x,t) and its occupation as nNO
i=1(t).

All other states �NO
i (x,t) with i > 1 are referred to as excited

states. The Fourier spectrum

ρ̃(k,t) =
M∑

m,n=1

ρm,n(t)�̃∗
m(k,t)�̃n(k,t) (12)

is obtained by Fourier transforming the orbitals �n(x,t) to give
�̃n(k,t). Within the GPE, ρ̃(k,t) is given by the absolute square
of the Fourier transform of the condensate wave function,
N |ψ̃(k,t)|2. In the limit of a long-time expansion of the BEC
in free space when the initial interaction energy is converted
into kinetic energy, the experimentally observed momentum
distribution corresponds to the Fourier spectrum ρ̃(k,t).

We utilize coherence as measured by the normalized two-
particle correlation function [29,30]

g(2)(x ′
1,x

′
2,x1,x2; t) ≡ ρ(2)(x ′

1,x
′
2,x1,x2; t)√

ρ(x1,t)ρ(x2,t)ρ(x ′
1,t)ρ(x ′

2,t)
(13)

to analyze the breakdown of the GPE on the length scales of
the random fluctuations which develop in the wave function in
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the regime of wave chaos. In g(2) the reduced two-body density
matrix

ρ(2)(x ′
1,x

′
2,x1,x2; t)

= 〈ψ̂†(x ′
1,t)ψ̂

†(x ′
2,t)ψ̂(x1,t)ψ̂(x2,t)〉

= N (N − 1)
∫

dx3 . . . dxN�∗(x ′
1,x

′
2,x3, . . . ,xN ; t)

×�(x1,x2,x3, . . . ,xN ; t) (14)

enters. For a fully second-order coherent system g(2) fulfills
|g(2)(x ′

1,x
′
2,x1,x2; t)| = 1. Within the GPE the reduced two-

body density matrix is a product of one-body wave functions
[compare with Eq. (4)]. Thus, |g(2)| = 1 for all times, that is,
full second-order coherence is a generic feature of the GPE.
In the many-body case for a finite number of particles N the
departure of |g(2)| from |g(2)| = 1 − 1/N (|g(2)| = 1 in the
limit N → ∞) gives a measure for how well the system is
described by a single-orbital product state and how correlated
(|g(2)| > 1) or anticorrelated (|g(2)| < 1) the measurement of
two coordinates is. (Anti-)Correlation indicates the degree of
fragmentation in the system.

As a measure for wave chaos, that is, the buildup of
random local fluctuations on the length scale comparable to
that of the external potential, we have introduced [13] the
Lyapunov exponent characterizing the exponential increase of
the distance in Hilbert space of two initially nearby GPE wave
functions ψ1,2(x,t). The distance is measured by the L2 norm

d (2)(t) = 1

2

∫
dx |ψ1(x,t) − ψ2(x,t)|2

= 1 − Re

(∫
dx ψ∗

1 (x,t)ψ2(x,t)

)
. (15)

The distance function takes on values d (2) ∈ [0,2] and is 1
for orthogonal wave functions. In terms of d (2), the Lyapunov
exponent which is positive in the presence of chaos is given
by

λ = 1

2
lim
t→∞ lim

d (2)(0)→0

1

t
ln

(
d (2)(t)

d (2)(0)

)
. (16)

d (2) is invariant for unitary time propagation of linear sys-
tems: if ψ1(x,t) and ψ2(x,t) would be solutions of the
linear Schrödinger equation, d (2) would be constant. Simi-
larly, d (2)(t) is constant for two many-body wave functions
�1(x1, . . . ,xN ,t) and �2(x1, . . . ,xN ,t) integrated over all
spatial coordinates. By contrast, construction of a reduced
one-particle wave function from an initial N -body state of
system 1 by (see, e.g., Ref. [31])

ψ1(x,t) = 〈�1(N − 1)|ψ̂(x,t)|�1(N )〉
=

∫
dx2 . . . dxN �∗

1 (x2, . . . ,xN ,t)

×�1(x,x2, . . . ,xN ,t), (17)

where |�1(N )〉 denotes a many-body state with N particles,
leads to a many-body measure analog to the d (2)(t) function
that is not conserved as a function of time. This can be
seen by inserting Eq. (17) into Eq. (15) and taking the time
derivative of d (2). In the time derivative of d (2) contributions
originating from the kinetic energy and the external potential
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FIG. 2. (Color online) The initial state of the BEC in the harmonic
trap with ω0 = 2π × 5.4 Hz and l0 ≈ 4.6 μm. The interaction
strength is given by the nonlinearity g0 [Eq. (8)]. Results for GPE
(black line) and MCTDHB with N = 1000, M = 3 (red short dashed
line) are indistinguishable within the graphical resolution; blue
dashed line, MCTDHB with N = 100, M = 3. The two local maxima
for N = 100 are due to depletion of the condensate in the initial state
and indicate deviations from the Thomas-Fermi limit.

V (x) cancel, while contributions from the interaction term lead
to d[d (2)(t)]/dt �= 0. The tracing out of unobserved degrees
of freedom leads to the violation of the distance-conserving
evolution. In the case of the GPE the nonlinearity present can
cause exponential divergence of d (2).

It is now our aim to relate the behavior of the d (2) function
within the GPE to properties of the time evolution of the
underlying many-body system. The working hypothesis is that
the random fluctuations developing within the GPE are the
signature for its failure to properly account for the depletion of
the condensate, that is, excitation of the BEC during expansion
in an external potential. In turn, within the MCTDHB method
the population of all natural orbitals beyond that describing the
condensate should grow. While at t = 0 the MCTDHB method
and the GPE closely agree which each other with only one nat-
ural orbital occupied, n̄NO

1 (0) = nNO
1 (0)/N ≈ 1 (see Sec. IV);

with increasing time all other occupation numbers n̄NO
i (i > 1)

should increase. In the following we study the dynamics of
N = 103 to 105 particles for which the ground-state densities
closely agree with each other (see Fig. 2). For N = 104 and
N = 105 only M = 2 orbitals allow a numerically feasible
number of configurations (Nc = 104 + 1 to Nc = 105 + 1,
respectively). Already adding one more orbital (M = 3) leads
to a configuration size of Nc = 50,015,001 for N = 104 which
may be at the border of feasibility and requires a massive
parallelization over a large number of processors. The system
with N = 105 and M = 3 resulting in Nc ≈ 5 × 109 is out of
reach for the current implementation of the MCTDHB method.
For N = 103 a number of orbitals up to M = 3 is numerically
feasible and makes it possible to quantify the effect of adding
one more orbital to the case M = 2. Due to the numerical
limitations we focus on the early stages of the depletion process
when the depletion is still relatively weak n̄NO

1 (t) � 0.95.
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As a measure for the depletion we introduce the state
entropy for a general many-body state,

SN (t) = −
∑

i

n̄NO
i (t) ln n̄NO

i (t), (18)

where n̄NO
i (t) = nNO

i (t)/N . For the initial conditions used in
the present study we have SN (t) � SN (0) � 0. Note that for
finite N , SN (0) is not exactly zero for the interacting ground
state since the condensation is not complete (see Sec. IV).
Within the GPE, where nNO

1 (t) = 1 and nNO
i>1(t) = 0, SN (t)

remains strictly zero. Deviations of SN (t) from zero within
the many-body theory thus mark deviations from the GPE.
In the following we focus on the time evolution of Eq. (18)
and investigate the time scale of depletion, td , defined by the
occurrence of an abrupt change of SN from SN ≈ 0 to SN >

0. We associate this quantity with the onset of exponential
growth, te, of d (2)(t) within the GPE. te is determined from the
crossing point between the free-space expansion behavior of
d (2)(t) (in Fig. 4, dashed curve) and the exponential fit to the
increase in presence of an external potential (in Fig. 4, dotted
curve). td is implicitly dependent on N through the degree of
coherence of the condensate. The larger N , the smaller the
depletion (n̄NO

i , i � 2) at the same time. Consequently, the
depletion time is size dependent td (N ) (see below).

IV. THE INITIAL STATE

The initial state of the bosonic gas corresponds to the ground
state of the harmonic trap. For this ground state the GPE with
nonlinearity g0 predicts a BEC in the Thomas-Fermi regime.
Applying both the MCTDHB method and the GPE to the
same system requires a careful choice of system parameters, in
particular the particle number N . While the validity of the GPE
calls for the limit of large N → ∞, such a case is numerically
prohibitive for the MCTDHB expansion Eq. (9). Since the
GPE results are invariant for varying N but fixed g0 = g1DN

we adjust the particle number such as to remain in the Thomas-
Fermi limit of the longitudinally trapped BEC (see Fig. 2). In
such a way it is assured that discrepancies between the GPE
and the MCTDHB method during the time evolution are not
caused by incompatible initial conditions.

The ground state of an interacting system of bosons trapped
by a harmonic potential is governed by three length scales: the
characteristic length of the harmonic trap l0; the mean inter-
particle distance rs = n−1 with n the particle number per unit
length; and lδ = h̄2

mg1D
, a measure for the zero-point fluctuations

(or anticorrelation length) of the repulsive two-body δ-function
interactions of strength g1D. The regimes obtained range from a
noninteracting “Gaussian” shaped BEC, over a Thomas-Fermi
BEC, to a strongly interacting fermionized Tonks-Girardeau
gas [32]. The presence or absence of a BEC is determined by
the ratio

γ = rs

lδ
, (19)

referred to as the Lieb-Lininger parameter [33]. If lδ is much
larger than the interparticle spacing rs the particles favor to

TABLE I. Parameters of the many-body systems trapped in the
harmonic oscillator at t = 0 (Fig. 2): particle number, N ; number
of orbitals, M . The interaction strengths g1D correspond to constant
g0 = g1DN [Eq. (8)]. For the definition of α, see Eq. (21). Highest
occupation number nNO

1 ; smallest occupation number nNO
M . The

parameter γ [Eq. (19)] fulfills γ � 1.

N M α = g1D[e0l0] nNO
1 /N nNO

M /N

103 3 0.39 0.995 0.205 × 10−2

103 2 0.39 0.997 0.266 × 10−2

104 2 0.039 0.9997 0.33 × 10−3

105 2 0.0039 0.99997 0.34 × 10−4

occupy the same state and form a BEC. The condition for the
presence of a BEC thus is

γ � 1. (20)

In order to distinguish between a Gaussian and a Thomas-
Fermi BEC the harmonic oscillator length l0 must be consid-
ered. The regimes are controlled by the parameter [32]

α = l0

lδ
= g1D

e0l0
. (21)

In our case α � 1 [α ≈ 390/N with the numerical value from
Eq. (8)], that is, l0 � lδ . If in addition l0 � rs the system is in
the Thomas-Fermi regime. The condition l0 � rs implies N �
α−1 for the Thomas-Fermi limit to hold [32]. For all systems
with N � 1000 in Table I the criteria N � α−1 and γ � 1 are
well fulfilled and, indeed, the many-body ground state density
takes on the Thomas-Fermi shape (see Fig. 2). The density
is practically indistinguishable from the GPE prediction. For
comparison, we also show in Fig. 2 a system with N = 100 for
which the criterion of a Thomas-Fermi BEC is only marginally
fulfilled because γ ≈ 1 and deviations become apparent.

The requirement of large N places a severe limit on
the number of orbitals that allow for a numerically feasible
configuration space. Convergence in the orbital number is
controlled by the occupancy nNO

M of the least occupied state.
While for the ground-state calculations nNO

M is sufficiently low,
we expect this number to rapidly increase during expansion
since strong depletion may occur.

We, therefore, expect only the onset of depletion to be
quantitatively reliable while the occupation numbers of excited
orbitals can be considered to be an indication of the excitation
process as the orbital expansion ceases to converge (M >

3 time-dependent orbitals would be needed) with increasing
propagation time.

V. NUMERICAL RESULTS

We first consider the expansion of the BEC which is initially
formed inside the harmonic trap (Fig. 2) and then released into
a periodic potential [Eq. (3)] with l = 0.548 11l0 (l ≈ 5.8ξ )
and VA = 0.2e, with e the total energy per particle. After the
release an explosionlike process takes place: The interaction
energy is rapidly transformed into kinetic energy. In free space
the cloud expands, keeping its Thomas-Fermi shape with the
characteristic length increasing in time [34]. This process is
modified by the presence of the periodic potential. Practically
immediately the density is modulated by standing waves with
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(a)

(b)

FIG. 3. (Color online) (a) The density of an expanding cold atom
cloud in a periodic potential within the MCDTHB for N = 105 at
t = 3t0. The inverted parabola in the blue dashed line indicates the
shape of an expanding cloud in the absence of the potential. The
parameters of the periodic potential [Eq. (3)] are l = 0.548 11l0 and
VA = 0.2e, where e is the energy per particle on the mean-field level.
(b) The corresponding Fourier spectrum again compared to its form
for free expansion (blue long dashed parabolic curve). The vertical
red short dashed lines correspond to ±kL = ±4.434l−1

0 , the momenta
assiociated with the Landau velocity (see text).

the same spatial periodicity as the potential. The local maxima
of the density coincide with the local minima of the potential
and lead to an increase of kinetic and interaction energy at cost
of potential energy.

As soon as the Fourier spectrum is sufficiently broad,
inelastic processes set in. As momenta increase to k � kL =
mvL

h̄
with vL the Landau velocity, the threshold for excitation

of phonons, that is, friction of superfluid flow is reached. For a

homogeneous system vL is given by vL =
√

μ

m
with μ = ng1D.

By applying this relation with μ from the inhomogeneous

system we determine kL from vL =
√

μ

m
. At t ≈ 3t0 the width

�k of the Fourier spectrum is approximately as large as kL

and we observe the development of strong density modulations
[Fig. 3(a)]. These spatial density modulations go hand in hand
with reduced density in the Fourier spectrum near ±kL since
those particles lose their momentum by phonon excitations
[Fig. 3(b)]. Friction leads to the separation of a strongly

FIG. 4. (Color online) Time dependence of the distance function
d (2)(t) within the GPE for a periodic potential with period l =
0.548 11l0 and amplitude VA = 0.2e (black solid line) as well as
for free space expansion (blue dashed line) after release from the
harmonic trap. The initial wave functions ψ1(x,0) and ψ2(x,0)
correspond to weakly perturbed ground-state wave functions given in
Fig. 2 with d (2)(0) ≈ 10−7 (for details, see Ref. [13]). The nonlinearity
is g0 ≈ 390e0l0 [Eq. (8)]. d (2)(t) for the periodic potential is fitted to an
exponential function (red short dashed line). The time te is determined
from the crossing point between the exponential and the free space
expansion. The saturation of d (2)(t) for t � 15t0 near unity indicates
approximate orthogonality of ψ1(x,t) and ψ2(x,t).

fluctuating central part of the density from its fast tails [Fig.
3(a)]. The tails expand nearly freely and are modulated by the
potential. We point out that this process is fully accounted for
within the GPE (i.e., the system remains condensed) since it
gives practically the same density and spectrum for t = 3t0 as
MCTDHB in Fig. 3.

For longer times we have previously observed for this
system signatures of wave chaos [13]: Two nearby effective
one-body wave functions ψ1(x,t) and ψ2(x,t) (with initially
large overlap) propagated by the GPE become orthogonal
to each other after an exponential increase in distance in
Hilbert space (see Fig. 4). The exponential increase sets in
at a characteristic time te subsequent to a universal (i.e.,
independent of the external potential) increase of d (2)(t) for
times t � 2t0 (see Ref. [13] and Fig. 4). We fit the increase
of d (2)(t) to an exponential with the Lyapunov exponent λ as
the slope [see Eq. (16)]. As soon as d (2)(t) reaches d (2)(t) ≈ 1
the curve saturates because orthogonality, that is, the maximal
distance in Hilbert space, is reached. Orthogonality results
from the buildup of random local fluctuations in the wave
functions on length scales comparable to the period of the
potential.

We now compare the growth in d (2)(t) within the mean-field
description with the growth of SN (t) (or depletion) within
the MCTDHB method which the GPE cannot represent. For
vanishing potential V (x) = 0 we find that the explosionlike
expansion with a rapid transformation of interaction energy
to kinetic energy does not lead to depletion of the condensate
[Fig. 5(b), dashed line]. The GPE accounts for the expansion
dynamics since SN (t) remains approximately zero as a function
of time. For vanishing potential the GPE is integrable [35] such
that d (2)(t) saturates after a short universal increase [Figs. 4

013630-6



WAVE CHAOS AS SIGNATURE FOR DEPLETION OF A . . . PHYSICAL REVIEW A 86, 013630 (2012)

FIG. 5. (Color online) (a) The potential V (x) in units of the energy
per particle e for varying amplitude VA; the period l is l = 0.548 11l0.
(b) The state entropy SN (t) within MCTDHB and (c) the d (2)(t)
function of two close wave functions within the GPE expanding in
the periodic potentials of (a). In (b) and (c) VA in units of the energy
per particle e is indicated next to the curves. The black dashed line
in (a), (b), and (c) refers to vanishing potential. For the many-body
system the particle number is N = 104, the orbital number is M = 2.
The onset of exponential growth te as well as the onset of depletion
td for VA = 0.2e are marked by arrows. td corresponds to a time of
≈60 ms. Note that SN is strictly zero within the GPE.

and Fig. 5(c), dashed line]. For periodic potentials we find a
drastic increase of SN (t) within the MCTDHB as a function
of time (Fig. 5), mirroring the exponential increase in d (2)(t)
within the GPE. To extract the rate of depletion η and the
depletion time td we fit SN (t) to functions of the form

S
f

N (t) = SN (0) + c

(
t

t0
− td

t0

)a

�

(
t

t0
− td

t0

)
, (22)

with fit parameters c, a, and td (in Fig. 5 td within the
MCTDHB is marked for VA = 0.2e). � is the Heaviside step
function. We introduce the depletion rate η as

η = ca

t0
. (23)
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FIG. 6. The depletion rate η as a function of VA as compared to the
Lyapunov exponent λ. η and λ are calculated from SN (t) and d (2)(t),
respectively. The MCDTHB calculation is for N = 104 particles. All
other parameters as in Fig. 5.

The depletion rate η is equal to the slope of S
f

N (t) at t = td + t0,
that is, after the abrupt increase of S

f

N (t) at td .
Comparing now η with λ (both have dimension of inverse

time) we find over a wide range of potential strengths (0.04e �
VA � 0.2e) that the exponential separation on the mean-field
level and the depletion on the many-body level correlate well
with each other: An increasing Lyapunov exponent λ with
increasing VA goes hand in hand with an increasing η (Fig. 6).
Up to a constant numerical factor (≈10) η follows λ as a
function of VA. We note that both η and td are sensitive
to the choice of the fit function Eq. (22), which results in
an uncertainty of the fit. The qualitative behavior remains,
however, unchanged. Within the precision of the fit we find that
η is dependent on N (which can be qualitatively seen in Fig. 7).

The association of td with te faces the difficulty that td ,
similar to η, is dependent on N . For example, for N = 104

the onset of depletion td ≈ 2t0 differs from te ≈ 6t0 within the
GPE. However, we observe that td increases with increasing
N [see the variation as a function of the particle number N

in Fig. 7(b)]. We conjecture that the onset of depletion td
approaches the onset of wave chaos within the GPE, te, in the
limit N → ∞. To prove this conjecture it would be necessary
to investigate td over a wide range of N which is, however,
prevented by conceptual and numerical limitations: For small
N < 1000 the initial state shows deviations from the Thomas-
Fermi limit (Fig. 2) while large N > 105 are numerically too
demanding. The N → ∞ limit remains therefore an open
problem. However, Fig. 7 demonstrates that te is the upper
limit for the depletion time for experimentally realized particle
numbers of N � 105.

For relatively small N (N = 103) the MCTDHB simu-
lations are also feasible for M = 3. Comparing M = 2 and
M = 3, the threshold for depletion is only weakly dependent
on the number of orbitals included: We obtain almost the same
td for M = 2 and M = 3.

Another important example is propagation in a disorder
potential. We use the Gaussian correlated disorder potential

013630-7
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FIG. 7. (Color online) (a) The periodic and a sample realization
of the disorder potential with amplitude VA = 0.2e. The period of the
periodic potential is l = 0.548 11l0 ≈ 5.8ξ . The correlation length of
the disorder potential is σ = 0.7ξ . (b) Onset of depletion within the
MCTDHB for different particle and orbital numbers for propagation
in the periodic and disorder potential of (a). The numbers next to
the curves indicate the particle number N . (c) Onset of chaos within
the GPE. In (a), (b), and (c) the thick light gray line corresponds to
the disorder potential. Within the GPE d (2) has been determined by
averaging over 90 realizations of the disorder potential. Within the
MCTDHB 44 realizations have been used for SN (t). The onset of
depletion td and exponential divergence te are marked by arrows.

for which we have observed a transition from algebraic to
exponential localization as a function of the correlation length
σ [13]. This transition has been first observed for the speckle
potential [19,20] and associated with its high-momentum
cutoff in the Fourier spectrum [20,36]. We observe the same
transition for Gaussian correlated disorder [13] where a
high-momentum cutoff in the Fourier spectrum is absent.We
show the results for propagation in a disorder potential with
parameters for which previously Anderson localization has
been observed [19]. Averaging over several realizations of
the disorder potential with VA = 0.2e and correlation length
σ = 0.7ξ we obtain within the GPE an exponential increase
which sets in several units of t0 before the exponential increase
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FIG. 8. (Color online) Particle density at t = 4t0 within
MCTDHB for N = 104 (green thick line) and GPE (red dashed line).
The condensate density is given by nNO

1 (t)|�NO
1 (x,t)|2 [blue (gray)

line]; the density of excited atoms is determined by nNO
2 (t)|�NO

2 (x,t)|2
(black line).

for the periodic potential with VA = 0.2e and l = 0.548 11l0
[see Fig. 7(b)]. In qualitative accord we observe that also SN (t)
bends up earlier for the disorder potential than for the periodic
potential [see Fig. 7(a)]. Our results suggest a destruction of the
BEC as indicated by the occupation of excited modes during
expansion in disorder potentials.

The onset of depletion of the condensate is mirrored in
the fine scale oscillations of the density (Fig. 8). Substantial
deviations within the GPE from the density obtained within
the MCTDHB method emerge at different instants of time
for different particle numbers. For N = 104 deviations in the
local fluctuations of the density emerge at t ≈ 4t0 (see Fig. 8)
monitored by SN (t) > 0. The occupation numbers are nNO

1 ≈
0.96 and nNO

2 ≈ 0.04. While the condensed part [given by
nNO

1 (t)|�NO
1 (x,t)|2] still closely follows the GPE prediction

|ψ(x,t)|2, the total density ρ(x) shows smoothing of the local
fluctuations near the center. This smoothing is due to excited
atoms whose density partially fills in the local minima. For the
system with N = 105 the picture is very similar except that
the occupation of the excited state is lower at t = 4t0, nNO

2 ≈
0.003 instead of nNO

2 ≈ 0.04. The initially spatially localized
excitations spread over the entire system with increasing time.
One can expect the fine scale structure of the density of the
full many-body system to strongly differ from the prediction
of the GPE.

The discrepancies in the particle density go hand in
hand with the breakdown of coherence as measured by the
normalized two-particle correlation function (Fig. 9). In the
regions of high density of excited atoms (near the local maxima
of the second natural orbital) the two-particle coherence is lost;
g(2) strongly differs from 1. The deviation of g(2) from unity
indicates that the many-body state is no longer representable by
a product of a single complex-valued function. Consequently,
the GPE ceases to be a valid description. This is a fingerprint
of the emerging fragmentation of the many-body system.

For longer time intervals our MCTDHB calculations
indicate a destruction or at least a strong fragmentation of
the condensate. For t � 10t0, for example, the occupation of
both orbitals is approximately 50%, indicating that many more
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FIG. 9. (Color online) Two-particle normalized correlation func-
tion g(2)(x1,x2,x1,x2; t = 4t0) for N = 104 bosons as well as the
density of the second natural orbital |φNO

2 (x,t = 4t0)|2 (upper frame)
obtained from MCTDHB. The color code in the online version is
chosen to highlight deviations from full coherence (white): red corre-
sponds to correlations (g(2) > 1) and blue to anticorrelations (g(2) <

1). Note that g(2)(x1,x2,x1,x2; t) is a real function [see Eq. (14)] and
is equal to unity within the GPE. For a movie of the time dependence
of g(2)(x1,x2,x1,x2; t) as well as nNO

2 (t)|φNO
2 (x,t)|2, see Ref. [41].

orbitals would be required for convergence. Nevertheless,
current experiments indicate remarkable agreement with the
prediction of the GPE for coarse-grained observables such as
the width of the atom cloud or the average position (see, e.g.,
Refs. [19,20,37–40]). The width

�x =
√

〈x2〉 − 〈x〉2, (24)

where 〈xn〉 = ∫
dxρ(x,t)xn, is independent of wave chaos

[13]. Even though two close wave functions ψ1(x,t) and
ψ2(x,t) develop random local fluctuations, the widths for
both ψ1(x,t) and ψ2(x,t) agree. If we now compare
the prediction for the width within the GPE and within
the MCTDHB method, we observe the same trend. While the
fine scale structures of the wave function within MCTDHB
have not fully converged for the small number of orbitals
(M � 3) included in the simulation, the coarse-grained distri-
bution remains essentially unchanged compared to the GPE
[Fig. 10(a)]. We thus expect that the time dependence of the
width of the full many-body system is well accounted for by
the GPE [Fig. 10(a)]. Despite its failure to account for the
state entropy (Figs. 5 and 7) and the coherence properties
(Fig. 9), the GPE thus remains predictive in describing the
expansion of a BEC in external potentials on longer time
scales for coarse-grained observables, long after the random
fluctuations prevent the prediction of fine scale structures in
ρ(x,t). Up to now, local small-scale fluctuations have not
been investigated experimentally because of the difficulty
of (sub) μm resolution. The same excellent agreement we
observe for the average over momenta k2 as accessible in
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FIG. 10. (Color online) (a) The width �x as a function of time
as predicted by the GPE (solid black line) and the MCTDHB for
N = 103 (red squares), N = 104 (green circles), and N = 105 (blue
triangles). (b) Average of the square of momentum 〈k2〉 (or mean
kinetic energy) as a function of time, symbols as in (a).

time-of-flight experiments [see Fig. 10(b)]. The average over
k2 is determined via

〈k2〉 =
∫

dk k2ρ̃(k,t) (25)

and is proportional to the kinetic energy per particle. The
GPE thus reproduces the mean kinetic energy of a highly
excited system despite its failure to account for breakdown of
coherence, fragmentation, and small-scale fluctuations. The
latter observation indicates that thermalization may be within
the realm of the GPE despite its failure to account for two-body
scattering, which is key to any thermalization process.

VI. CONCLUSIONS

By comparing simulations within the GPE and the MCT-
DHB method we have uncovered that wave chaos in the
GPE indicates depletion of the occupation of a BEC during
expansion in the presence of weak external 1D potentials.
We have checked that this connection holds for a large
class of external potentials including a harmonic potential
with short-ranged perturbation (not shown), an aperiodic
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potential with incommensurate frequencies, and disordered
and periodic potentials explicitly discussed in this paper.
This connection has far-reaching consequences: While the
depletion and fragmentation process is an intrinsic many-body
effect outside the realm of the GPE, the mean-field theory
allows one to monitor its onset through the development of
random local fluctuations. The measure for the random local
fluctuations, d (2)(t), can be used to delimit the applicability
of the GPE to approximate the many-body dynamics. On the
many-body level the depletion process manifests itself through
the loss of coherence as measured by deviations of g(2) from
unity. We point out that the connection between wave chaos
and depletion is unidirectional: The presence of depletion on
the many-body level does not necessarily imply the presence
of wave chaos on the mean-field level. Similarly, the absence
of wave chaos does not imply absence of depletion. Rather, for
every system where we have found wave chaos within the GPE
the occupation of the BEC abruptly decreases. Coarse-grained
(“macroscopic”) quantities become independent of random
(“microscopic”) fluctuations. Thus, wave chaos identifies a

depletion process which eventually may lead to relaxation
and thermalization (see, e.g., Refs. [42–45]). The depletion
process, the onset of which we have investigated, can be
experimentally studied provided a sufficient spatial resolution
is achieved. Observables include higher-order coherence, that
is, deviations of g(2) from unity as measured, for example,
in Ref. [46]. It would be of considerable interest to verify
experimentally our predictions by exploring the fine-scale
fluctuations and coherence properties of expanding BECs
in external potentials and thus gain deeper insight into the
involved many-body effects.
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